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Abstract— Scattering from variable planar resistive and impedance sheets with one di-
mensional variations is studied in this report. An approximate solution is obtained using a
perturbation technique in the Fourier domain. It is shown that the solution for a variable
resistive sheet with resistivity R(z) is identical to the solution for an impedance surface
with impedance 5(z) by replacing R(z) with n(z)/2. The solution for the induced cur-
rent on the sheet in terms of the resistivity (impedance) function is given in a recursive
form. The closed form nature of the solution enables us to study the statistical behavior
of the scattered field when the perturbation function is a random process. The solutions
based on the perturbation technique are compared with those obtained by other methods
such as the moment method for periodic resistive and impedance sheets (Appendix A),
numerical solution of the integral equation for scattering from a dielectric object above a
resistive sheet, and GTD for the problem of impedance insert.

1. INTRODUCTION

In view of the difficulties associated with obtaining exact solutions of Maxwell’s
equations under given initial and boundary conditions, approximate solutions are
often sought instead. A common approximation technique is perturbation theory
which is useful primarily when the problem under consideration closely resembles
one whose exact solution is known. Perturbational methods have been successfully
used for many problems such as cavity and waveguide problems [11,2], scattering
from stratified media [1], and scattering from rough metallic surfaces [6]. The re-
sistive sheet and impedance surface approximations have extensively been used in
scattering problems [8,10,5] where the resistivity and the impedance are constant.

In this paper we will employ a perturbation method to solve the scattering
problem of variable resistive and impedance sheets. Study of this problem is
motivated by number of important applications. For example, a thin dielectric
slab whose thickness and dielectric constant are non-uniform provides a model
for a vegetation leaf, and can be approximated by a resistive sheet with variable
resistivity. The variable resistivity R(z) is an explicit function of the thickness
and material properties of the slab. Another variable resistive sheet of concern
is a periodic resistive sheet, with application to spatial filters and polarizers.
Characterization of the scattering behavior of a variable impedance surface is also
a matter of increasing concern since dielectric coated perfect conductors can be
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modeled by a surface impedance, and a variation of the material property of a
terrain surface can be represented by a variable impedance surface.

The approximate solution is obtained using a perturbation technique in the
Fourier domain. The solution for the induced current on the sheet in terms of the
resistivity function is given in a recursive form. The closed form nature of the
solution enables us to study the statistical behavior of the scattered field when
the resistivity function is a random process. The solution for the current on an
impedance surface with impedance 7(z) is identical with that of the resistive
sheet and can be obtained by replacing R(z) with 5(z)/2.

The solution to any desired order for a periodic perturbation is obtained an-
alytically and the results are compared with an exact solution obtained using a
moment method which is developed in Appendix A. The technique is also used to
characterize the scattering behavior of a thin dielectric slab with a hump and the
solution is compared to that obtained using the moment method in conjunction
with the exact image theory for resistive sheets [7]. To demonstrate the ability of
this perturbation technique to handle sharp variations in the spatial domain, the
problem of scattering from an impedance insert is considered and compared with
a uniform GTD solution [4].

2. DERIVATION OF INTEGRAL EQUATION FOR RESISTIVE AND
IMPEDANCE SHEETS

The resistive sheet is simply an electric current sheet modelling a thin dielectric
layer capable of supporting electric current. The electric current on the sheet is
proportional to the tangential electric field and the proportionality constant is
denoted by a complex resistivity R given by
iZg

R= kor(e—1) )
Here, Zo(= 1/Yp) and kg are the characteristic impedance and propagation
constant, respectively, of free space. Also 7 and € = ¢ + i€’ are the thickness
and the dielectric constant of the dielectric layer, respectively, and for convenience
a time factor e~ ! has been assumed and suppressed.

The electromagnetic boundary conditions that govern the fields on the resistive
sheet are given by [9]

[AxE] =0 (2)
Ax(AxE)=-RJ (3)
T=[axH]F (4)

where 1 is the unit vector normal to the top (+) side of the sheet, J is the induced
current on the sheet, and [ ]I denotes the discontinuity across the sheet.
Consider a planar resistive sheet occupying the zy-plane and having a resistiv-
ity which is only a function of z. Suppose a plane wave is incident on the sheet at
an angle ¢9 measured from the normal. The geometry of the problem is depicted



Scattering from Variable Resistive and Impedance Sheets 867

in Fig. 1. For the E- polarization case where the electric field is perpendicular to
the plane of incidence, we assume

T - et st ®
The induced current in this case has only a y-component and the scattered field
due to this current is found to be

B == [ 3()E (holp - 7)) de' (®)

where Hgl) is the Hankel function of first kind and zeroth-order. The induced
current and the total electric field given by

BF=F+F )
must satisfy the boundary condition given by (3). Noting that # = z and sub-

stituting for E' and E’ from (5) and (6), the following integral equation for the
induced current can be obtained:

R(z)Jy(z) = eMosindoz _ @f—" /_ :o Ty HY (kolz - o) d='  (8)
AZ
%
X
>

Variable Resistive Sheet  R(x)

Figure 1. Geometry of the scattering problem for a variable resistive sheet.

For the H- polarization case in which the magnetic field vector is perpendicular
to the plane of incidence, we have
E' = —(cos ¢ & + sin gy 2) e?ko(sin doz—cos oz) (9)

In this case the induced current has only an z-component and

Ei(z,z) = _E%Q /+°° Jz(z') (1 + kig %) Hsl) (ko\f (z—2')2+ zz) dz'

- (10)




- 868 Sarabandi

By obtaining the total field at the surface of the sheet and applying the bound-
ary condition (3) the following integral equation for the induced current in the
H- polarization case can be derived:

R(z)Js(z) = — cos pg e'Fosin b0z

koZy [t . 1 8%\ ) " do!
"Tf_m Ia(&) 1+ 53 57 ) o (kole — 2'|) d='  (11)

Now consider an impedance surface occupying the zy-plane. Suppose the
impedance is a function only of the variable ¢ and is denoted by 7n(z) (see
Fig. 1). The boundary condition on the surface is

Aax(AxE)=-q(z)ixH (12)
The field scattered from this surface can be obtained by replacing the total tan-
gential magnetic field on the surface by an electric current over a perfect magnetic
conductor using the field equivalence principle [3]. The equivalent electric current
is

J=daxH (13)

and by invoking image theory, the magnetic wall can be removed by doubling the
electric current.

In the E-polarization case the total tangential magnetic field on the surface
is in the z-direction which implies that the electric current is in the y-direction.
The scattered electric field can be obtained from expression (8) by doubling the
electric current. The total electric field on the surface is composed of the incident
field, the field reflected from the magnetic wall, and the scattered field. From (12)
and (13) we have

[+ By + By =n(=) (=) (14)

which leads to the fo]]oﬂmng integral equation for the electric current:
| z iko si koZy [T 1
%2 Jy(z) = ekosindoz _ %] Jy(z')Hg ) (ko|z — 2'|) da’ (15)

When the incident field is H- polarized the total tangential magnetic field is
in the y-direction which implies that the equivalent electric current flows in the
z -direction. The tangential scattered electric field can be obtained from (10) by
doubling the electric current. Also, from the boundary condition (12), we have

[+ BL+ B2) | =n(@) Te(=) (16)

Upon substituting the appropriate quantities from (9) and (10) into the above
equation we get:

E%E) Jz(z) = — cos eikosin doz

koZo [+

4 )

To(') (1 + kig g;-,:) B (ko |z - 2') da' (17)
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Note that the integral equations obtained for the impedance sheet are identical to
those obtained for the resistive sheet if R(z) is replaced by n(z)/2. Therefore
all the analysis that will be carried out for the resistive sheet can be applied to
the corresponding impedance sheet.

8. PERTURBATION SOLUTION

The integral equations for the induced current on the resistive sheet are Fredholm
integral equations of the second type, and for an arbitrary resistivity function
R(z) there is no known technique for finding their exact solution. Here we obtain
an approximate iterative solution to these integral equations using a perturbation
technique and Fourier transform. For the sake of simplicity let us represent the
integral equations (8) and (11) by the following equation:

R(2)J(z) = acthosindos _ 2020 (5, 5)() (18)
where g(z) is the kernel of the integral equation, a is 1 or —cos¢g for E- or
H- polarization respectively, and (J % g) (z) denotes the convolution integral. By
taking the Fourier transform of (18), the integral equation in the Fourier domain
becomes

o (B+7) (@) = 2va6 (a ~ kosin o) — 2222 F(a) i(a) (19)

where the Fourier transform of functions are denoted by a ~ and § is the Dirac
delta function. The transform of the kernel function is given by

2
, E-polarization
kg —a?

§(e) = (20)

k_zg k% — a2, H-polarization
where the branch of square root is defined such that /1 = i. When the resis-
tivity of the sheet is constant, an exact solution to the integral equation (18) can
be obtained, and if R(z) = Ry, then

R(a) = 27Ry §(a) (21)
The transform of the current can be obtained from (19) and is given by
a [276(a — kg sin ¢9))

Jo(a) = T (22)
Zy
Ro+—25(a)
and the current in the spatial domain for E- and H- polarization respectively are
_ . 2Yycosdy iko sin ¢z

73(&) =93 + 2RgYp cos ¢y ¢ (28)

—=h, v . —2Ypco840 ikosinggx
Jo(z)_z2.ﬂg]ﬁ+cos¢oe (24)

which are identical to the result obtained from a plane wave reflection coefficient
caléulation [9].
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If the resistivity has a small variation as a function of position, let
R(z) = Ry (1 + Ar(2)) (25)

where r(z) is the perturbation function assuming |r(z)| <1 and A is a complex
constant (JA| < 1). The induced current on the sheet is assumed to be

+00 _
J(z)=Y_ Ja(z)A" (26)
n=0
where Jp(z) denotes the nth component of the induced current. Obviously, if
A =0 then J(z) = Jo(=). From (25) and (26)

R(a) = 27Ry §(a) + RyF(a)A (27)
+00 _

J(a) =Y Ta(e)A® (28)
n=0

and when substituted into (19), the terms given by (22) can be cancelled, and the
remaining terms can be written as
= ~ 1., |~ koZo~, \=
E {Ro [Jn(a) +on 7(a) * Jn_l(a)] + 4 9(a) Jn(a)} A" =0 (29)
n=1
Since this must hold for any value of A, all of the coefficients must be zero. Thus
for E-polarization

1-% .
Jé(a) = —2YoRy - — o (F+Ji) (@ (30)
1+ 2¥Rp, /1~ %5
0
and for H- polarization we have
~ 1 1 /. =
Th(a) = —2Y, Ry - o (Fr3) @ G

21’0Ro+‘/ -
0

The above recursive relations along with the expressions for Jo(a) can be used to
derive the induced currents to any desired order of approximation. The first-order
solution can be obtained very easily and the transforms of the first component of
the induced current for E and H- polarizations are

1-9
~ —4Y2 Ry cos ¢o B ,
= . —k 2
Ji(e) 1+ 2Yp Ry cos ¢y 1 +2Yoﬁ'o‘/1 _ kz (0 — ko sin o) (32)
(1]
2
Th(a) = ——0 Ko cosdu . (33)

cos gy + 2YpRy 2Y0Ro+ﬂ 7(a — ko sin ¢p)
H

The complexity of obtaining high-order solutions depends on the perturbation
" function r(z).
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4. PERIODIC RESISTIVITY

A simple case where it is possible to determine the nth components of the induced
currents is a periodic resistivity with period L. In this case we can write

+00
r@)= Y eme T2 (34)
m=—00
and the Fourier transform of the perturbation function is
F(a) =2 Jff emé (a 2’”—"‘) (35)
m=—00 L

For the E- polarization case the transform of the nth component of the induced
current can be obtained from (30) and (35) and is

~e 1 = ~e 2rm
Ja(@) = ~2Yo R - = Y emJ5 g (a- 4 (36)
2YyRy + ,/1— % m=—o0
\/ 2 ,

By employing the expression (22) for }o(a) and after some algebraic manipulation,
a closed form for the nth components of the induced current in the spatial domain
can be obtained:

_ —2¥p Ry cos go(~2¥o Ro)®
(=) = = 3o R, con b
. 2
R T n = (singo +3 Tieymj)
. Z e Z H \/ . "
ma==e0  m=0o i=11 4 2¥pRoy[1 - (singo + § They m;)
‘Cmy e c'n‘éi(loﬁn ¢D+¥ E?,:l m;)a (37)

A problem associated with the perturbation techniques is that when there is
a sharp variation in the perturbation function there could be a sharp variation
in the solution which is not to the order of perturbation. Therefore in an nth -
order solution it is not guaranteed that the solution is of O(A”+!) for all values
of the variable in the domain of the integral equation. To check the validity of our
assumption we consider two limiting cases: (1) when the perturbation function has
sharp variations in the spatial domain and (2) when the perturbation function has
sharp variations in the Fourier domain. The first case will be studied in Section
6 and to study the latter case we consider a constant function (r(z) = 1) for the
perturbation function. Note that the perturbation technique was applied to the
integral equation (19), and in this case the perturbation function 7(a) = 276(c)
has the sharpest variation possible. When 7(z) = 1 the resistivity is constant
and from equation (23) it follows directly that

el x 2Y) cos ¢y ikosin goz
%= =13 2YpRo(1 + A)cos gy © (38)
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The zolution based on the perturbation technique can be obtained from equation
(87) with L =00,co=1 and ¢;n =0 (for m # 0); thus

= 2Yp cos ¢g (—2Yy Ry)™ ikg sin gpz A n
T@)=2 (1+2YgRq cos o)+l © 4

n=0

(39)

This series is absolutely convergent and represents the Taylor series expansion of
(38), implying that the perturbation solution can be made as close as we wish to
the exact solution.

For H- polarization the analysis is similar and the expression for the component
of the induced current in the spatial domain is:

b\ —2YoRq cos ¢o (—2¥oRo)"
n(®) = = ¥oRq + cos o

+o0 400 n 1
¥ E e
Ma==00  M=-00i=12YyRg + \/1 - (Sm $o+ £ =1 mj)
ey -+ ey e (R siR G0+ T2y me) @ (40)

In Appendix A a numerical solution for a periodic resistive sheet is given. The
solution is based on the moment method, and in Section 7 the results are compared
with the above perturbation solution.

The closed form expression for the induced current enables us to study the case
when the perturbation is a periodic random process. In this case the perturbation
function may still be represented as a Fourier series but with the Fourier coeffi-
cients (c),s) as random variables. It can be shown from (A13) that the average
value of the diffracted field is directly proportional to the average value of the
induced current.

5. SCATTERING MODEL FOR A VARIABLE THICKNESS DIELECTRIC SLAB

Consider a dielectric slab whose thickness is a function of z (see Fig. 2). Let the
thickness be

T(z) = 7 (1 + 3‘%—2 : A) (41)

Figure 2. Geometry of a dielectric slab with a hump.
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where w is a measure of the width and A is the height of the dielectric hump.
This thickness function resembles the variation in thickness of a vegetation leaf
and in this case w and A are random variables. If the dielectric slab is electrically
thin and A < 1, the resistivity function can be obtained from (1) and to the first
order of A it can be shown ,
w

R(z) ~ Ry (1 B A) (42)
where Ry is the resistivity of the slab corresponding to A = 0. The perturbation
function then takes the form

w?

r(z) = a:2 +w? (43)

The Fourier transforms of the first components of the induced current for E- and
H- polarization can be obtained from (32) and (33) respectively, and are
2

1-g

Gen_ _Y§Rgcosgy ko ) —w|a—kosin do|

75(@) = T a7 he o - (woe ) @
hl)

—~ — 2 i

R 2 S B R

_cos¢o+2YoRo'2YbRo+ /1_%-
ko

The scattered field due to the zeroth-order induced current consists of reflected
and transmitted plane waves in the specular and forward directions, while the
first component of the induced current gives rise to a cylindrical wave which
will be denoted by the superscript s. In the far zone when p and ¢, denote
the distance and direction of observation point, it is easy to obtain the far field
amplitude P(¢g,d,) defined by

p— ' 2 . XY —
B~ V wkop e‘(kﬂp D P(¢0s¢'3) (46)
in terms of which the bistatic echo w1dt]1 is
o(¢0, $s) = —-—|P(¢o, ¢s)|* (47)

In the E-polarization case the scattered field is in the y-direction and
5 —koZy [+ L
Pe(do,0s) = 00 f Jf(z’)e iko sin ¢,2’ 3.1
—o0

4
. —koZy ~ .
= y%.ff(ko sin ¢,) (48)

For H- polarization, in far zone, the scattered field has only a ¢-component, and
the far field amplitude is

.ﬁh(‘f’n, ?5:) = 65005 bs kofo
kozo

—00

. = ¢ —20 cos ¢y TP (ko sin ¢4) (49)
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Hence, from (44) and (45),

- _ o —koYoRocos g €os $s ) \ . —kow|sin ¢, —sin go
PG(¢0!¢') _‘yl +2YgRpcosdg 1+ 2YyRgcos P, (‘J‘NBAB l)

(50)

) _ 3 —koYpRq cos ¢o . o8 Ps . —kowl|sin ¢,—sin ¢
Ph(d0,9s) = ¢ cos do T 2VoRy | 2VoRo T cos g (wwAe | UI)

(51)

It is now easy to obtain statistical behavior of bistatic scattering width if A
and/or w are random variables.

The above is a first-order solution, and for a higher order solution, analytical
results may not be achievable. When the height of the dielectric hump above
the resistive sheet is not much smaller than the wavelength, the above solution
fails to work for two reasons: (1) the solution is first-order in A, and (2) the
dielectric hump cannot be modeled as a single resistive sheet. In such cases we
have to resort to numerical techniques to get the solution [7]. Results based on
the perturbation technique and a moment method in conjunction with the exact
image theory for the resistive sheet are compared in Section 7.

6. SCATTERING FROM IMPEDANCE INSERT

Another application of the perturbation technique is the scatiering of a plane wave
from the impedance insert whose geometry is shown in Fig. 3. The impedance of
this surface can be represented as

_In(1+4), |z|<w/2
(=) = { 70, otherwise
where w is the width of the insert, and as before, A is a constant with |A] <
1. The transform of the first components of the induced current for E- and
H- polarization respectively can be obtained from (32) and (33) by replacing Ry
by 70/2 as follows:

1-9
Jea)= —Homeosdy V- B sin(w(a—kosingo)/2) ),
1 1 + Yoo cos go 1_‘_},0,?0‘/1_%% w(a — ko sin ¢g)/2

2Y021‘,'0 cos ¢g 1 sin{w(a — ko sin ¢g)/2)

TMa) = . w .
1(e) cos ¢g + Ypno Yoo + \/ _ g_:_ w(a — kg sin ¢g)/2
kg

(83)

Unfortunately, analytical expressions for the higher order components of the in-
duced current cannot be obtained for this case but they can be found numerically.
To observe the behavior of the current in the spatial domain, expressions (52)
and (53) were transformed numerically and the results are shown in Figs. 4 and
5. They show the expected behavior of the currents at the edges.
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The far field amplitudes can be found by doubling the expressions given by
(48) and (49). Thus
—koYongcosdy __ cosdy sin(wko(sin g  sin ¢o)/2)
Pe(d0:40) = § 1+ Yynocosgg 1+ Yong cos ds wA wko(sin ¢4 — sin ¢g)/2

(54)
= _ ., —koYonpcosdy __ cosd sin(wko(sin ¢, — sin ¢9)/2)
Pl o) = b Yom Yom Foos s > whooin g —sin gl

(55)

The results of this technique are compared with a uniform GTD solution [4] that
accounts for up to third order diffracted fields in the next Section..

“Z

%o
w w
2 2 X

n o, %

Figure 3. Geometry of an impedance insert.
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Figure 4. Distribution of the first component of induced current on an
impedance insert for E- polarization.
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Figure 5. Distribution of the first component of induced current on an
impedance insert for H- polarization.

7. NUMERICAL RESULTS

Computations based on the results derived in Sections 3—6 will now be presented
and, where possible, compared with data obtained by other methods. First let
us consider the periodic resistive sheet. Figures 6 and 7 show the amplitude and
phase of the induced current on a resistive sheet with sinusoidal variation of period
L =2) and A = 0.7 for E-polarization. In these plots the first through fourth
order solutions are presented using the expression (37), and compared with the
data obtained by the moment method as given in Appendix A. It is seen that by
increasing the order of solution we can get as close as we wish to the exact solution,
and that the fourth order solution provides excellent agreement with the moment
method data. We note here that the required order is directly proportional to
A and L/). Similar results are shown in Figs. 8 and 9 for H- polarization. The
normalized field amplitudes of the propagating modes (Bragg modes) defined in
Appendix A are given in Table 1 for a sinusoidal resistivity with L = 3A, A = 0.7,
and Ry = 0 + ¢100 at angle ¢g = 30 degrees. Since the resistivity is pure
imaginary, there is no power loss and the total power carried by all of the modes
is equal to the incident power. Note that apart from the case n = 0, E, = E;f
and H; = —Hp+, where EFX and HZ are the field amplitudes of nth mode in
the upper (+) and lower (—) half-spaces for E and H- polarizations respectively.
When n =0 the incident field should be added to the zeroth mode in the lower
half-space, i.e., Ey = Ef + E* and Hy = —H + H'.
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We now turn to the problem of a variable thickness dielectric slab. The results
of the perturbation technique presented in Section 5 are compared with the nu-
merical solution based on exact image theory for a resistive sheet in conjunction
with the moment method. In this numerical solution an integral transformation
is used to obtain the Green’s function of the problem in a form amenable for
numeical calculation [7]. For all of the test cases the dielectric slab is assumed to
be homogeneous with € = 36 + 17, 7p = A/100, A = 0.3, and A = 3 cm which
correspond to Ry = 180 + i270. Figures 10-13 show the bistatic echo width and
the phase of the far field amplitude of a dielectric hump over the resistive sheet
for w = A/15 and incidence angle ¢y = 0 for both polarizations. In each figure
the results based on the perturbation technique are compared with the numerical
results. The agreement is good in spite of the fact that the perturbation solution
is only a first order solution.

Figures 14-17 compare the results of the perturbation method and the GTD
technique for the impedance insert problem. The figures show the normalized
bistatic echo width (¢/A) of an impedance insert having w = 2) and 7y =
40 — 40 using the two methods. The agreement is excellent (for A = 0.5 the
error is only 0.3dB) in spite of the sharp changes in the perturbation function
in the spatial domain. The spikes in Figs. 14 and 16 are due to the difficulties of
evaluating the GTD expressions at the reflection boundary.

Amplitude (dB)

PSP B R 1 1 L 1 L

-s-al.n -0.8 -0. -0.4 0.2 8.0 0.2 0.4 0.6 0.8 1.0
X (In Wavelength)

Figure 6. The amplitude of the induced current on a periodic resistive
sheet with resistivity R(z) = (180 + 4270)(1 + 0.7 cos 27z /L),
L = 2) at normal incidence for E-polarization: (——) moment
method, (- - - -) fourth order solution, (— —) third order so-
lution, (— — —) second order solution, (— - - - —) first order

solution.
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8

Phase (Degrees)
3

_m 'l i 1
-0.8 -0.2 0.0 8.2

X (In Wavelength)

0.6 -6.4 0.4 0.6

Figure 7. The phase of the induced current on a periodic resistive sheet
with resistivity R(z) = (180 + i270)(1 + 0.7 cos 2wz/L), L =
2)\ at normal incidence for E-polarization: ( ) moment
method, (- - - -) fourth order solution, (— —) third order so-
lution, (— — —) second order solution, (— - - - —) first order
solution.
E-polarization - H-polarization
n E}/E E;|Ef HY/H' H;[H'
-4 || 0.00162.37 | 0.001£62.37 || 0.001£-150.10 | 0.001£29.90
-3 §| 0.003£169.70 | 0.003£169.70 | 0.004,-18.57 | 0.004.161.43
-2 || 0.020£-76.15 | 0.0202-76.15 | 0.02299.93 | 0.022£-80.07
-1 ) 0.124/40.43 | 0.124240.43 | 0.136.-143.68 | 0.136.36.32
0.|| 0.8872156.86 | 0.394£62.13 || 0.831£-27.13 | 0.460£55.50
1 || 0.136£49.53 | 0.136.49.53 .0.2101-158.67 0.210£21.33
Table 1. Normalized field amplitude of the propagating modes in the

upper (+) and lower (—) half-spaces for a periodic resistive
sheet R(z) = Ro(1 + 0.7cos 2rz/L) with Rg = 0+ 100 and
L=3) at ¢g = 30°.
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-46 v

k & 3

Amplitude (dB)
2

_m-.. L 1 P P al 1 P i 1 P B
-le -08 06 -64 -0.2 0.0 8.2 8.4 0.6 6.8 1.0
X (in Wavslength)

Figure 8. The amplitude of the induced current on a periodic resistive
sheet with resistivity R(z) = (180 + i270)(1 + 0.7 cos 2rz/L),
L = 2) at normal incidence for H-polarization: (——) mo-
ment method, (- - - -) fourth order solution, (— —) third order
solution, (— — —) second order solution, (— - - - —) first order
solution.

-10 — — S —

Phase (Degrees)
8

-ésuu

L 1 1 [ PRPEPEr B

-m " L
-1.0 -0.8 -0.8 -0.4 -8.2 0.0 0.2 0.4 0.6 0.8 1.0
X (in Wavelength)

Figure 9. The phase of the induced current on a periodic resistive sheet
with resistivity R(z) = (180 + ¢270)(1 + 0.7 cos 27z/L), L =
2)\ at normal incidence for H- polarization: ( ) moment
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Figure 10.. ~Bistatic echo width of a dielectric hump with e= 36+i17, A =
0.3, and w = A/15 over & resistive.sheet with Ry = 180+ 1270
at f = 10GHz and ¢¢ = O degrees for E- polarization: (——)
numerical techniqus, (- - - -) perturbation technique.

Phase (Degrees)

i I TETERTEE T PERTIRERTA CRTE ANV LPTRTRT RN

0 FTPTETETTL PUPRTETET] FPURFTTETE PR TVERTTN

T T » 50 0 %
Scattering Angle (Degrees)

Figure 11. Phase of far field amplitude of a dielectric hump with ¢ =

36 +117, A =0.3, and w = A/15 over a resistive sheet with

Ro = 180 + 4270 at f = 10GHz and ¢g = 0 degrees for

E-polarization: (——) numerical technique, (- - - -) perturba-

tion technique. =
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A =0.3, and w = A/15 over a resistive sheet with Ry = 180+
1270 at f =10GHz and ¢ = 0 degrees for H- polarization:
(—) numerical technique, (- - - -) perturbation technique.
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45 degrees for E- polarization: (——) perturbation technique,
(- - - <) GTD technique.
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Figure 16, Normalized bistatic echo width (¢/)) of an impedance insert

with w = 2), 7y = 60 —i60, np = 40 —i40 (A = 0.5) at ¢g =
0 degrees for E- polarization: (——) perturbation technique,
(- - - <) GTD technique.
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8. CONCLUSIONS

Problems of scattering from variable resistive and impedance sheets have been
studied using a perturbation technique in the Fourier domain. A recursive form
for the nth component of the induced current on the resistive sheet was derived
that, in principle, allows evaluation of the current to the desired order of pertur-
bation. Having an analytical expression for the induced current in Fourier domain
culminates in having an analytical form for the far field amplitude. The solution
for the induced current on an impedance surface is identical to that of a resistive
sheet whose resistivity is twice the impedance of the surface impedance.

The validity of the technique was checked in two limiting cases where the
variation in perturbation function is sharp in either the spatial or the Fourier
domain. It was shown that the perturbation method is capable of handling both.
The first order expression for the induced current was obtained analytically for
an arbitrary perturbation, but the ability to obtain analytical expressions for the
higher orders depends on the perturbation function. For a periodic resistivity a
closed form solution for any arbitrary order of perturbation was obtained. The
results based on the perturbation method were compared with an exact solution
based on the moment method as explained in Appendix A. The analytical results
were also checked against a GTD solution for the impedance insert problem and
the moment method for the problem of a dielectric hump over a resistive sheet as
given in [7]. Excellent agreement between the analytical and other methods was
observed. It was found that the required order of perturbation is proportional to
the perturbation constant A and the width of perturbation in spatial domain,
i.e., L for a periodic perturbation and w for the impedance insert and dielectric
hump problems.

APPENDIX A. NUMERICAL ANALYSIS FOR A PERIODIC RESISTIVE SHEET

Al. Derivation of Green’s Function

For a resistive sheet which is periodic in one dimension with period L, we have
R(z+I) = R(2) (41)
Suppose the resistive sheet is illuminated by the plane wave given in (5). The
induced current on the resistive sheet must satisfy the periodicity requirements
imposed by Floquet’s theorem, i.e.,
J(z +nL) = J(z)e*osindonl (42)
The scattered electric field for E- polarization case can be obtained from (6). By
subdividing the integral into multiples of a period, the equation can be written as -

+0o zo+(n+1)L
g=-22 Y [ :(L“) 1) (boyfle =+ 2) és' (43)

n=~—co V%0

. If the variable z' is now changed to z' +nL and the property (42) is employed,
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we get L
zo+
ES = _¥ / " 1) Ge(z, o', ) do' (44)
zo
where
+co Lo
Ge(z,',2)= Y HY (ko\/(z —2' —nL) + za) eikosingonl  (45)
n=—o0

is the Green’s function of the problem. The series is very slowly converging,
especially when L is small compared to the wavelength. To make the problem
computationally tractable a better form for Green’s function is needed. If the
Fourier integral representation of the Hankel function is inserted into (A5) and
the order of summation, integration reversed, we have

60 ei [\/ﬁ |z|+a(z-—=')]' +o0

Y eminla—kosindo)lyy  (46)

Ge(z,2',2) = %f

But
+o00 ) A
Z e—inla—kosingo)L _. o, E 6 [(a — ko sin ¢g) L — 27n] (A7)

Applying the above identity to (A6) and changing the order of summation and
integration one more time provides the following expression for the Green’s func-
tion:

0 _iy/k3—(3R+kosingo)’ |2|
G¢(3,3',2)='§ +Z e“’*ﬂ (32 + ) (32 +kosin do)(2—2') (48)

n==e k2 — (42 + kosingo)

This series converges very fast specially when z is relatively large, and with the
aid of this Green’s function, the integral equation for the induced current given
in (11) becomes

iko sin goz _ K02
R(#) y(z) = chotinter _ 200 [*

By a similar technique the Green’s function for a periodic resistive sheet in the
H- polarization case can be derived and is given by

+oo iy/k3—(P +kosingo)” |z

Gp(z,2',2) = % (1 + %) ‘/ 5
¥ n=—w [.9 (20 .

1= (7 s sasr)

. (32 +kosin go)(2—2') (A10)
and the resulting integral equation for the induced current is

iko sin goz __ K020
R(z)Jz(z) = — cos ¢y e**osin o ———-—I—j;

0

zo+L
Jy(a:') Ge(z, 2, 0+) dz' (A49)

zo+

LJ,(z')G,,(z,z’,nﬂdz' (411)
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The form of the Green’s functions shows that the scattered field is composed
of two types of waves: (1) propagating waves and (2) surface waves. The latter
decay exponentially away from the surface and there are an infinite number of
them. In contrast, the number of propagating waves is finite, depending upon the
period L and the angle of incidence. The nth mode is a propagating mode if n
belongs to set A defined by .

N = {n;—% (1+singg) <n< 5;-(1 —sin qSo)} (A12)

In the far zone only the propagating modes are observable and the electric field
of the nth mode for E- polarization is, for example, given by (n € N)

zo+L
1 ,~i( 32 +ko sin ¢o)2’ 4./

EP =— =
2L \/koz—— (@ +koﬁn¢‘o)2
. V(2 +hosingo)? |z| (32 +ko sin do)e (413)

and for H- polarization we have

2o+ . . ,
H;' =F [Elz zno Jz(zf) 8—1(1P+kolm:¢o)z dz']

. VR~ (32-+hosin o)’ 2] 5( 252 +kosin o)e (414)

where the upper and lower signs apply for an observation point in the upper
or lower half-spaces respectively. The direction of propagation of each mode is
defined by the angle ¢ measured from the normal to the surface and can be
obtained from

sin¢;,=%n+ﬁn¢o (415)
A2, Numerical Analysis
Numerical solutions of the integral equations can be obtained by the method of

moments. The unknown current is represented approximately by an expansion of
pulse basis functions as

M
J(z) = Z IJmP(z — zm) (A416)
m=1

where Jy, are the unknown coefficients to be found, M is the total number of
segments, and P(z) is the pulse function defined by

A
P(z) = { L el <5 (A17)

0, otherwise
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In the case of E-polarization, by substituting (A416) into integral equation (49)
and setting z9 = —L/2 we get

zm+%!

R(z)J(z) = eikosindoz _ k"z" E Im / Ge(z,2',01)de’  (418)
m=1 2m—47

After evaluating the integral and setting the observation point at z = zj, the

following expression results:

R(z)J (z)) = e™osindom

kg Z E . too i 22 +kosin do)(2h—2m) gin ((2m + kgsin ¢ 0) Az)

m=1 n=—00 (aLm + kg sin ¢’B) \/ (21m + ko sin ¢0)
(A19)

This can be cast in matrix form as
[2]1[T] = V] (A420)

where [Z] is the impedance matirix and its entries are

kozo t U hosindo)@—am) gin (258 4 ko sin %) 4)

m = 22 = k#m
n==e0 (2§ 4 kosingy) \/kﬁ— (22 + kosin o)
+oo . 2xn kg sin ¢, Az
2pp = k'fﬂ E s ((T + kg sin 0) T) - +R(3k)s k=m

n==o0 (28 + kosin ) \/k;-; — (42 + kosin o)
(422)

[J] is a column vector whose components are the unknown Jp, ’s a.nd [V] is the
excitation vector whose components are given by

vy, = e'kosindozi (A23)

Derivation of the impedance matrix for H- polarization is rather difficult be-
cause of the higher order singularity of the Green’s function. Using the same
expansion of the induced current as before and inserting it into the integral equa-
tion (A11) we obtain

R(z)J(z) = — cos pge'kosindoz

M
s § 5, ¥ (14 L) e 0
i m._.Z_:I-J'm o2 1+0:::2 Gp(=,2',0™)dz’ (A424)
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To find the impedance matrix consider the following integral:
82
./-5; Gp(z,2',2)dz’ = —G}(z,7',2) (A25)

where G},(z,%',z) is the derivative of G}(z,2',2) with respect to z and is given
by

SV R—(32 +hosingo)’ |z
2
M—m ‘/k2 ( +kosin¢o)
i (B2 4 hosingy) OB Hhosn)e=) (20
The convergence of the series is very poor when z — 0, but the limit does exist.
To achieve a better convergence rate, consider the following geometric series based

on the asymptotic behavior of the individual terms in (A426) for large n, positive
and negative:

G‘h(al zri z) =

Sy == Ze 240 (2] i( 2 +ko sin do)(2—2")

n—l
= E —ikg sin go(z—2') e_¥(|’|+i(= ~z))
L e 1- e"zf(lzl-l-i(a‘-a)) (A27)
-1
__ Z 3%1 |z] ei(-‘?.{.ko ﬁ-‘%)(a-—z’)
2 “tkonn¢o(z gf) e '?(M"i(t'-—z)) 28
B — e~ Z(lz|-i(2'-2))

By adding and subtracting the above series from Gh(z,z ,2) and then letting
z — 0 it follows that

G'h(’:”'»ﬂ"') = ‘h_% [G;,(z,z',z) -51- 53]
EE-) )
1- e—i’f(:’—z) 1- ei?(a‘—z)

+ % ¢ikosin go(a—2') [

(429)

which can be rearranged to give

Gh(,2',0) = 3 “%““"""{ >

i (32 + kosin o)

—1 e—i’-F[z’—z)
Jreg - (4 +kosin¢o)2




Secattering from Variable Resistive and Impedance Sheets 880

( i (22 + ko sin go) A

- (2 + lsin)”

,.t- é % (2'~e) _ £ (E'-2) A30
+ -‘I an l‘_l+ _.'%(3'—&) 1 __ei‘?(z’...z) ( )

The above series is absolutely convergent and its rate of convergence is relatively
fast (like 1/n2). By defining the following parameters

%! 82 ’ln *—Z
A(z,zm)—kz jz,,. B Gi(z, 2, o+)dar_me-ko bo(2—2m)

el (3 + kosingo) »
{Z{(\/ B- (1 +hoinw)
o (2 1) )

K (-—3? + kosimﬁo)
\/kg - (-2 + ko%inq&o)z

R (C TN
4 itan dgsin (km%%g) o
o ) oo

T

B(z,2m) = f:ﬂr': Gy, (z,z‘,o'i‘) de'

4 0 +00 'xP(z'“"'")sm(( +kosm¢o) %!)

_E e;konn%(z—zm]
o (1? " knsm,p,,) \/kg- (3-5“ + kosin¢0)2
(432)
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and setting the observation point z = z3, (424) can be written as

M
I koZ
R(x)J(24) = — cos dg etosndor 2020 S™ 5 (400, 20) 1 Bloy,om) (43)
m=1
This can be cast as a matrix equation similar to (420) with the impedance matrix
and excitation vector having entries

koZ
Zkm = —04—0 [A(ﬁk,?rm) +B(Tvk,¢m)] H] k '-'é m

koZ
Zjk = __gz_q [A(2g, z) + B(zg, 2)] k=m (434)
v = — cos dg ekosin doz; (A35)
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