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An Iterative Inversion Algorithm with
Application to the Polarimetric Radar
Response of Vegetation Canopies
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Abstract—The retrieval of scene parameters from polarimetric
radar data using an iterative inversion approach is considered
in this paper. The theoretical development of a general, model-
based iterative algorithm for inversion of polarimetric radar
data is presented. Factors relevant to its implementation, such as
sensor configuration, algorithm optimization and computational
structure are discussed. The algorithm is applied to the specific
problem of inverting the vector radiative transfer model for a
simplified, representative vegetation canopy consisting of vertical
trunks, leaves, and a rough ground surface. The results of
this inversion are in excellent agreement with simulated data
generated using the radiative transfer model. The convergence
properties of the algorithm are evaluated, and it is found that
successful convergence is achieved in about 90% to 95% of the
cases tested for the implementation used in this work. An error
analysis is presented which considers the effect of both systematic
and measurement derived errors. Typical error bounds for the
current application are approximately +3%, allowing for +0.5
dB accuracy in the measured radar data.

1. INTRODUCTION

N RECENT years a great deal of emphasis has been placed

on the retrieval of information from synthetic aperture
radars and radar polarimeters [11-[3]. Some of the applications
have been in remote sensing of soil moisture for bare soil [4],
[5] and vegetation-covered soil [6], [7]. Other applications
include the determination of vegetation canopy parameters
[81-[11], sea surface characteristics [12], [13], and snow
parameters [14], [15]. Within the general problem of classi-
fication of remotely sensed data, there exists the subproblem
of inversion of radar data to obtain parameters of interest for
the scene under observation. The vast majority of the literature
in this area has been concerned with two major approaches to
the problem of inversion of radar data.

The first approach involves the construction of an empirical
scattering model specific to the type of problem being studied
[4], [16], [17]. In this technique the scattering characteristics
of a particular type of terrain or vegetation canopy are deter-
mined experimentally, usually at several frequencies using a
polarimetric radar scatterometer. The results are then fitto a
fairly simple equation or a set of equations that describe the
scattering behavior as a function of polarization and frequency
over a specified range of parameters (region of validity) for the
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type of terrain or canopy being characterized. The empirical
model obtained in this way is designed to be invertible over
its region of validity. This type of technique can give accurate
results for the case it has been designed to treat but is
completely specific to that case and provides little physical
insight.

The second approach, which has received a large amount
of attention lately, is based on the use of artificial neural
networks [18]-[21]. The transfer function of the network
is determined by using training sequences of known input
and output data. In the present case, this would consist of
polarimetric radar data as inputs and scene parameters as
outputs. The network characteristics relating the radar data to
the scene parameters are determined using a back propagation
algorithm to successively refine the transfer function based
on the set of training sequences. After the network has been
trained, it can be used to estimate unknown scene parameters
given an input set of radar data. The neural network has great
fiexibility and, depeding on the set of training data, the results
may be excellent [18], [22]. However, the neural network is,
in most cases, used essentially as a black box. There is no way
currently known to discern the underlying physical processes
that give rise to the network behavior, which means that there
is no systematic way of selecting the optimum set of data
channels for use in a neural network-based inversion given
the network response alone. To do this, one must ultimately
rely on information provided by theoretical models and/or
measured data. There is also no way of determining if the
decision path taken by the neural network in arriving at its
result is a reasonable one.

In this paper, we present an iterative algorithm for the in-
version of polarimetric radar data. The algorithm is completely
general and may be applied, in principle, to any type of radar
scattering problem for which a model exists. The behavior of
this algorithm is derived entirely from the physical scattering
mechanisms existing within the system being studied and
represents the summation of knowledge gained in applying
the scattering model across a representative range of states
of the system. The amount of computation time required in
applying the algorithm to any given case is small since all the
information necessary for inversion of a set of input data has
been precomputed. It is also possible to monitor the decision
path taken by the algorithm in arriving at a result and therefore
some measure of control over the reliability of such results is
achievable.
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The second and third sections of this paper present the
theoretical development of the iterative inversion algorithm
and some important considerations involved in its imple-
mentation. Sections IV and V discuss the application of the
algorithm to the particular case of retrieval of vegetation
canopy parameters from radar data and give the results of
an application based on inversion of the radiative transfer
model for a simplified representative canopy. The final section
presents the results of an error analysis for the algorithm in
terms of both systematic and measured quantities and discusses
how sensor configuration, algorithm implementation, and data
uncertainty influence the inversion accuracy.

II. ITERATIVE ALGORITHM

Let us assume that backscatier data is provided for a
particular target at a given frequency and for a range of
incidence angles # € [a,b]. This data may be represented in
terms of a Fourier series in the restricted angular range. The
Fourier coefficients obtained in this way provide an equivalent
representation of the system response for this type of target.
The behavior of the Fourier coefficients as a function of the
target parameters provides a convenient measure of the system
response that is independent of incidence angle. If a subset of
the Fourier coefficients can be found that represents the angular
response of the system to sufficient accuracy and their behavior
is known for all values of the target parameters, then, in effect,
we have an empirical model that describes the target behavior
in detail. In addition, if the functional forms of these Fourier
coefficients with respect to the target parameters are known, it
should be possible to construct subsets of the parameter space
over which piecewise linear representations of the coefficients
are obtainable. The resulting sets of linear equations should be
directly invertible and, by means of an iterative process that
successively converges on smaller domains, a solution set is
found.

Because it is impossible to determine experimentally the
behavior of a complicated physical system under all condi-
tions, a model that represents its behavior as a function of
all its important parameters is used in the construction of the
empirical Fourier representation. This leaves the determination
of the optimum sensor configuration to the discretion of the
system designer. Let us consider then a model M that operates
on parameters [, -, ;] and the angle § to produce an
estimate of ¢° for a particular scene

&O((Xl,"',am,a):M(a17"',am,9). (1)

We now restrict the range of validity of the model to a subset
of the range [0,7/2]. In other words let # € [a,b] such that
0 < a<6<b< /2 A linear transformation £ exists that
maps the subrange into the full range

gelab] S0 e [o, g] @)
with 8’ = 8(8 — a) such that §' = 0 when § = a and §' = 7/2
when # = b. Thus, we find that 8 = 7/2(b — a) and ¢ =
a+8'/B. We now construct the function g(6') = 6°(a+6'/8).
Since the domain of g is [0, /2], we can expand g as a Fourier

cosine series in @’ as follows:

g(#) = 3C, + Z C,, cos(2nf’) 3)
n=1
where
4 /2
Cn = —/ g(8") cos(2n8") df’. 4
™ Jo
We can then
o0
6°(8) + 3C, + Z Cp cos[2nB(8 — a)] )
n=1
with
4p [°
o, =2 / 5°(8) cos[2nB(8 — a)] d6. ©)
™ a

These are the coefficients for the restricted range Fourier series
description of 6°(8).

We describe the general polarimetric model response as a
function of angle in the angular range [a,b] by its restricted
range Fourier series

N
G2 (ay, - am; f,0) = %Cf,"“rz CP4cos[2nB(8—a)] (7)

pq
n=1

with
CP1 = CP¥(avy, -+, s f)

where a1,---,a, are the model parameters, f is the fre-
quency and p, q is each either v or h for vertical or horizontal
polarization. The series has been truncated at the (N + 1)th
term which is assumed to give a satisfactory approximation to
the system response. This representation generally consists of
six or seven terms in the case of vegetation since the angular
behavior of the radar cross-section of such canopies away from
normal incidence is a gentle function of 6. Thus, the unique
set of Fourier coefficients has been determined for the model
response as a function of angle within the restricted angular
range for any given set of input parameters. By way of an
example, the behavior of the first four Fourier coefficients as
a function of the volumetric soil moisture beneath a vegetation
canopy simulated using vector radiative transfer theory at
1.5 GHz for VV and VH polarizations is shown in Figs. 1
and 2. It is seen that the functional behavior of the Fourier
coefficients is fairly linear over the entire operational range
of volumetric soil moisture and that the convergence of the
Fourier series is rapid. This has been found to be true in
most vegetation canopy applications. Figs. 3 and 4 show the
magnitude angular response of the radiative transfer model
as compared with a Fourier series representation utilizing
many terms and synthetic data created by using the four
coefficient series of Figs. 1 and 2. In this case, the four-term
approximation agrees with the model to better than 0.25 dB
over the entire angular range.

The behavior of the CP9(aq, -+, am; f)'s is now approx-
imated as linear functions of the ajs over the initial range
of these parameters. That is, it is known initially, from
experience, that each . falls into a range a}cni“ < ap < o™,
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Fig. 1. The first four VV polarized Fourier coefficients of a simulated

vegetation canopy as a function of volumetric soil moisture at 1.5 GHz.
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Fig. 2. The first four VH polarized Fourier coefficients of a simulated
vegetation canopy as a function of volumetric soil moisture at 1.5 GHz.

which is not unreasonable in, for example, typical vegetation
canopies of this kind at this time within the growing season.
Then we say that each initial range has a centroid or central
value of that parameter range. The centroid for that parameter
range is denoted by «f and is defined by

of = (o™ + afi™) /2.

)

To the first order of approximation, the Taylor series ex-
pansion of the Fourier coefficients about the range centroids
is given by

Iy Te L]
o) =0+ Y () (ow-ap) ©
k=1 \ 7Y% a=ae
where a = (a1, -+, am),a® = (af,---,a%,), and (C?9), =

Cri(a®).

The coefficients, (0C2?/dar )a=a- are determined by vary-
ing each ay, over its range while holding all other o's fixed
at their centroid values. At each value of aj in its range,
the model is evaluated as a function of § and the Fourier
coefficients are extracted. In this way, all the partial derivatives
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Fig. 3. Comparison of radiative transfer model with Fourier representations
for VV polarization at 1.5 GHz.
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Fig. 4. Comparison of radiative transfer model with Fourier representations
for VH polarization at 1.5 GHz.

may be computed from a linear least squares fit of the
coefficients for each parameter to be estimated.

From this discussion it is seen that &;q has, in effect, been
linearized as a function of the model parameters for any
arbitrary value of incidence angle in the range [a,b]. Thus,
we write

52,(0) = (62,80 + S (PO (ax — af)  (10)
k=1
where

1 N
(60q(8)) = 5{CE%)0 + > (Cr9), cos[2nB(6 - a)] (11)

and A

ooy = L (208" o~ (9om
e = 2( Dok )a:ao +; ( Ao, )a:ao

- cos2nB(f — ). (12)
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Fig. 5. 2-D parameter space discretization showing subrange centroids as
solid marks.

It is possible to divide all the initial parameter ranges «y €
[a}c”"",az‘”] into two equal subranges for each parameter.
These subranges are denoted by {a(1,1)} = [of"*", o¢] and
{ar(1,2)} = (ag,ae®]. Each of these new subranges has
associated with it a centroid. These centroids are denoted by
afcl)(l) and ail)(.?), respectively. It is now possible to con-
struct 2™ new centroid vectors consisting of m tuples of cen-
troids of the parameter subranges. According to the procedure
described previously, the Fourier coefficients and gradients
about the 2™ new centroid vectors are now computed. This
may be repeated successively to obtain any desired degree
of discretization of the parameter space. The pth-order set of
subranges is denoted by {ax(p,1)},- -, {ex(p, 2p)} and their
respective subrange centroids are o’ (1), -, ai” )(2p). The
resulting (2p)™ centroid vectors may be numbered consecu-
tively starting with (1) = (a(lp)(l), RN as,’f)(l)) and ending
with ag((2p)™) = (agp)(2p), - ,a(mp)(Zp)). The approach is
illustrated in Fig. S for a two parameter space.

Now, let us assume we have m measurements of 0°;07 =
a;hql(ﬁl,fl),---,aﬁ’n = agm,qm(Gm,fm). Then the vector
o° = (09,---,02) can be formed. A system of linear

8
equations is obtained from (10) and may be represented by:

0% = (67) + (F)(a—a°) (13)

where
<&Z> = ((Ua))v N <Ufn>)T

from (11), and (F);; is the value of (r}”'*(8;, f;)) in the
matrix of Fourier expansions of the coefficient slopes as
in (12). & = (&1, --,&m) is the estimate vector for the
parameter set and a° is the centroid vector for the set of
parameter ranges. Then the zeroth-order estimate for the
parameter set may be found from

&(0) = (7); (09 — (6%)0) + @°(0)

(14

15)

where a°(0) is the centroid vector for the initial set of
parameter ranges, {6%), is the vector (14) for these initial
ranges, and (F), is the matrix whose elements are the original
values of (12) formed as described previously.

This estimate will have errors due to the fact that the Fourier
coefficients computed using the initial parameter ranges are
not actually linear functions of the parameters. However,
it may be expected that for parameter ranges sufficiently
small, this first-order Taylor expansion approximation will
become increasingly accurate. This forms the basis for an
iterative algorithm. The parameter space is discretized to
produce successively higher-order centroid vectors about sub-
range spaces of successively smaller volume as described
previously. Within these successively smaller parameter sub-
spaces, the first-order Taylor representation of the Fourier
coefficients becomes an increasingly better approximation.
Then let us suppose that we have a performance measure
P(Ja — ¢/|) that decreases monotonically with argument and
that satisfies P(0) = Pin. The first-order estimate of the
parameter set is then computed as follows

a(1) = (7); (02~ (62)1) + af(opt)
where a?(opt) is a first-order centroid vector that satisfies

P(ja(0) — a3(i)]) > P(|a(0) — af(opt)]) = Pmin,
vie {1,---,2™}

(16)

an

and the other quantities with subscript “1” are the same type
as in (15) with values computed at a3 (opt).

This process may be repeated as many times as desired up
to the highest order of discretization of the model parameter
space, or until the rms difference between successive solution
vectors stabilizes to within some arbitrary percentage.

III. IMPLEMENTATION OF THE ALGORITHM

In practice, it may not be necessary to compute the Fourier
representation of the model behavior. In many cases, one is
constrained to the use of a particular sensor configuration. In
such cases, there is a limited set of channels available to users
of the data. For example, given a polarimetric SAR with one
look angle and two frequencies of operation, and ruling out
the use of phase information, there would be a maximum
of six channels (four copolarized and two cross-polarized
amplitudes) available for use in inversion. If there are more
data channels available than there are parameters of interest
for the system under observation, then it would be useful
to perform a sensitivity analysis on the model to determine
which of the available channels will provide an optimum set.
In any event, if the set of data channels available for use
is pre-determined then the piecewise linear representation of
the model must be based on information provided by those
channels and (13) may be inverted directly. This reduces the
number of values that need to be pre-computed by a factor
equal to the number of coefficients required in the Fourier
representation.

Whether the Fourier representation is used or not, the matrix
of slopes and vector of intercepts as indicated in (13) must
be generated from the pre-computed model outputs for each
centroid subrange in the parameter space, the number of
such subranges being determined by the maximum level of
discretization of the space. The intercept vector for a particular
centroid is fixed quantity which depends on the set of model
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outputs obtained for the inputs determined by the position of
that centroid in parameter space. The slope matrix, on the other
hand, is dependent on the set of data points used in sampling
the parameter subranges connected with a particular centroid.
The functional behavior of the model within a subrange of one
of the parameters is considered to be linear, and the partial
derivative with respect to that parameter is determined by a
weighted linear least squares fit of the model outputs holding
all other parameters fixed at the centroid value and varying
the parameter in question over its subrange. The point that
represents the centroid value is strongly weighted relative to
the other points because that is the point about which the
derivative must be computed.

There are then at least two basic types of optimization
that may be utilized in implementing the iterative inversion
scheme. The first type will be referred to as intra-centroid
optimization. In intra-centroid optimization, the data points
used in computing the linear fit (derivatives) about a particular
centroid are initially equally weighted except that the centroid
itself is strongly weighted. In successive iterations, points that
are found to be most distant from the refined estimate are
assigned increasingly lower weights until the estimated value
of the parameter vector no longer changes by more than a
specified amount. The second type of optimization, referred
to here as intercentroid optimization, is utilized after applying
the intracentroid scheme. If the refined estimate obtained using
intracentroid optimization represents a state of the system
closer in parameter space to another centroid on either the
same or a different level as was shown in Fig. 5, the algorithm
uses this new centroid as the basis for further refinement. Tt
is evident that the algorithm may “wander” from centroid to
centroid until it finds a point of local stability on which to
converge. The convergence behavior of the algorithm using
these optimization schemes will be discussed in a later section.

Convergence of the algorithm itself is fairly rapid since most
of the CPU intensive computations are pre-evaluated using
the scattering model for the system under investigation and
are stored on disk as data arrays to be loaded into memory
at runtime. In this way, systems of functions that are fairly
nonlinear may be inverted in a direct way, although the
more the model behavior deviates from linearity in a given
parameter, the less likely it will be to obtain a unique solution
for that parameter.

IV. APPLICATION TO A VEGETATION CANOPY

Modeling of vegetation canopies using the radiative transfer
approach has become increasingly popular in recent years
[23]-[27]. The vector radiative transfer equations take into
account the individual scattering properties of the vegetation
canopy components through a phase matrix which relates the
incident to scattered intensities as a function of the wave
directions, scatterer geometries, and the material composition
of the scatterers. This formulation has the advantage of being
general, mathematically tractable, and computationally fairly
nonintensive which makes it convenient from the standpoint
of inversion.

In this section, the iterative algorithm developed above is
used to invert the radiative transfer model of a simplified
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Fig. 6. Layered structure of the radiative transfer model for a vegetation
canopy.

TABLE 1
VARIABLE PARAMETER SET FOR THE VEGETATION CaNoPY
UseDp To TEST THE INVERSION ALGORITHM

Variable Parameter Parameter Range

Volumetric Soil Moisture 0.05-0.33

Canopy Density: Trunks 0.05-0.25 trunks/m?
Trunk Height 2.40-3.68 m

Trunk Diameter 11.0-14.2 cm

Canopy Density: Leaves 100-300 leaves/m>

vegetation canopy. The canopy consists of leaves and vertical
trunks above a rough ground layer. The layered structure of the
canopy model is illustrated in Fig. 6. The leaves are considered
to be uniformly distributed in orientation and are modeled
as thin dielectric sheets using physical optics to generate
the scattering matrix [28], [29]. The scattered field from the
rough ground surface is generated using the Kirchoff and
scalar approximations [30]. Trunks are treated as finite length
circular dielectric cylinders for which it has been shown that
an approximate solution for the scattered field can be obtained
based on the solution for the infinite length case provided the
diameters of the cylinders are much smaller than their lengths
[311-[33]. The dielectric function of all canopy components
is calculated using the dual-dispersion model of El-Rayes and
Ulaby [34], [35].

In this simplified vegetation canopy, five parameters are
considered as variables: volumetric soil moisture, trunk canopy
density, trunk height, trunk diameter, and leaf canopy density.
Actually, there are only four independent variables since the
trunk height is usually related to the trunk diameter through
a function. The ranges of these variable parameters and the
values of the parameters considered to be fixed are listed in
Tables I and II. While the ranges of some of these parameters
may not be exceptionally representative of all typical real
canopies, they do model the important general features of
electromagnetic scattering from vegetation layers and serve to
demonstrate the invertibility of the radiative transfer equations
using the iterative technique developed in this work.

The range of volumetric soil moistures given is representa-
tive of the entire wetness scale for typical soils, from that just
following a rainstorm to drought conditions [36]. The trunk
canopy density range is for conditions from fairly dense woods
to sparsely wooded areas [37]. The number density of leaves in
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TABLE 11
FIXED PARAMETER SET FOR THE VEGETATION CANOPY
USeD TO TEST THE INVERSION ALGORITHM

Fixed Parameter Parameter Value

Trunk Gravimetric Moisture 0.7

Leaf Gravimetric Moisture 0.7

Dry Density of Plant Materials 0.33 gm/cc

Leaf Diameter 10.0 cm

Leaf Thickness 0.025 cm

Crown Height 25 m

Surface RMS Roughness 1.4 cm

Surface Correlation Length 20.0 cm

Soil Composition sand: 23.6%
clay: 33.7%

the canopy, considered together with the size of the leaves and
the height of the crown layer combine to give a range of leaf
area index (LAI) from 2.0-5.9 which covers almost the entire
range of this parameter [38]. The trunk height and diameter
ranges are not extremely representative of an average forest
canopy but would be more in accord with what one would
expect to find in an orchard or grove [25]. Values of 0.7 for
the gravimetric moisture of leaves and trunks would give an L-
band dielectric constant of about 28-j9 and a C-band dielectric
constant of around 25-j9 for both canopy constituents using the
model of El-Rayes and Ulaby. This is consistent with typical
measured data for trees [8]. Soil surface characteristics are
within the validity region for the physical optics model [30].

To test the inversion algorithm, it was first necessary to
select four radar channels as data sources to be used as
model outputs and inversion algorithm inputs. These four
channels provide the correct number of equations to invert
the linear system (13) for the four variable model parame-
ters. The assumption was made that a predetermined system
configuration consisting of an L-band radar operating at 1.5
GHz, and a C-band radar operating at 5.0 GHz were available
for use. Further, an analysis taking into account the overall
backscatter signal levels and sensitivity to variation of the
inversion parameters indicated that an incidence angle of 45
degrees would be useful in this application. It was decided to
use data from the co-polarized channels because they produce
the highest signal levels and they can, in practice, be calibrated
with the greatest accuracy.

The four-parameter space was discretized up to the second
level producing sixteen secondary range centroids. The number
of centroids at each level is given by n = 2™(=1), where m
is the number of parameters and [ is the level of discretization.
The model was then run in the forward direction five times
within each full parameter range for the primary centroid and
three times within each subrange for every secondary centroid
to provide the precomputed data used in determining the slope
matrices and intercept vectors. After the necessary information
was produced to provide a mapping between the parameter
space and the model output space, the model was then used
as a data simulator for use in testing the inversion.

V. INVERSION RESULTS

The region in parameter space for which the least inversion
accuracy is to be expected is the region near the primary
range centroid. In this region, the estimate of the parameter
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Fig. 7. The determination of soil moisture over the entire parameter range
near the primary centroid.

vector is based on only a single level of refinement and
intracentroid optimization. Because the primary centroid is the
nearest centroid to the estimated parameter vector in this case,
the algorithm does not take advantage of the higher degree of
discretization available on the second level, and intercentroid
optimization is not used. When the estimated parameter vector
is closer in parameter space to any higher level centroid the
intercentroid optimization may then be used to obtain further
refinement of the estimate.

Typical results for inversions obtained near the primary
range centroid are shown in Figs. 7 through 10. It is seen that
primary level optimization alone provides excellent inversion
accuracy for most of the parameters over almost the entire
parameter range. However, there is a significant degree of
instability in the trunk height determination for the region
below about 2.7 meters (Fig. 10). This is due to the small
range of heights considered in this study and the fact that the
radar response is not a sensitive function of either trunk height
or diameter within the selected ranges of these two parameters
for the data channels used in the inversion. This problem could
be remedied by using a finer division of the parameter space
on the second level so as to provide a convenient secondary
range centroid corresponding to the position of the primary
range centroid but with a restricted parameter subrange. A
larger range of trunk heights and diameters such as one might
find in an actual forest, or a set of data channels more sensitive
to these parameters, would also improve the relative accuracy
of the trunk height estimate.

The excellent results obtained for regions close in parameter
space to the primary centroid are actually representative of the
worst-case estimates produced by the algorithm. Typically,
when the algorithm is able to take advantage of a higher
level of optimization by using a convenient second-level
centroid, excellent convergence stability is achieved. This is
illustrated in Figs. 11 and 12 which demonstrate that the
stability problems encountered in using the entire parameter
range of the primary centroid are greatly reduced when the
parameter subranges of the second level are utilized.
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The iterative inversion algorithm exhibits the four general
types of convergence behavior shown in Figs. 13 through 16.
In about 90% to 95% of the cases studied, the algorithm
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Fig. 11. The determination of leaf canopy density over a second level
parameter subrange.
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Fig. 12. The determination of trunk height over a second level parameter
subrange.

converges to the correct value as shown in Figs. 13 and 14. In
the remaining cases, the algorithm either does not converge at
all as shown in Fig. 16 or converges to the wrong value as in
Fig. 15. Of these last two situations it is definitely preferable to
have nonconvergence of the algorithm. With nonconvergence
it is clear that the inversion must be rejected and thus an
erroneous result is easily avoided.

Anomalous convergence represents less than 5% of all
convergence behavior exhibited in this implementation of the
iterative inversion algorithm. With anomalous convergence,
it is not always possible to distinguish an incorrect result,
therefore this type of convergence behavior represents the most
difficult problem to correct in applying the algorithm. Because
the convergence behavior of the algorithm is to some degree
implementation-specific, there are also some steps that can be
taken to reduce the risk of obtaining incorrect results. It should
be possible to utilize other types of algorithms to monitor
the decision processes that the inversion algorithm uses in
achieving convergence. In this way, it would be possible to
minimize the probability of taking an incorrect decision path.
However, the investigation of this approach is outside the
scope of this work.
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Fig. 13. Uniform convergence of the iterative inversion algorithm.
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VI. ERROR ANALYSIS

A complete analysis of errors for the inversion algorithm
is lengthy and the derivation will not be given here. The rms
error in the i th-parameter o; will be denoted €(c;). This
error originates from two major sources. The first source is
the overall systematic error which depends on the combined
data channel characteristics, the accuracy of the scattering
model, and the degree of discretization utilized in the algo-
rithm implementation. The systematic error in parameter c;
is directly proportional to the offsets of the individual data
channels from their respective range centroids for a given level
of discretization. This offset is defined as Ac? = (07 — (0%))
for the jth data channel as in (15). The second source of
error in the inversion algorithm derives from the measurement
uncertainties in the data channels. The measurement uncer-
tainty in ¢° for the jth data channel, ¢, () produces an
error in the inversion dependent on the gain characteristics of
that channel. Both sources of error are inversely proportional
to the determinant A of the slope matrix ¥ as given in

(13).
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Fig. 15. Anomalous convergence of the iterative inversion algorithm.
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Fig. 16. Oscillatory nonconvergence of the iterative inversion algorithm.

The expression for the rms error in the parameter «; for an
inversion using m data channels is given by

1/2
1 m R 5 .
e(o) = £1a] 3 12, (A05)% + cofi(F)er (0)]
=1

(18)
Where cof;:(T) is the ji cofactor of T, and the factor p;;
represents the overall uncertainty in parameter a; produced
by an error in estimating the response of data channel j to
that parameter. It is defined by

pij = [€(cofjs(F)) + cof (F) (&) /)2

where €(cof;i(F)) is the error in cof;i(T) and e(A) is the
uncertainty in the determinant of the slope matrix.
Examination of (18) and (19) reveal some important factors
that affect the accuracy of the inversion. The overall rms
system error will be minimized when A is maximized, the
e(cof;ji(¥))’s are minimized and the individual slope matrix
element errors that contribute to ¢(A) are minimized simulta-
neously. The magnitude of A is a function of the data channel
gain characteristics and the structure of the linear system of
equations provided by the combination of channels used in the
inversion. The slope matrix determinant is maximized when

19
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Fig. 17. Typical inversion error bounds for variable soil moisture with other
parameters held fixed.
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Fig. 18. Typical inversion error bounds for fixed leaf density with variation
of the soil moisture parameter.

the overall channel gains are as large as possible and the
system of equations is as close to being linearly independent
as is practical for the set of sensors available. The slope matrix
errors are minimized as the linear regression slopes approach
the local derivatives in the proximity of the parameter estimate
vector. This occurs as the level of optimization increases. The
upper limit on the reduction of systematic error as a result
of increasing the level of discretization will ultimately be
determined by the contribution to the €(cof;;(F))’s originating
from the model itself. If the model is inaccurate, no amount
of optimization will permit accurate inversion of the measured
data. However, if the data channels are chosen appropriately
and the model is sufficiently accurate, the systematic error can
be minimized by providing a suitable degree of discretization
of the parameter space. In the case of systematic errors, it isto
be expected that the best error performance will occur when
the actual parameter vector lies close to a range centroid.
The second contribution to (18) is dependent on the mea-
surement uncertainty in the data channels. If the data channels
have been properly selected and the algorithm has been
implemented so as to provide sufficient discretization of the
parameter space, then measurement errors can be expected

to give the largest contribution to the overall inversion er-
ror. These errors have a slight dependence on algorithm
implementation but are largely influenced by the ratio of the
measurement uncertainty to the sensitivity of the data channels.
This type of error response is illustrated in Figs. 17 and 18
which show typical error bounds for the inversion if there is
a uniform +0.5 dB measurement uncertainty in all of the data
channels. If soil moisture were the only variable parameter in
the inversion, measurement accuracy would control the error
response to yield a worst case average uncertainty of about
+3.5%. The inversion accuracy for the leaf canopy density,
with the density fixed at mid-range, is within about +2.0%. In
this case, the systematic error and the measurement uncertainty
error are of the same order of magnitude.

VII. CONCLUSIONS

In this work, a general model-based iterative algorithm
has been presented for use in the inversion of polarimetric
radar data. The algorithm was implemented using two levels
of discretization and two types of optimization and was
applied to the case of a general representative vegetation
canopy. This simplified test canopy was modeled using vector
radiative transfer theory and consisted of vertical trunks,
leaves, and a rough ground surface. Four canopy parameters,
soil moisture, trunk canopy density, trunk height, and leaf
canopy density were estimated over their ranges utilizing four
radar data channels, which were simulated with the radiative
transfer model, as inputs to the algorithm. Excellent inversion
accuracy was obtained over almost the entire range of all four
parameters. Successful convergence was achieved in 90% to
95% of the cases tested for the algorithm as implemented
in this work, and it is concluded that further improvement
in the convergence characteristics should be obtainable in
future implementations. The results of the error analysis show
that if the radar data channels are appropriately chosen so
as to maximize the sensitivity of each channel to a separate
inversion parameter, and the degree of discretization of the
parameter space is sufficient, the overall inversion error will
be minimized for a given level of uncertainty in the measured
input data.
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