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Electromagnetic Scattering from
Two Adjacent Objects

Kamal Sarabandi, Senior Member, IEEE, and Paul F. Polatin

Abstract—In this paper, the problem of electromagnetic scat-
tering from two adjacent particles is considered and an iterative
solution that accounts for multiple scattering up to second-order
is proposed. The first-order solution can easily be obtained by
calculating the scattered field of isolated particles when illumi-
nated by a plane-wave. To get the second-order solution, the
scattered field from one of the particles, with nonuniform phase,
amplitude, and polarization, is considered as the illuminating
wave for the other particle and vice versa. In this work, the
second-order scattered field is derived analytically using a novel
technique based on the reciprocity theorem. In specific, the
analytical solution for bistatic specular scattering from a cylinder
and sphere pair is discussed and the results are compared with
numerical computations based on the method of moments.

[. INTRODUCTION

HE study of discrete random media has important ap-

plication in the understanding of remotely sensed data.
In particular, the interaction of electromagnetic waves with
forest stands and other types of vegetation cover is of interest
because of the important role such vegetation plays in the
regulation of environmental and climatic change. Typical
canopies consist of objects such as trunks, stems, branches
and leaves or needles and, in general, vegetation tends to
have some complex structural features. However, analytical
solutions for the problem of scattering of electromagnetic
plane-waves by objects exist for only a limited number of
canonical geometries. If the scattering body is inhomogeneous,
or the polarization and phase front of the illuminating field is
nonuniform, analytical solutions of the vector wave equation
do not exist even for canonical geometries.

Almost all models that are currently being used for the
analysis of EM scattering from collections of discrete scatter-
ers rely on the single scattering properties of the constituent
particles [1]-[4]. However, when the sizes and/or number
densities of the scatterers become large enough that they are
in the near-field of each other, solutions based on their single
scattering properties are no longer valid. Certain types of
vegetation canopies such as forest stands and some agricultural
fields have high number densities of strong scatterers [5]-[7].
In addition, the particle sizes in these canopies are large
enough so that adjacent scatterers are not in each others far-
field zone, especially in the microwave region.

Manuscript received May 13, 1993; revised November 15, 1993.

K. Sarabandi is with the Department of Electrical Engineering and Com-
puter Science, The University of Michigan, Ann Arbor, MI 48109-2122.

P. F. Polatin is with the MITRE Corporation, Bedford, MA.

IEEE Log Number 9400496.

To model vegetation of this type, it is necessary to be able
to treat electromagnetic interactions between particles that are
not only nonplane-wave in character but have nonuniformities
in amplitude, phase, and polarization. As has been stated, it
is impossible to find exact analytical solutions for this type of
problem except in a small number of cases (8], {9]. In some
few circumstances it may be possible to obtain an analytical
solution by employing a plane-wave expansion technique [10]
or some other specialized approach. Even so, such solutions
may yield results that are difficult to evaluate or have tedious
multiple integrations that must be done numerically. This is
obviously a distinct disadvantage when the desired end result
is to simulate EM scattering from a dense random medium.

EM modeling of vegetation canopies usually involves the
construction of simplified geometrical representations for the
constituent scattering elements [11]-[14]. When this is the
case, it is a fairly simple matter to obtain expressions for the
first-order scattered field using the single-scattering properties
of the isolated particles when the primary excitation is a plane-
wave. To obtain the secondary scattered field from interacting
particles it is necessary to account for illumination of the
secondary scatterer by the scattered field from the primary
scatterer. This paper presents a technique for obtaining the sec-
ondary scattered field analytically by employing the reciprocity
theorem. The technique is then applied to obtain an analytical
solution for bistatic scattering from a cylinder-sphere pair.
This cylinder-sphere interaction has some importance because,
along with the electromagnetic coupling between pairs of
cylinders, it provides a basic building block from which the
EM scattering properties of a heterogeneous two-component
forest canopy may be simulated. The results of analytical field
calculations for cylinder-sphere pairs are then compared with
numerical computations based on the method of moments.

II. SECONDARY SCATTERED FIELD FROM RECIPROCITY

In this section, a procedure utilizing reciprocity for eval-
uation of the secondary scattered field from a particle when
illuminated by the primary scattered field of another adjacent
particle is outlined. The reciprocity theorem simplifies this
evaluation significantly when the observation point is in the
far-field zone of both particles. Derivation of the expression for
the secondary scattered field of perfectly conducting particles
is slightly different from that of dielectric particles. First we
consider perfectly conducting particles. Suppose the incident
field induces a surface current density J, on the surface
of particle #1 in absence of particle #2. The objective is
evaluation of the scattered field from particle #2 with J; as
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Fig. 2. Particle #1 removed and elementary current source placed at ob-

servation point.

the excitation source. Suppose the electric and magnetic fields
produced by J; (as an impressed source) in the presence of
particle #2 are denoted by E; and H, respectively, as shown
in Fig. 1. Obviously F; and H satisfy Maxwell’s equations
everywhere in the medium.

Now, let us consider another situation where the source J;
is removed and an infinitesimal current source .J. given by

Je = ﬁé(r - TP)

is placed at observation point P as in Fig. 2. The electric and
magnetic fields produced by the elementary current source are
denoted by E.5 and H . and also satisfy Maxwell’s equations.
Applying the reaction theorem [15] to fields E;. E.o. H1, and
H 5 over the entire medium, it can be shown that

/ (EleSQ—EEQXHl)";L(iS
S2+S

—— [ B Badspo B
S1

where S, represents a closed sphere at infinity. Since at
distant points E; = ZoH; x 7, where j = 1, e2, the surface
integral over S.. vanishes. Also the surface integral over the
surface of particle #2 vanishes since n x £ = 0 over a
perfectly conducting surface.

Since the elementary current source J,. is in the far-field
zone of particle #2, E., can be approximated by the sum the
scattered field of particle #2 when illuminated by a plane-
wave and the direct field generated by the elementary source

itself. Noting that J; is a function of the incident wave
polarization (v;, fzi) and the polarization of the elementary
source p can also be chosen to be either ¢ or h, the expression
for the scattered field is given by

p-E] = g Ees(bs, hs) - J1(04, hi) ds 2)

1
where (7;. iLz) and (%,, ils) are sets of perpendicular unit
vectors normal to the incidence and scattering directions,
respectively. The scattered field from particle #1 when il-
luminated by the field generated from the induced current on
particle #2 can be obtained in a similar manner and is given by

p-Ey = | Eo(te. hy)- Jo(0s, hs)ds. 3)
Sz

Here, E.1(9s, hs) is the sum of the radiated field from the
elementary current source and the scattered field of particle
#1 when illuminated by this elementary source. The source
is characterized as possessing either a vertical or a horizontal
polarization state and is located at the point of observation.
It should be noted that E7 includes the first-order scattered
field of particle #1 and secondary scattered field of particle
#2. Identically, E5 includes the first-order scattered field of
particle #2 plus the secondary scattered field of particle #1.
Therefore E] + Ej is the total scattered field of both particles
up to second-order.

Now let us consider the case in which both particles are
dielectric objects. The incident wave induces a polarization
current J; in particle #1 in the absence of particle #2.
When particle #2 is placed at its location with no incident
wave present, the volumetric current J; induces a volumetric
current Ji5 in particle #2. The total fields in this case will
be denoted by E; and H;. In a second experiment, we place
the elementary current source J,. at the observation point as
before and remove the current source J; (particle #1). The
elementary current then induces a volumetric current J.o in
particle #2 for which the electric and magnetic fields will be
denoted as E.» and H.2. The currents induced in particle #2
may be expressed in terms of the total electric field and relative
dielectric constant (e2) of particle #2. They are given by

JIQ(T) = —ik‘oYo(EQ — I)El(T)7 r e Vg (4)

Jeg(‘r) = —ikQYQ(EQ — I)ECQ(T), reV, 5)

where ky and Y, are the wave number and characteristic
admittance of free space, respectively, and V3 is the region
occupied by particle #2. Application of the reaction theorem
over the entire medium results in
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The integral on the left-hand side vanishes as before, and, by
substituting (4) and (5) into the second and third integrals on
the right-hand side, it can be shown that the last two integrals
in the expression given above cancel each other. Thus, the
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sum of the primary scattered field of particle #1 and the
second-order scattered field of particle #2 is given by

p-Ey= ] Ji-Eepdv. (6)

v
Similarly, the sum of the scattered field of particle #2 and the
second-order scattered field of particle #1 is given by

p-Es 2/ Jy - Ecy dv. (7
v

In (7), J2 is the volumetric current induced in particle #2 by
the incident wave in the absence of particle #1 and E,; is the
total field of the elementary current located at the observation
point in the presence of particle #1.

When one of the particles is dielectric and the other one
is metallic, the expressions for the scattered fields can be
obtained in a similar way. Let us say that particle #1 is
metallic and particle #2 dielectric, then the expressions for
the scattered fields are given by (2) and (7), respectively. Con-
versely, if particle #1 is dielectric and particle #2 metallic,
expressions (6) and (3) give the scattered fields.

III. ELECTROMAGNETIC SCATTERING
FROM A CYLINDER-SPHERE PAIR

The expressions for the scattered fields from the two par-
ticles as derived in the previous section are very general and
can be applied to any particle pair with known geometries and
dielectric properties. In this calculation only the scattered fields
and induced currents of isolated particles when illuminated
by a plane-wave are required. The sphere and cylinder are
among the few geometries for which an exact analytical
scattering solution is known. Additionally, as mentioned previ-
ously, a collection of randomly positioned spheres and vertical
cylinders above a ground plane can be used to simulate a
heterogeneous forest medium which includes the effect of
multiple scattering between canopy components.

Analytical evaluation of the integrals (2), (3), (6), and
(7), even for the cylinder-sphere pair, is not possible, and
one must resort to numerical methods. In this section an
approximate analytical solution will be derived for a cylinder-
sphere pair. The assumption is made that the cylinder is in
the far-field region of the sphere. However, the sphere is
assumed to be in the near-field of the cylinder with respect
to the cylinder’s longitudinal dimension and in the far-field
region of the cylinder’s transverse dimension. If the radius of
the cylinder and sphere are denoted by a. and a,, respectively,
and the cylinder length is represented by L, then the conditions
previously specified may be stated mathematically as

227 L* 2a?
ATA A
where § is the distance between the cylinder axis and the
sphere center.

Suppose a plane-wave, whose direction of propagation is

denoted by k;, is incident on a cylinder-sphere pair and is
given by

2p> (®)

E: = é,eikoi‘fz'l‘
1= € .

>

>

ot

Fig. 3. Geometry and coordinates of the cylinder/sphere pair.

The cylinder axis coincides with the z-axis of the Cartesian
coordinate system and the sphere center is located at 7 =
pcos i + jsin dsg) + zZ. The observation point is located at a
distance ry in the direction l%s. The geometry of the problem
is given in Fig. 3.

The current induced on the sphere when illuminated by a
plane-wave can be easily computed by the standard method
of separation of variables [16]. Since the cylinder is assumed
to be much longer than the excitation wavelength, the current
induced in this finite length cylinder can be approximated by
that in an infinitely long cylinder of the same radius and
electrical properties [17], [18]. The field generated by the
elementary current source located at the observation point,
over the volume (surface) of each scatterer when the other
one is absent is calculated as follows. Let us first consider
the case where the sphere is absent. The field generated by
the elementary current J, = pé(r — r,,) is composed of two
components. The first component is the direct contribution of
the current source and is given in the far zone by

—ikaZ A A
Eed(T) = ;iwiooezkoroe—lkokswks X ks X ﬁ (9)

The second component is the scattered field from the cylinder
when illuminated by the radiated field of the elementary
current source. This illuminating field can be approximated
locally by a plane-wave propagating along the —k, direction.
Since the point = is in the near-field of the cylinder which
satisfies condition (8), the scattered field is given by [10]

—ikg Z()eikora

EEC (T) = 47TT'0

F(¢— ¢s)
- H§V (ko sin B, p)e=*0 €08 852 (10)

where (p, ¢, z) is the cylindrical coordinate of position vector
T, H(()1> is the Hankel function of the first kind and zeroth
order, and #, and ¢ are the spherical angles specifying the
unit vector I}s, that is

k, = sinf, cos ¢psi + sin B, sin ¢4§ + cos B2,

an
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The expression for the vector quantity

F(¢ — ¢,) in (10) is

given by
1o
F(¢—¢s) = Mm;x(—l)m
A (K x K x 2) + B (k' x 3))eim@e=os)
where
k' = sin 0s[cos ¢z + singgy] — cos b2
and

TE(ky X p) - 2 — iC ks X (ks X P) - 3.
The expressions for CLM  CTE and C,, are given in [19].

The direct scattered field from the sphere and the secondary
scattered field from the cylinder can be obtained from (2) or
(6) depending on whether the sphere is perfectly conducting
or dielectric. The first component of this scattered field is due
to the excitation E.4(r) which yields the direct contribution
from the sphere. This is specified by

pEy = Js (T) :

sph.

E. q4(r) dv.

Using the far-field expression for E.4(r), it can be shown that

eiko o

——(—kg)

To

i 7 iZy —ikoks T 7.\ | . 5
{ks X (k X ko/J (r)e dv P

6ikgrg P A
— 6Lkg(k1—k5)-rss(ki~ ks) A ﬁ

To

ﬁ'Els:

(12)

where Ss(lAsi., fcs) is the bistatic scattering amplitude of the
isolated sphere.

The second component of the scattered field is referred to
here as the sphere-cylinder interaction and is given by

p-Erye = / () - Eoe(r) dv (13)
sph.

Integral (13) can be evaluated analytically, keeping in mind
the conditions on the dimensions of, and distance between,
the particles as specified in (8). Under these conditions the
angle subtended by the sphere is small, therefore F(¢ —¢,) ~

F(& — ¢,) which is a constant vector and comes out of the
integral. Also the Hankel function can be approximated by

Hél)(ko sin Hsp)e—iko cos sz
~ H(()l)(]g0 sinf,p)e

—tkg cos 652

exp [—’iko’:C 7]

noting that p and p can be approximated by o and ;3, respec-
tively. Here, k = —sinf,5 + cosf,% and ' = r — 7

Thus, the sphere-cylinder interaction term is obtained from

—1 etkoro
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where E3(k;. k) is the bistatic scattered field amplitude of the
isolated sphere.

Now we consider the case for which the cylinder is absent
and evaluate the field generated by the elementary current
source. As previously, the total field generated by the elemen-
tary current consists of two components. The first component
is the direct field given by (9), and the second component is
the scattered field from the sphere when illuminated by the
direct field of the elementary current source. Noting that this
current source is in the far-field of the cylinder-sphere pair, the
sphere illumination appears locally as a plane-wave. Since the
cylinder is in the far-field of the sphere, the second component,
in the vicinity of the cylinder axis, is given by

E?s("') = ————ikOZO elk—oropfiknfcs-i' . ezkg'r 1.

LY ro r!

where 7’ is the distance between the sphere center and the
point at r, that is v’ = |r — 7| and #' = (r — 7)/|r — 7|.

The direct scattered field from the cylinder and the sec-
ondary scattered field from the sphere can be obtained from
(3) or (7) depending on whether the cylinder is perfectly
conducting or dielectric. The first component of this field is
the direct contribution from the cylinder alone and is given by

p-Eg = / Jo(r)  Eeq(r)dv
eyl

As in (12) it can easily be shown that

Cikorg

f’ : E2c - Sc(k: ks) 13 (14)

70
where 8. (ki, k) is the far field amplitude of the isolated
cylinder given in [20, p. 97].
For analytical evaluation of the cylinder-sphere interaction,
it is noted that the current induced in the cylinder has a
progressive phase factor along the cylinder axis, that is

JC(T) — ](ﬂ ¢)eik|) cos Biz.
The second term in (7) is given by

; ikoT
4’1/(3020 PZ 00 ikgh,-i
E?cs - ofsr

// (6. p)ezkocmGz Su(—he, )i

where the first integral is over the cylinder cross-section. By
rewriting |r — #| in cylindrical coordinates, ie., |r — 7| =

L)Col’r‘ 7|
dzds (15)

|r =7

|7 — 52+ (2 — 2)? and noting that k,|p — pl > 1, the
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stationary phase approximation can be used to evaluate the
z integration. The stationary point of the integrand is at
Zs = % — cosB;|p — p| and (15) simplifies to

7ik0Z0 eikoro

4 0

P Boes = e"“ﬂ’“s‘f/Hél)(ko sin6;]7 — p|)
8

j(p. ) - Su(=ke. ) pd pdep  (16)

where 7, is the unit vector 7 evaluated at the stationary point.
Noting that |9] < |p]
7 = —siné; P =

— —cosf;z ~ —sin 91-5 —cosf;2.
|7 = 7l

Under this approximation Ss(—ks, 74) is not a function of the
integration variables. Therefore (16) can be written as

—ikoZy etkoro

4 ro
Sl 1) [, 90O i pg

Note that with values of z for which Z, > L or Z, < 0
(stationary point outside the cylinder surface) the scattered
field Es.s is negligible and can be ignored. The integral in
this expression is proportional to the bistatic scattered field
amplitude (E3(k;. —#,)) of an infinitely long cylinder with
the same radius and dielectric constant as those of the finite
cylinder. Therefore

emikoke D (kg sin ;)

ﬁ'EQCS -

ikoro

e p—ikoksF

ZB N E?cs = -
T T
- HSY (ko sin6;5)8 . (—ks, 7,) - E(ks, —7.)

where
. 1 =
Es(k;, —71) =
C( ' TS) Sin 92 7"=Z—OC

(AL (—cos8;p + sin8;3) + Bfng]eim("’S“"’l)

with ¢ = % x p. and A%, and B}, given in [20].

The derivation of the scattered field for a cylinder-sphere
pair can be easily generalized to a cylinder and an arbitrary
scatterer so long as the expression for the scattered field of the
isolated scatterer is known and the dimensions of the scatterer
satisfy the conditions specified earlier.

IV. NUMERICAL RESULTS

The theoretical development presented in the previous sec-
tion for second-order scattering from the cylinder-sphere pair
has been validated using the Numerical Electromagnetics Code
(NEC) [21] which is a computational package based on the
method of moments. This approach was chosen because we
were interested in the bistatic scattering behavior of the pair,
particularly in the forward specular cone, which is quite
difficult to obtain experimentally. The forward specular cone
is referred to as the set of azimuthal angles for which the
scattered wave-vector lies on the conical surface of revolution
generated by rotating the incident wave-vector around the z-
axis as shown in Fig. 4. This subdomain of the scattering

Elevation
Angle

Fig. 4. Scattering geometry and angles for forward specular cone scattering.

pattern is paticularly important for simulating the interaction of
electromagnetic waves with vertical structures above smooth
surfaces. In this case, the radar return is dominated by the
scattered field in the specular cone.

The validation for the VV and VH polarization states were
made with a model consisting of a cylinder 18.0 cm in length
and 0.1 cm in diameter with a finite conductivity of 100
mhos/m, and a perfectly conducting sphere with ka = 1.69
at an excitation frequency of 9.25 GHz. The cylinder was
chosen to be of finite conductivity because this damps the axial
standing wave pattern that exists on a finite length perfectly
conducting cylinder. Our finite length cylinder model does
not need to account for this standing wave behavior because
in all real vegetation, cylindrical structures are composed of
lossy dielectric material and do not support standing waves of
significant amplitude. A cylinder having a small diameter as
compared with the excitation wavelength was used because the
version of NEC we have only provides for finite conductivity
in thin wire structures. The number of unknowns for the thin
cylinders was on the order of 10 per wavelength or a total of
about 60 for the 18 cm length.

The sphere was composed of variable segmented perfectly
conducting rectangular patches as described in [22]. A total
of 90 rectangular patches were used to represent the sphere.
In general, the relative configurations of the cylinder-sphere
pair and the scattering patterns were chosen so as to present as
great a contrast as possible between the first- and second-order
scattering behaviors. The angle of elevation and the azimuthal
angle are defined in Fig. 4. The plane of incidence in the
x—z plane and the azimuthal incidence angle is 180 degrees.
The cylinder is always located at the origin and the relative
cylindrical coordinates of the sphere are presented.

Fig. 5 is a VV polarized azimuthal pattern for which the
elevation angle is 37 degrees. The relative cylindrical coor-
dinates of the sphere are (p, ¢, 2) = (18 cm, 180°, 9 cm).
In this case the cylinder and sphere are located far enough
apart to be effectively isolated. This figure demonstrates that
the single scattering models for the sphere and cylinder are in
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Fig. 5. Cylinder and sphere VV polarized scattering cross section at 9.25
GHz.
-200 T T T
€ -25.0
S
©
E
A 300
——  Second-Order Theory
--------- First-Order Theory
4 MoM Computation
_35.0 1 1 I
0.0 90.0 180.0 270.0 360.0
Azimuth Angle (deg)
Fig. 6. Cylinder and sphere VV polarized scattering cross section at 9.25
GHz.

agreement with the moment method computation to within less
than about 0.2 dB and establishes a baseline for comparison.
The oscillatory behavior of the RCS in this figure is simply the
interference pattern of the two scattering sources. Figs. 6 and
7 illustrate the VV scattering behavior for the case where the
sphere is close to the cylinder. In Fig. 6 the relative cylindrical
coordinates of the sphere are (4, ¢, ) = (2 cm. 45°. 9 cm),
while in Fig. 7 they are (7, ¢. ) = (2.5 cm. 45°, 9 cm). It
may be seen from these two figures that the VV second-order
result provides a reasonable approximation and is in agreement
with the moments method data to within about 0.4 dB over
the angular range.

The maximum difference between the first- and second-
order cross-polarized (VH) response occurs in regions close
to 0 and 180 degrees in azimuthal angle. At these two points
the first-order cross-polarized response disappears while the
second-order response is low but nonzero. Fig. 8 illustrates
the difference between the first- and second-order scattering
behavior for the case having relative cylindrical coordinates
of (p, ¢, Z) = (2 cm, 45°, 9 cm) and an azimuthal scattering
angle of 350 degrees. This provides good contrast between the
scattering orders, and the scattering amplitude is strong enough
that the accuracy of the numerical computation is sufficient
for comparison. The agreement of the second-order analytical

-20.0 T T T T T

Bistatic o (dBsm)

———  Sccond-Order Theory -
- Fira-Order Theory

<350

4 MoM Computation

_400 1 L L 1 i
200 300 400 50.0 60.0 700 80.0
Elevation Angle (deg)
Fig. 7. Cylinder and sphere VV polarized scattering cross section at 9.25
GHz.
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8
b |
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Elevation Angle (deg)
Fig. 8. Cylinder and sphere VH polarized scattering cross section at 9.25
GHz.

result with the moment method computation has a mean
deviation of about 1 dB or so over most of the angular range.

For verification of the HH polarized response, it was nec-
essary to use a thicker cylinder since the contrast between
the first- and second-order terms is insufficient with very thin
cylinders. For cylinders with larger diameter to wavelength
ratios than the one used for verification of the VV polarization
case, NEC requires the use of a patch model. A patch model of
a cylinder 18.0 cm in length and having a diameter of 0.55 cm
was constructed using perfectly conducting patches. The model
had 15 sides and consisted of over 800 rectangular paiches.
Because the patches were perfectly conducting, the axial
standing wave made the model inappropriate for verification
of the VV polarized case. However, the standing wave seems
to have a much smaller effect as far as the HH response is
concerned, becoming significant only for elevation angles less
than about 30°. Figs. 9 and 10 present azimuth and elevation
patterns for the cylinder/sphere pair having relative cylindrical
coordinates (p, b, Z) = (2.0 cm, 45°. 9 cm).

V. CONCLUSION

In this work a general technique based on the reciprocity
theorem has been developed for deriving the secondary scat-
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Fig. 9. Cylinder and sphere HH polarized scattering cross section at 9.25
GHz.
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Fig. 10. Cylinder and sphere HH polarized scattering cross section at 9.25
GHz.

tered fields from a pair of objects. The general formulation has
been applied to obtain approximate analytical expressions for
the secondary scattered fields from a cylinder-sphere pair. The
validity of the analytical results was verified by comparison
with method of moments computations, and good agreement
was obtained for both the co-polarized and cross-polarized
bistatic scattering cross sections in the forward specular scat-
tering cone. This work should provide the basis for the
construction of computational simulations of electromagnetic
wave scattering from heterogeneous two-component vegeta-
tion canopies that include the effects of multiple scattering up
to second-order.
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