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Microwave Scattering Model
for Grass Blade Structures
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Abstract—In this paper, the electromagnetic scattering solution
for a grass blade with complex cross-section geometry is con-
sidered. It is assumed that the blade cross section is electrically
small, but its length is large compared to the incident wavelength.
In a recent study it has been shown that the scattering solution
for such problems, in the form of a polarizability tensor, can be
obtained using the low-frequency approximation in conjunction
with the method of moments. In addition, the study shows that the
relationship between the polarizability tensor of a dielectric cylin-
der and its dielectric constant can be approximated by a simple
algebraic expression. The results of this study are used to show
that this algebraic approximation is valid also for cylinders with
cross sections the shape of grass blades, providing that proper
values are selected for each of three constants appearing in the
expression. These constants are dependent on cylinder shape, and
if the relationship between the constants and the three parameters
describing a grass blade shape can be determined, an algebraic
approximation relating polarizability tensor to blade shape, as
well as dielectric constant, can be formed. Since the elements of
the polarizability tensor are dependent on only these parameters,
this algebraic approximation can replace the cumbersome method
of moments model. The moment method model is therefore used
to generate a small but representative set of polarizability tensor
data over the range of values commonly observed in nature.
A conjugate gradient method is then implemented to correctly
determine the three constants of the algebraic approximation for
each blade shape. A third-order polynomial fit to the data is then
determined for each constant, thus providing a complete analytic
replacement to the numerical (moment method) scattering model.
Comparisons of this approximation to the numerical model show
an average error of less than 3%.

I. INTRODUCTION

cattering models of random media such as vegetation
Scanopies require knowledge of scattering behavior of the
individual vegetation constituents. To obtain efficient scatter-
ing formulations for the constituents such as branches, leaves,
needles, or stems the structure of these particles are usually
modeled by simple canonical geometries, such as circular
cylinders or discs [12]. As a result, the particles can be
characterized by a few specific geometric parameters, such
as length, diameter, or thickness. In addition, scatterers with
simple geometries often are amenable to analytic scattering
solutions. Due to the random nature of vegetation canopies,
scattering formulations for such media are quite complex,
thus the two characteristics of simple geometric specification
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and analytical scattering formulations are highly desirable to
provide a tractable vegetation scattering solution.

However, some structural characteristics not reflected in
the simplified geometry can significantly affect the scattered
response of a given vegetation constituent. That is, over-
simplification can degrade the fidelity and accuracy of a
canopy scattering model. To provide a greater degree of
model accuracy, other physical aspects of these vegetation
constituents may be considered, such as blade curvature,
branch roughness, or dielectric inhomogeneity [6], [7]. For
example, the constituents of a grass plant, such as stems and
grass blades, can be modeled as long thin circular dielectric
cylinders. The cross sections of grass blades, however, are
far from circular. As will be shown, the scattering response
of the actual shape is significantly different from that of an
equivalent circular cylinder. In addition, a radiative transfer
[9]-{11] canopy scattering model demonstrates the resulting
discrepancies in backscattering coefficients predicted using the
circular, rather than the actual grass blade geometries.

The scattering matrix of electrically thin cylinders with
arbitrary cross sections can be determined only with numerical
methods and can be expressed in terms of a polarizability
tensor. Such is the case for grass blade elements, however,
the numeric specification of grass blade shape, along with
the numeric scattering solution, are contrary to the desired
characteristics described earlier. Thus, the ideal solution would
define the blade shape with a few geometric parameters,
provide an analytic scattering solution which is a function of
these parameters, yet also comprehend and account for the
complex blade geometries which affect scattering response.

This is achieved by first approximating the general shape of
a grass blade with a collection of geometric parameters, and
then limiting the domain of these parameters to those found
in nature. The polarizability tenors are obtained numerically
for a representative collection of grass blade shapes located
throughout this parameter domain, then an analytic function
is determined which matches the numeric data and thus
approximates the complex polarizability tensor values across
the entire domain of shape parameters.

II. GRASS BLADE GEOMETRY

The fine geometry exhibited by most grass blades occurring
in nature can be approximated by a set of five description
parameters as shown in Fig. 1. These five parameters, thickness
t, width w, blade angle 6, radius of curvature r, and blade
length { can be combined to produce five new independent
parameters, two of which describe the size of the blade while
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Fig. 1. Diagram of grass blade geometry including blade cross section
(showing width w, thickness ¢, and blade angle 8) and overhead view (showing
radius of curvature r and length /).

TABLE 1
THE FIVE PARAMETERS DESCRIBING BLADE GEOMETRY, INCLUDING
TwO PARAMETERS (LENGTH [, AND AREA A) WHICH SPECIFY BLADE
SizE, AND THREE DIMENSIONLESS PARAMETERS (ASPECT RATIO a,
CURVATURE v, AND BLADE ANGLE @) WHICH SPECIFY SHAPE

parameter | symbol | expression
Area A ~ 2tw
Length i 1
Aspect Ratio a t/(2w)
Curvature v w/r
Blade Angle 9 [4

the other three describe its shape. The first two of these
parameters, as shown in Table I, are the cross-sectional area
A and blade length [, which together specify the blade size.
The three remaining parameters are dimensionless quantities,
and thus specify only the blade shape. The first, aspect ratio
a, is defined as the ratio of blade thickness to blade width.
The second parameter, curvature v, is the arc angle in radians
of the arc formed by the curvature of the blade on either side
of the center rib. The final parameter, blade angle @, is the
angle formed by the vector normal to the grass blade surface
at the center rib, and the vector tangent to the blade curvature
at the center rib. In addition, for purposes of the scattering
formulation, the grass blades are assumed to be both long and
thin, such that 2w < A and [ > w.

III. SCATTERING FORMULATION

Given these blade parameters and assumptions, a formu-
lation is required to accurately predict the electromagnetic
scattering from grass blade structures, assuming an incident
electric field of arbitrary direction and polarization. To solve
this problem, the scattering formulation described by Sara-
bandi and Senior [5] shall be followed, a formulation which
predicts the scattering from long, thin dielectric cylinders of
arbitrary cross section.

Initially, the grass blade is assumed to be infinite in length,
eliminating the 2z dependence of the scattered field and essen-
tially reducing the scattering formulation to a two-dimensional
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Fig. 2. Cross section of grass blade showing the source point p, the
observation point /', and angle 6 = cos~'[a’ - (5 — 5')/|p — §'|].

problem involving only the grass blade cross section. If, in
addition, the blade cross section is electrically small, the
scattering formulation can be further reduced by employing
the low frequency or Rayleigh approximation, wherein the
higher order terms of the wave number kg are ignored 2],
[8]. Thus, the Rayleigh approximation essentially reduces the
scattering formulation to an electrostatics problem within the
region of the blade cross section.

The expression for the incident electric field after employing
the Rayleigh approximation (zeroth order of ko) is given as

E' =a=a,%+ay,§+a,? (1)
which can be written in terms of the electrostatic potential ® as
E'=-V,® +a,3 Q)

where
' = —ay(x+c1) — ay(y + ca). 3

Using superposition, the total (incident plus scattered) elec-
trostatic potential can be written as

P =0a, P +0a,P, )

where &, is the total electrostatic potential due to the fist
term of (3), and similarly ®, due to the second term.

As shown by Sarabandi and Senior [5], the integral equa-
tions specifying the two solutions, ®; and ®,, about the outer
surface of the blade are given as

er+ 1 € — 1 ] cos b’
S\ & (5 dc’
(5o (%) [ T b

= —-r -0 (5)
and
& +1 _ e —1 . cos®
(52 )oin- (55) [ gt
=-y-—c (6)

where ¢; and ¢y are arbitrary constants and @’ is defined in
Fig. 2.

These equations can be solved using the method of mo-
ments, thus determining the total electrostatic potential on the
surface of the grass blade. However, this potential must now
be related to the scattered electric field. As the scattered field
from a nonmagnetic Rayleigh scatterer can be attributed to
an electric dipole moment, the scattered field from an infinite
Rayleigh cylinder can be attributed to electric dipoles along
the infinite (z) axis, expressed as a dipole moment per unit
length. The magnitude and direction of this dipole moment is
related to the incident electric field vector as p = ¢o P-4, where
P is the polarizability tensor [1], [2] . Because the assumed
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Geometry of a finite grass blade including incident angle 3.

Fig. 3.

grass blade cross section is symmetrical about the y-axis, the
polarizability tensor is a diagonal matrix, and the three nonzero
diagonal elements are given as [5]

P.=—(e— 1)/ &7 2dd (7)
c

Pyy = —(e— 1)/ Dy7’ - gdc’ (8)
C

Pzz = (6 - 1)A (9)

It is important to note that these expressions specifying the
polarizability tensor are dependent on only the dielectric
constant and geometry of the grass blade. The direction and
polarization of the incident electric field does not affect the
values of the polarizability tensor, and enter into the scattering
formulation only when computing the electric dipole moment
(p = EoP . EL)

As stated earlier, this solution was derived assuming an
infinite length grass blade. Obviously this is a nonphysical
assumption, and to determine the scattered field from a fi-
nite blade of length I, the physical optics approximation is
employed [4], [8]. The fields on the blade surface calculated
for the infinite case (constant with z) are likewise assumed
to be valid for the long but finite blade. Integration of these
truncated fields along the z axis leads to the familiar (sinx)/z
scattering response in the elevation plane of the blade structure.
The scattering intensities are thus given by the expressions [5]

2 .
S = —i—i{l}"’ x b x [IP - a}}S”é_U (10)
where
U= @(lﬂcs-ifcos[)) (€80
2 bl

with P being the polarizability tensor given by (7)~9), [ the
blade length, and 3 the incident angle in the elevation plane,
as defined in Fig. 3. Fig. 4(a) displays a typical scattering
pattern in the elevation plane, with the main lobe occurring
at the forward scattering cone. Although this physical optics
formulation is merely an approximation, it can predict the
major scattering behavior for blades with electrical lengths
as small as one A, although accuracy generally increases with
cylinder electrical length.

In the azimuth plane, the scattering response (Fig. 4(b)) is
that of an electric dipole, as expected for electrically small
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Fig. 4. Scattered intensity in the elevation (a) and azimuth (b) planes
of a horizontally polarized wave incident on a finite dielectric cylinder
(B; = 60°,0; = 45°, 1 = 2A, Pre = 4.0, Pyy = 2.0).

(Rayleigh) cross sections. It should be noted, however, that
except for the specific case of P, = Py, the radial electric
dipole moment will not align with the incident electric field
vector. Thus, the main forward and backscattering lobes will
not be aligned with the radial direction of the incident field
propagation vector.

To validate this scattering formulation, the backscattering
coefficient is determined as a function ofelevation angle using
an accurate three-dimensional numeric scattering model. If
6 = 0 and v = 0, the grass blade shape reduces to a
flat dielectric strip. A flat, thin dielectric structure can be
modeled as a resistive sheet [13], [14], and therefore the
grass blade in this case is modeled as a resistive strip. Using
a moment-method code which provides a scattering solution
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Fig. 6. The real portion of the normalized polarizability tensor element P, /A as a function of aspect ratio a and blade angle 8 for blade curvature
v =(a) 0.2 and (b) 1.5 (¢ =30 +9).

for an arbitrary resistive sheet, the backscattering coefficient
& versus elevation angle was calculated and the results are
given in Fig. 5, along with the data predicted by (10) using the
polarizabity tensor. Good agreement between the two methods
was found, with an error for onn of less than 1 dB for all
incidence angles. The error for o, is similar when close to
normal incidence, but becomes larger with increasing oblique
incidence as traveling waves (not accounted for in the physical
optics approximation) are induced. However, the cylinder of
Fig. 5 is just one X in length, and the error at large oblique
angles diminishes as cylinder length increases.

IV. MODEL RESULTS

The effect of blade geometry on scattering from grass blades
was evaluated using the scattering formulation outlined in the
previous section. The parameter of interest in this case is
the normalized polarizability tensor P/A. Each element of
the polarizability tensor is directly proportional to the cross-
section area A, thus the normalized polarizability tensor P/A

is independent of A. Therefore, P/A is a function of only
the dielectric constant and the shape, as described by the
dimensionless shape parameters, curvature v, aspect ratio a,
and blade angle . In general, the elements P,. and Pyy
are, respectively, proportional to the projected area of the
blade shape onto the (z,z) and (y,2) planes. Thus, the
parameter which most affects the normalized polarizability
tensor elements is aspect ratio, followed by blade angle and
then blade curvature. Fig. 6 demonstrates this dependence,
showing the effect of aspect ratio and blade angle on the real
part of P, /A for both a relatively flat and a relatively curved
grass blade geometry.

Although these figures demonstrate the dependence of po-
larizability tensor, and hence scattering on blade geometry,
the larger question of whether these shape parameters signifi-
cantly affect scattering from an entire grassland target can not
be inferred. Therefore, a radiative transfer scattering model
[9]-[11] was implemented which modeled a layer of scatterers
consisting of cylinders of a given length and cross-sectional
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a§,, for dry (a) and moist (b) vegetation as predicted by a radiative transfer based grassiand model for blades of both grass blade and circular shaped

cross sections ( a = 0.45, =0, v =001, N = 2500/m?,/ = .5m, A = .03 em?, My = 0.3 (a) and 0.9 (b) ).

area. Two cases were examined; in the first case, the cylinders
were of circular cross section, while in the other a blade
shaped cross section (o = 0.045, 6 = 0, v = 0.01) of
identical area was implemented. Fig. 7 displays the results
of this model at two frequencies for two dielectric constants
and three incidence angles. The difference in the cross-section
shape results in a difference of as much as 5 dB in the value
of 03, This contrast is largest at lower frequencies and for
drier grass blades. Although this data represents a limited test
case, it does show that for electrically small cross sections,
blade shape, in addition to blade size, can significantly affect
the observed scattering from grassland targets.

V. ALGEBRAIC MODEL

For a cylinder of circular cross section, an exact analytic
solution to the integral equations of (5) and (6) exists, thus
leading to an exact solution of the normalized polarizability
tensor elements as a function of the complex dielectric constant

[5). [8)
Poa

_Pyy_
yu S

e—1
e+ 1

As shown by Sarabandi and Senior [5], this equation can
be modified to provide an approximate algebraic solution for
cylinders of semi-circular, triangular, and square cross sections
which, although not an exact solution to the integral equations,
matches the numeric solution with exceptional accuracy. This
modified expression is given as

P(e)_ce—l e+ c1
A V%l e

(12)

(13)

where the values of constants cg, ¢1, and cp are unique for
each of the three cross sections. This expression is valid for
both P,./A and P,,/A, although the three constants are of
course different for nonsymmetric cross sections (semicircular
and triangular).

To determine if the validity of this expression extends to
grass blade shapes, data was generated with the numerical
model for a given blade geometry across a wide range of

2.00 T T T T T
180 - -. -

1.60 -
140 -

120 -
—eo-m- ¢'=160

1 ]
0.800 - B

1.00 |-

Re[P, /A]

0.600 |~ b
0.400 - s

0.00 10.00

Fig. 8. Comparison of the predicted dependence of Re[Pyy /A) on dielectric
constant for both the numerical scattering model (lines) and the algebraic
approximation (marks) of (13) (a=01,6=28° v= 0.01, cg = 1.753,
¢1 = 9.703, and c = 10.297).

complex dielectric constants. Three constants ¢1, C2, and c3
were then selected in an attempt to match (13) to the generated
numerical data. As shown in Fig. 8, constants were found
which provided a match with good accuracy between the
approximation of (13) and the numerical data. Thus, (13)
appears to be valid for not only simple geometrical cross
sections, but for more general cross sections (grass blades)
as well. The constants cg, ¢1, and c2, denoted as vector ¢,
can therefore be selected to relate the dielectric constant to
the polarizability tensor for a given blade geometry. Since
these constants are dependent only on cross-section geometry,
and since cross-section geometry for a grass blade has been
defined by the three shape parameters v, a, and 6, a more
general algebraic approximation relating grass blade geometry,
in addition to the dielectric constant, can be hypothesized:

Py e—l.e—i—cl(ﬂ,a,v). (14)
A e+1 e+caf,a,v)

The expressions relating ¢ to the shape parameters v, @, and
# must therefore be determined.

=co(6,0a,v)
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TABLE 11
MODEL INPUT PARAMETER SPACE ESTIMATING
THOSE VALUES GENERALLY OBSERVED IN NATURE

parameter min. | max.
aspect ratio (a) 0.015 } 0.12
blade angle (8) 0.0 | 50.0
curvature (v) 0.01 [ 2.0
dielectric constant (¢/) | 5.0 | 45.0
dielectric constant (¢”) | 2 25

VI. COEFFICIENT ESTIMATION

To determine these relationships, the numerical model was
used to determine the normalized polarizability tensor P/A
for various dielectrics for each of 512 separate blade geome-
tries. These 512 geometries were uniformly selected from the
parameter space shown in Table II, describing the limited
domain of geometries and dielectrics which, in general, are
observed for grass blades. For a given geometry, six constants
¢n must be determined, three for each P,./A and P,,/A.
Using the results of the numerical model at three distinct
dielectric constants, a non-linear system of three equations
(P(e1)/A, P(e3)/A, P(e3)/A) with three unknowns (c1, ca,
c3) is formed using (13). Thus, nonlinear inversion techniques
can be used to determine the three elements of ¢ [3, ch. 9].
However, because (13) is merely an approximation, and not
an exact solution for P/A, inversion techniques may lead to
erroneous results. Inversion techniques force a solution which
produces zero error at each of the three data points P(e;) /A,
P(e2)/A, and P(e3)/A, however, in so doing may severely
affect the accuracy of the approximation at other dielectric
constant values.

As an alternative solution, the polarizability tensor
elements were numerically computed at additional dielectric
constants (six were found to be sufficient), and the three
coefficients of ¢ were then determined by locating those
values which minimized the sum of the squared errors
between (13) and the numerical data at these six dielectric
values. Although the resulting algebraic approximation may
exhibit nonzero error at all six dielectric values, the solution
does match the numerical model results across the entire
range of dielectric values. To determine an optimum selection
of the vector ¢, the conjugate gradient technique [3, ch. 10]
was implemented which iteratively converges to the values of
€1, €2, and cg that minimize the total squared error equation:

M)Q (15)

€n + C2

6

E (Pnum(€n)/A - CO% .
n=1 €n +

where  Poyum(en)/A is the polarizability tensor element
of a specified blade geometry with dielectric €n, as
determined by the numerical model. Fig. ¢ contrasts the
difference in the solutions obtained by using both an
inversion and a minimization technique on the same set
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Fig. 10.  Histogram showing the distribution of the average rms error
resulting from the approximation of (13) determined at 512 test geometries.
The coefficients ¢ were selected using a conjugate gradient error minimization
technique.

of numerical data. The minimization (conjugate gradient)
technique selects coefficients ¢ which result in a model
matching all the numeric data points, whereas the inversion
(Newton—Raphson) method results in a range of dielectric
constants where (13) produces crroneous values for P/A.

Therefore, the conjugate gradient method was implemented
on the selected 512 geometries to provide two sets of vector
c (one set for each P,,/A and P,,/A) for each of the 512
cases. Fig. 10 shows a histogram over the 512 geometries
of the average rms error between the numerical model and
the analytic approximation, using the coefficients as selected
by the conjugate gradient technique. The average error for
P,./A was 0.07%, whereas the average error for P,,/A
was determined to be approximately 0.7 %. For each of the
512 geometries, a set of constants was found which provided
an accurate model of the relationship between the dielectric
constant and the polarizability tensor.

The conjugate gradient method converges to a set of co-
efficients ¢ which provide a model with a minimum total
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squared error. However, this minimum may not be the global
minimum, as the conjugate gradient may converge to any
number of local minima, depending on the initial value of
c used by the conjugate gradient routine. These minima can
be thought of as different ‘“modes,” with each mode producing
a slightly different curve for (13), each matching the six
numerical data points (P,yum(e.)/A) in a slightly different
fashion. For instance, one mode may result in a model which
slightly underestimates the first three data points P(e) /A
and slightly overestimates the last three, whereas for another
mode the reverse may be true. Many of these modes may
produce acceptable accuracy, but the desired solution is the
mode associated with the smallest error (the global minimum).
However, the mode associated with the global minimum at
one geometry may not be the mode corresponding to the
global minimum at another. Since we are ultimately seeking an
expression relating ¢, ¢z, and c3 to the shape parameters v, a,
and 6, a solution involving a single mode is required to avoid
discontinuities in ¢ across the domain of Table IL. For example,
Fig. 11(a) shows a solution for constant c; versus aspect
ratio for various blade angle values. For blade angle values
from 6 = 0° to § = 35°, the minimum is associated with
a single mode, however for § = 42° and 49° the conjugate
gradient algorithm converges to a different minimum, resulting
in significantly different data and a large discontinuity in ¢,
versus 6. Fig. 11(b) shows the single-mode solution, a solution
which is well behaved and continuous across both aspect ratio
and blade angle.

If, for various regions of the blade shape parameter space
(Table II), the global minimum is associated with Separate
modes, then the selection of the ‘‘optimum’’ mode becomes a
compromise between minimizing the average error across the
parameter space and minimizing the maximum error occurring
at any given point. In addition, forcing the conjugate gradient
routine to converge to the same mode for all blade geometries
may also prove to be difficult, as mode selection is determined
only by the initial value of ¢ of the conjugate gradient algo-
rithm. This initial value must be “‘close’” enough to the correct

solution for the conjugate gradient method to converge to that
minimum rather than to another. Since the correct solution
is unknown, selection of the initial values of ¢ for a given
geometry is problematic. Often several trials were required to
force the conjugate gradient to converge to the correct mode.
However, as ¢ was determined for a significant number of
blade geometries, an approximate relationship between the
elements of ¢ and the shape parameters v, a, and § was
inferred, and then used to properly determine an initial value
for a given geometry.

VIH. POLYNOMIAL FIT

Once a single-mode solution for ¢ for both P, and Py,
was determined for all 512 sample geometries, the mapping be-
tween ¢ and the shape parameters v, a, and 6, could be replaced
with a polynomial expression used to estimate the values of ¢
across the domain of Table II. These polynomials can then be
used in (14) to provide a complete algebraic approximation of
the numerical scattering formulation of Section III.

To match a polynomial approximation to the data ¢, a
solution is assumed which is a linear combination of M basis
functions, each basis function being an expression involving
the parameters v, a, and #. The number of basis functions
is a compromise between the complexity and accuracy of
the polynomial approximation, and for this application a
third-order expansion consisting of 20 basis functions was
chosen. For the polynomials associated with the normalized
polarizability tensor P, /A, the basis functions (as determined
by trial and error) are expansions of the parameters v, (1/a),
and cos#; the general polynomial approximations for ¢ are
therefore given as

e

Cn = 16)

3 3 ; ;
v'cos? #
>,
=0 k=0

1

Ml
o

such that ¢ + j + k < 3, m = 1,20, and n = 1,3. For
the polynomials of P,,/A, the chosen basis functions are
an expansion of the parameters v, (1/a), and secé, thus the
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TABLE Il
VALUES OF THE 20 COEFFICIENTS b,, FOR EACH OF THE SIX EXPANSIONS OF ¢, AS GIVEN BY (17) AND (18)
P../A P,,/A
4,7,k | bm co c ) a ]
0,00 | b | -11.18 13.29 17.82 -12.94 28.02 -9.268
00,1 | b, | -0.8747 |-3.469E-02 | 1.769 0.2781 | 9.4470E-03 | -0.2167
0,0,2 | bs |-1.307E-02 | -3.569E-05 | -1.466E-02 | -1.768E-03 | 2.574E-03 | -4.961E-03
0,0,3 | b, | 1.031E-04 |-1.287E-06 | 1.108E-04 | 1.253E-05 | -1.111E-05 | 5.296E-05
0,1,0 | bs 50.81 -24.15 -49.43 16.92 -16.94 21.39
0,1,1 | bs 3.444 9.537E-02 | -1.197 -0.491 | -5.920E-02 0.595
0,1,2 | b, | 5.384E-04 | 1.068E-04 | 8.748E-04 | 4.137E-04 | -1.204E-03 | -1.098E-03
020 | bs | -85.25 15.15 44.45 -0.9688 -2.717 -4.099
02,1 | b | -1.611 |-5.654E-02| 0.5463 0.2635 | -2.507E-02 | -0.1640
030 [bo| 4674 -3.199 -13.91 -2.435 3.558 -1.006
1,00 [ by | -10.16 -0.3726 -7.273 24.61 -38.03 38.43
1,0,1 { b | 05911 | 2.250E-02 | -0.3542 0.1876 -0.2218 | 6.614E-02
1,0,2 | bi3 | 6.520E-04 | -4.893E-06 | 5.482E-04 | -1.720E-04 | 7.368E-04 | 1.796E-04
1,1,0 | bie 42.69 -8.406 -1.913 -37.74 55.67 -54.33
1,1,1 | b5 | -0.6183 |-2.045E-02 | 0.2870 -0.1915 0.1518 | -5.175E-02
1,2,0 | b6 -31.18 8.512 10.01 12.74 -16.36 15.16
2,00 | by | -3.462 0.6613 6.350 -0.5466 1.895 -1.887
2,0,1 | bys | -6.594E-02 | -3.032E-03 | 5.077E-02 | 3.487E-02 | -1.413E-02 | -2.532E-03
21,0 | bo| 2133 |-5807E-02| -4.617 1.855 -4.746 5.115
3,00 | b | 02449 | 4.645E-02 | -0.5782 -0.3788 0.7839 -0.9007
polynomials are given as 500. —————T T T
3 3 3 i —T
visec? 6
PEETLIEL o e i -
1=0 j=0 k=0 m=019% T
. . c=25% |
such that 2 + 7+ k <3, m =1,20,and n = 1,3. 300. F —] .
Using orthogonality principles, the values of the coefficients
b, are determined by solving the linear estimation equation g8 o} E
[3, ch. 141]
xT - x)-b=xT.C (18) 100 B 3
where b is a 20 element vector containing the polynomial
| 1

coefficients, C is a 512 element vector containing the conju-
gate gradient estimate of c, at the 512 test geometries, and
X is a 512 x 20 matrix containing rows of the 20 basis
functions evaluated at the 512 test geometries. The coefficients
b determined by this computation are given in Table IIL
Thus, (14), (16), and (17), along with the coefficients listed in
Table III, provide a fast algebraic approximation to the slower
numerical model of Section IIL.

VIII. RESULTS

To test the accuracy of this algebraic approximation, 3125
test points, covering the range of shape parameters and com-
plex dielectric constants found in Table II, were selected and
used to determine the complex elements of the polarizability
tensor with both the numerical model and the algebraic ap-
proximation. The magnitude of the vector formed by P, and

P,,, defined as:
|P| = \/PeaPpy + Pyy Py

vy
was calculated for both models, and this data was used to
build the histogram of Fig. 12, showing the percent error

(19)
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-100 80 60 40 -20 00 20 40 60 80 100

% error

Fig. 12. Histogram showing the distribution of the error resulting from the
approximation given by (14), as determined using 3125 test cases covering
the range of parameters given in Table II.

of the algebraic approximation of |P| as compared to the
numerical model. As estimated from 3125 test cases, the
algebraic approximation exhibited little bias, with a mean error
of 0.2%, in addition to producing an acceptable rms error of
2.5%. Fig. 13 shows the accuracy typical of the approximation,
displaying the predictions of both the numeric and algebraic
models for Re[P,../A] versus aspect ratio at a number of blade
angle values.

IX. CONCLUSIONS

Using a numerical solution to solve the scattering problem
of cylinders with arbitrary cross sections, it was determined
that blade shape, in addition to blade size, can significantly
affect the scattering solution for a long, thin grass blade struc-
ture. Likewise, a simple radiative-transfer model demonstrates
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Fig. 13.  Comparison of the polynomial approximation to the numerical

model predictions for Re[Pzz /A] versus aspect ratio at various blade angles.

that the calculated backscattering coefficients for grassland tar-
get can also be significantly affected. The numerical scattering
model is required for characterizing scattering by complex
grass blade shapes. However, direct implementation of this
numerical model into a larger radiative-transfer solution for
grassland targets can result in a model of unacceptable com-
putation time and complexity, especially when the radiative-
transfer model is used in an inversion algorithm.

Although the complexity of the numerical model is neces-
sary to describe a cylinder of arbitrary cross section, the cross
sections associated with grass blades are not arbitrary but are
instead limited to those described by parameters a, v, and 8,
and by the domain of Table II. These limits greatly reduce the
information requirement of the numerical scattering model,
thereby allowing for its replacement by a relatively simple
analytical approximation. By combining the relationship of
P/A with € (13) and the relationship of ¢ versus a, v,
and @ inferred from a small but representative sample of
numeric solutions (16), (17), an analytic approximation was
developed that can predict the scattering response of blade
shaped cylinders both rapidly and accurately.
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