Appears in 2008 IEEE International Symposium on Workload Characterization (IISWC)

Temporal Streams in Commercial Server Applications

Thomas F. Wenisch! 2, Michael Ferdmanz,
Anastasia Ailamaki? 3, Babak Falsafi? 3 and Andreas Moshovos®

! Advanced Computer Architecture Lab (ACAL), University of Michigan
2Computer Architecture Lab (CALCM), Carnegie Mellon University
31&C School, Ecole Polytechnique Fédérale de Lausanne
4Dept. of ECE, University of Toronto

Abstract

Commercial server applications remain memory bound on modern
multiprocessor systems because of their large data footprints,
frequent sharing, complex non-strided access patterns, and long
chains of dependant misses. To improve memory system performance
despite these challenging access patterns, researchers have proposed
prefetchers that exploit temporal streams—recurring sequences of
memory accesses. Although prior studies show substantial
performance improvement from such schemes, they fail to explain
why temporal streams arise; that is, they treat commercial
applications as a black box and do not identify the specific behaviors
that lead to recurring miss sequences. In this paper, we perform an
information-theoretic analysis of miss traces from single-chip and
multi-chip multiprocessors to identify recurring temporal streams in
web serving, online transaction processing, and decision support
workloads. Then, using function names embedded in the application
binaries and Solaris kernel, we identify the code modules and
behaviors that give rise to temporal streams.

1. Introduction

Off-chip memory accesses continue to pose a critical perfor-
mance bottleneck in commercial server applications [1, 3, 8,
22, 25]. Extensive research has shown that widely-deployed
stride-based prefetchers provide only limited benefit for many
server applications, such as online transaction processing and
web serving, because these applications are dominated by
pointer-based data structures with complex, non-strided access
patterns [8, 22, 25].

To improve performance for these access patterns, over a
decade of research has lead to the development of address-cor-
relating prefetchers, which exploit correlation between con-
secutive memory accesses and are highly-effective for pointer-
based structures [6, 7, 8,9, 13, 14, 15, 19, 21, 25]. Building on
this line of research, the latest proposals prefetch extended
sequences of memory accesses that recur over the course of
program execution [7, 9, 19, 21, 25]. We adopt the terminol-
ogy of [25] and refer to these recurring memory access
sequences as temporal streams.

Although prior studies present a variety of hardware designs
and demonstrate substantial performance gains from temporal
streams, they fail to explain the specific application behaviors
that result in the underlying phenomenon of miss sequence
repetition. Because of the difficulty in analyzing the behavior
of large-scale closed-source applications, these studies have

taken a “black-box” approach to all but the simplest of scien-
tific applications.

Furthermore, prior studies have considered only a single sys-
tem organization, focusing either on uniprocessors [7, 8, 9, 21]
or multi-chip distributed-shared-memory systems [25]. As we
will show, server applications’ off-chip miss behavior changes
drastically when all cores are located on a single chip, because
coherence activity and contention are captured entirely within
that chip. As multi-core system size and diversity increase,
users will expect scalable performance whether or not all cores
are collocated. Hence, it is critical to understand the impact of
multiprocessor organization on memory access behavior.

In this paper, we present a hardware-independent study of tem-
poral streams across single-chip and multi-chip multiproces-
sors. We identify temporal streams using a previously-
proposed information-theoretic analysis that locates repetitive
access sequences of arbitrary length without any assumptions
about specific prefetching implementation [7]. Furthermore,
by inspecting the call stack at each access, we build a profile
of specific code modules within our commercial applications
and the Solaris kernel that lead to cache misses and temporal
streams. Through analysis of user and operating system cache
miss traces generated through full-system simulation, we dem-
onstrate:

* Miss classification across system organizations. We
classify miss behavior using categories similar to the “4
C’s” model [12]. Our results confirm prior observations
that up to 80% of off-chip misses are coherence-induced in
multi-chip multiprocessors [3, 25]; however, a single-chip
multiprocessor captures this communication traffic on
chip, and off-chip behavior is instead dominated by capac-
ity and I/O-induced misses.

Information-theoretic analysis of temporal streams.
Our hardware-independent stream analysis reveals that 40-
80% of off-chip misses are part of temporal streams; that
streams are typically long, with a median length of eight
misses; and that the reuse distance between consecutive
occurrences of a stream varies drastically across coher-
ence-induced (100’s of intervening misses) and capacity-
induced (10,000’s of misses) streams.

Application-level origins of temporal streams. Our anal-
ysis of the specific functions and modules that give rise to
temporal streams reveals a great diversity of application

and OS functionality that results in miss repetition. With
the exception of frequent bulk memory copies in decision
support workloads, no single source accounts for more
than 25% of temporal streams. This result demonstrates the
success of years of optimization and tuning -effort
expended on these commercial applications: no obvious,
dominant memory bottlenecks remain.

2. Temporal Streams

A temporal stream is a sequence of two or more cache misses
that occurs at least twice during program execution [25]. Tem-
poral streams extend the notion of address correlation to
sequences rather than pairs of misses. Although the term “tem-
poral stream” was introduced in [25], a wide variety of recent
prefetchers rely on the same underlying phenomenon, includ-
ing hot data stream prefetching [7], the global history buffer
[19], the user-level memory thread [21], epoch-based correla-
tion prefetching [8], and last-touch correlated data streaming
[9].

Prefetching mechanisms exploit temporal streams by record-
ing miss-address sequences in tables or circular buffers, locat-
ing a previously-seen sequence upon a subsequent miss, and
then prefetching the recorded addresses. In this study, we ana-
lyze temporal streams directly, ignoring the details of individ-
ual prefetching mechanisms.

2.1 Motivating Examples

To illustrate why memory accesses in commercial applications
often occur in temporal streams, we present two motivating
examples taken from actual behaviors observed in our com-
mercial application suite. These examples demonstrate a vari-
ety of the characteristics we observe in temporal streams—that
streams are long, repeat across cores, evolve over time, and are
generally distinguishable based on their initial “head” address.
Although these examples are real, we have chosen them for
their usefulness in illustrating stream characteristics; they are
not the largest sources of miss repetition (see Section 5).

Example one: B+-tree range scans. The B+-tree, one of the
critical data structures used in database applications, enables
the efficient insertion, removal, and search for database
records [4]. A B+-tree maintains a sorted index of records
according to a key constructed from one or more fields in the
record. Each B+-tree node contains a sorted key list with
pointers to children, such that the range of keys within a
child’s subtree is bounded by two adjacent keys in the parent.
The leaves of the B+-tree point to tuple identifiers that indicate
the location of a corresponding database record. The record(s)
for a particular key can be located rapidly through a combina-
tion of binary search within each node and traversal from the
root to the child containing the key.

A distinguishing feature of the B+-tree is the horizontal point-
ers that connect sibling leaves of the tree. These horizontal
links enable fast in-order tree traversals, and are used to imple-
ment range scans. To scan over a set of records from some
lower to some upper key, the database engine first locates the
lower key. Then, it traverses horizontally along sibling links
until it reaches the upper key.

Overlapping range scans result in temporal streams following
these sibling links. The first range scan results in a miss
sequence for leaves along the bottom of the tree. A second,
overlapping range scan will access the same leaves in the same
order. As leaves are typically not contiguous in memory, the
leaf access sequence cannot be captured by stride prefetchers.
Since the B+tree is a shared data structure, the temporal
streams arising from scans recur across processors in a multi-
processor system.

Example two: Solaris thread scheduler. One of the key inno-
vations of Solaris 2.3—introduced nearly 15 years ago, but
still used in current Solaris releases—is per-processor dispatch
queues [18]. In the earliest versions of Solaris, and older
UNIX implementations, a single queue maintained pointers to
all runnable threads waiting to be scheduled on a processor. To
improve Solaris’s multiprocessor scalability, this single dis-
patch queue was split into a real time queue and per-processor
dispatch queues, each protected by separate locks, allowing
multiple dispatch queues to be accessed or modified concur-
rently. A complicated set of thread prioritization and affinity
algorithms determines to which queue and at which location a
thread should be inserted when it becomes runnable.

In most cases, when the thread currently running on a proces-
sor blocks or exhausts its time quantum, the processor simply
scans its own dispatch queue to identify which thread to run
next. However, if its dispatch queue is empty, the processor
tries to steal a runnable thread off another processor’s queue. It
scans other queues looking for the highest priority available
thread (in the kernel functions disp getwork() and
disp getbest ()), removes the thread from the queue (via
dispdeq()), and finally confirms that no higher priority
thread has since become runnable (via disp ratify()).
These functions account for an astounding number of misses
in commercial applications, as much as 12% of all off-chip
misses.

These functions incur many coherence misses to the locks that
protect each dispatch queue and the linked lists that comprise
the queues. These miss sequences are highly repetitive
because all processors scan the dispatch queues in the same
order, starting with the real-time priority queue and then
advancing through the linked list that connects the dispatch
queues. Because the locks remain at fixed addresses, and the
queues themselves change little between scans, the misses
form temporal streams.

3. Analysis Methodology

We apply an information-theoretic approach to quantify the
prevalence and characteristics of temporal streams. Like simi-
lar studies of repetition in L1 data accesses [7] and program
paths [16], we use the SEQUITUR hierarchical data compres-
sion algorithm [10] to identify repetitive sub-sequences within
the miss traces.

The SEQUITUR compression algorithm. SEQUITUR con-
structs a grammar whose production rules correspond to repe-
titions in its input. Each production rule maps a label to a
sequence of symbols and other rule labels. SEQUITUR oper-
ates by incrementally extending the grammar’s root produc-
tion rule by one symbol at a time. As each symbol is appended,

Table 1: Application parameters.

Online Transaction Processing (TPC-C on DB2)
OLTP | 100 warehouses (10 GB), 64 clients, 450 MB buffer pool
Decision Support (TPC-H on DB2)
Qry 1 Scan-dominated, 450 MB buffer pool
Qry 2 Join-dominated, 450 MB buffer pool
Qry 17 Balanced scan-join, 450 MB buffer pool
Web Server
Apache 16K connections, FastCGI, worker threading model
Zeus 16K connections, FastCGI

the grammar is modified to create new production rules that
capture any new repetition the appended symbol creates.
SEQUITUR maintains two invariants as the grammar grows.
First, no pair of symbols are adjacent more than once in the
grammar. Second, every production rule in the grammar
(except the root rule) is used more than once. As a result of
these invariants, the grammar’s rules correspond to distinct
repetitive sequences (a.k.a. temporal streams).

System contexts. We analyze read miss traces from three sys-
tem contexts: (1) off-chip misses in multi-chip multiprocessor
(referred to as “multi-chip” in the results), (2) off-chip misses
in single-chip multi-core system (“single-chip), and (3) intra-
chip misses in the single-chip system; that is, hits in shared on-
chip caches (“intra-chip”’). Our traces include all user and OS
read misses.

Our multi-chip model is a 16-node distributed-shared-memory
multiprocessor based on the system in [25]. Each node com-
prises a single processor with split 2-way 64KB L1 I and D
caches and a unified 16-way 8MB L2 cache. We chose a 64KB
L1 size because this is roughly the upper bound seen in recent
commercial systems for one- to two-cycle access times. We
chose an 8MB L2 because investigation of miss rates across
cache sizes in our database workloads indicate that 8MB is
sufficient to capture first-order temporal locality in the appli-
cations’ data footprints [11]. We model an MSI coherence pro-
tocol.

Our single-chip model is a 4-core system with split 64KB L1 I
and D caches and a shared 16-way 8MB L2 cache, chosen to
approximate a contemporary multi-core. The L1s and shared
L2 implement a MOSI coherence protocol based closely on
Piranha [2]. The hierarchy is non-inclusive. Other system
details do not materially affect traces.

Applications. Our analysis covers three commercial applica-
tion classes. Table 1 enumerates their configuration details.
We run all applications on top of Solaris 8.

We include OLTP and DSS workloads running on /BM DB2 v8
ESE. Our OLTP workload is an optimized TPC-C 3.0 toolkit
provided by IBM. We select three queries from the TPC-H
DSS workload based on the categorization in [20]: one scan-
dominated query, one join-dominated query, and one query
exhibiting mixed behavior. We evaluate web server behavior
with the SPECweb99 benchmark on Apache HTTP Server
v2.0 and Zeus Web Server v4.3. We simulate a separate client
system and collect memory traces only on the server.

Trace collection. We collect cache miss traces with the
FLEXUS full-system simulation infrastructure [26]. FLEXUS
builds on Virtutech Simics [17] and supports both rapid trace-
based and detailed cycle-accurate simulation of a variety of
uni- and multiprocessor system organizations.

We collect read miss traces in FLEXUS with in-order execution
and no memory system stalls. For OLTP and web workloads,
we warm main memory for at least 5000 transactions or
requests prior to starting traces, and then trace at least 1000
transactions. For DSS queries, we analyze queries 2 and 17 in
their entirety, and a trace of over three billion instructions
taken from query 1 at steady-state. We have verified that vary-
ing trace start location has minimal impact on results.

Code module analysis. With the exception of Apache, we do
not have access to the source code of any of the commercial
applications in this study. Instead, we exploit the function
names embedded in the commercial software and Solaris to tie
misses to specific function invocations. By analyzing the call
stack at each miss, we can identify an enclosing function with
a recognizable purpose. We then group functions into larger
categories based on module naming conventions adorning the
function names. Fortunately, both Solaris and DB2 frequently
prefix function names with an identifier of the module to
which it belongs.

Our results are based on a best-effort categorization by itera-
tive refinement of the assignment of functions to categories. In
most cases, the purpose of a particular module is apparent
from its function names. For Solaris, several public resources
document the kernel implementation details (e.g., [18]). Fur-
thermore, with the release of OpenSolaris in 2006, we can
examine much of the kernel source code, with the caveat that
the code may have changed since the Solaris release we study
(Solaris 8). Our categorizations have not been reviewed or
endorsed by the organizations that produced these products.

Our FLEXUS tracing infrastructure collects a descriptor for the
currently-running thread and a call stack at each miss. We
obtain an index of threads, symbol names, and corresponding
virtual address ranges using the Solaris kernel debugger, mdb,
and the nm utility.

4. Temporal Stream Characterization

We first report on the quantitative characteristics of temporal
streams in our application suite. Like prior studies, these
results take a “black box” analysis approach. We “open the
box” to report on our code analysis in Section 5.

4.1 Miss Classification

We begin by classifying misses using a categorization based
on the “four C’s model” [12]. These high-level breakdowns
demonstrate the substantial differences in miss behavior across
single-chip and multi-chip contexts. Furthermore, the break-
down allows us to immediately identify miss subsets that are
not repetitive, and gives insight into later results.

We classify off-chip misses as: Coherence if the cache block
was written by another processor since last read at this proces-
sor; I/0 Coherence if the block was written by a DMA transfer
or OS-to-user bulk memory copy; Compulsory if the corre-
sponding cache block has never previously been accessed; and

BCoherence

BACompulsory B1/O Coherence
14

12

OReplacement

-
o

Off-chip read misses
per 1000 instructions

single-chip E
single-chip m
single-chip E
single-chip [|

oo o = o o oo
= | = = = = = = | =
G| S S S S G| S
=@ = = = = =0
=3 [} =] =3 =] =] > [=2]
E|<g £ E £ £ Elc

w w

Zeus DB2 Qry1 Qry

Web OLTP DSS DB2

Intra-chip (L1) read misses

B8 Off-chip @Replacement:L2

25 4 OCoherence:L2 BCoherence:Peer-L1

20 ~
")
c
g 15 4
o
E %
g 10 - /
s 7
e 7
g8 °
o

Apache | Zeus DB2
Web OLTP DSS DB2

FIGURE 1: Miss classification for off-chip misses (left) and intra-chip misses (right).

Replacement for all remaining misses, which may be capacity
or conflict misses (as our L2 caches are 16-way associative,
most are capacity misses). We report the results in Figure 1
(left). The vertical axis shows the number of misses per thou-
sand instructions.

In Figure 1 (right), we classify intra-chip misses based on their
cause and the hierarchy level that supplied the response.
Because of the allocation policies of the Piranha intra-chip
coherence protocol, coherence misses may be satisfied by a
peer L1 or the shared L2. All other L2 hits are the result of L1
replacement misses. We aggregate L2 misses into a single Off-
chip category, which corresponds to the single-chip break-
down in Figure 1 (left).

Discussion. Our measurements corroborate prior conclusions
that coherence misses tend to dominate in multi-chip systems
with large L2 caches [3]. In the intra-chip context, we also
observe a substantial fraction of misses from coherence activ-
ity between cores despite the small capacity of the L1
caches—roughly one third to one half of all L2 and peer-L1
accesses result from coherence. There is no (non-1/0) off-chip
coherence activity in single-chip. In the DSS workloads, com-
pulsory misses dominate across contexts, as many data are vis-
ited only once.

Coherence misses form temporal streams when locks and
read-write shared data structures with repetitive traversal pat-
terns are transferred among cores. Replacement misses com-
prise streams when a repetitive traversal accesses a data
structure that exceeds the cache’s capacity or traversals are
separated by many intervening accesses. Unlike these two cat-
egories, compulsory misses, by definition, do not repeat a
prior miss sequence and cannot form temporal streams. A key
shortcoming of temporal-stream prefetching is that it cannot
address compulsory misses (unlike stride-based prefetchers,
which can eliminate compulsory misses).

I/0O coherence misses arise from two sources, blocks invali-
dated by DMA transfers, and blocks written by bulk kernel-to-
user buffer copies (the Solaris default copyout family of
functions; these functions use special store instructions that do

BNon-repetitive ONew Stream BRecurring Stream

100%

80%

60%

40%

20%

% read misses

0%

intra-chip
intra-chip
intra-chip

DB2

Web OLTP DSS DB2

FIGURE 2: Fraction of misses in temporal streams.

not allocate in the cache hierarchy). About half of the misses
arise from each source. In principle, misses in either category
could form temporal streams if I/O buffers are reused. In prac-
tice, we find that DMA transfers rarely reuse buffers over the
time-scales covered by our traces (seconds of execution),
whereas kernel-to-user copies aggressively reuse buffers.
Nonetheless, we expect that temporal streams provide no
advantage over existing prefetching schemes as these accesses
are typically strided.

4.2 Fraction of misses in temporal streams

Using the SEQUITUR algorithm, we identify temporal
streams in our miss traces. In Figure 2, we show the fraction of
misses that are part of the first occurrence of a temporal stream
(New stream), the second or subsequent occurrence of a stream
(Recurring stream), or not part of any stream (Non-repetitive).

Discussion. Our results confirm prior studies [7, 8, 25]: a sub-
stantial miss fraction, 35%-90%, occurs in temporal streams.

In the web applications, temporal streams account for 75-80%
of off-chip misses. In the multi-chip context, these applications
are dominated by coherence activity, nearly all of which is
repetitive. In the single-chip context, as much as 20% of off-
chip accesses arise as a result of I/O coherence. Unlike data-
base workloads, the I/O activity in web applications is repeti-
tive, as it involves many kernel-to-user copies from reused
buffers.

In contrast to the web workloads, OLTP exhibits a stark differ-
ence in miss repetition across contexts. Coherence activity
dominates in the multi-chip and intra-chip contexts. Past stud-
ies attribute the high proportion of coherence activity in OLTP
to locking and read-write meta-data structures (e.g., active
transaction tables, cursors, log management) [3]. Our code
module analysis (see Section 5) finds that OS scheduling and
synchronization primitives also contribute substantially. OLTP
coherence activity is remarkably repetitive. In the single-chip
context, there is much less repetition: half are either compul-
sory or non-repetitive I/O coherence misses, leaving only lim-
ited opportunity in the remaining replacement misses for
temporal streaming.

The DSS queries show an even larger fraction of non-repeti-
tive compulsory misses. These queries all scan tables that
exceed the database’s buffer pool capacity. Tuples from the
largest table are visited only once. Hence, we observe a sub-
stantial proportion of non-repetitive I/O coherence as data is
scanned and discarded.

4.3 Strided patterns and temporal streams

Whether a sequence of accesses forms a temporal stream is
orthogonal to whether it follows a constant stride. We present a
joint breakdown of strided and repetitive miss sequences in
Figure 3. The solid segments of the bar correspond to temporal
streams (Repetitive), while the upper-most and lower-most
segments correspond to stride-predictable accesses (Strided).

Discussion. In the case of DSS queries, many accesses, both
within and outside of temporal streams, follow strided pat-
terns, particularly within the single-chip context. Temporal
streams are unlikely to provide much benefit for single-chip
DSS workloads. Coherence misses in the multi-chip and intra-
chip context are not strided, but still tend to be repetitive,
offering some opportunity for synergy between stride and tem-
poral stream prefetching. In the remaining applications, only a
small fraction of misses are strided. Moreover, strided patterns
and temporal streams are largely disjoint.

4.4 Temporal stream length

Stream length is a critical factor affecting the usefulness of
temporal streams. Long streams amortize prefetch costs (e.g.,
off-chip lookup latency [8, 9, 25]). However, long streams
may also imply the need to throttle stream retrieval—a long
stream cannot be buffered entirely on chip without displacing
other potentially-useful data.

For each application and context, we construct a cumulative
distribution of stream lengths weighted by their total contribu-
tion to temporal streams. Hence, the cumulative distribution
shows the relative importance of long and short streams, and
the 50th percentile corresponds to the median stream length.

% read misses

BNon-repetitive Non-strided
BRepetitive Strided

BNon-repetitive Strided
DORepetitive Non-strided

80% -

60% -

40% -

20% -

o HEE -
e o219 = = o2 .9 =2 =2
||l Pl [i B = = J e [g [= =
PP PP @ ? PP @ ?
E=JR N =290 © = © =29 © = ©
225 22& 2gE |22= 2lgE

w w w

=

Zeus DB2 Qry Qry17

pd
h=]
)
o
=3
[

Web OLTP DSS

FIGURE 3: Strides and temporal streams.

The cumulative distributions appear in Figure 4 (left). Stream
length is plotted logarithmically on the horizontal axis.

Discussion. The most critical observation we draw from these
results is that streams are generally quite long—in all cases the
median stream length exceeds the fixed prefetch depths of
many prior proposals [8, 19, 21]. Overall, the median stream
length is eight to ten cache blocks, and thousand-block streams
are not unusual.

Furthermore, we observe that there is enormous variation in
stream length, from as few as two to many thousands of
blocks. The variation in stream length argues against fixed-
depth fetch policies—there is no one size that fits all temporal
streams, within or across applications.

Stream length variability also complicates stream storage.
Assuming a fixed length for streams allows a simple set-asso-
ciative table to map stream heads to their bodies [21]. Support-
ing streams with lengths that vary over three orders of
magnitude precludes such a simple design.

The DSS applications tend to exhibit longer streams than the
other applications, a trend that is particularly apparent in the
single-chip context. The large step at the right edge arises from
streams that access approximately 4KB, which corresponds to
the OS page size. Nearly all of the DSS streams longer than
512 bytes arise from bulk memory copies and are easily cap-
tured by simple stride predictors.

4.5 Stream reuse distance

The distance between two occurrences of a temporal stream
provides insight into the time-scale over which data structure
traversals repeat and is a critical indicator of the storage
requirements for streams.

To divorce the notion of stream reuse distance from time or
performance, we measure reuse distance as the number of
misses between two stream occurrences. As we study multi-
processors, the two occurrences may not be on the same pro-
cessor. We count the number of intervening misses on the first
processor, as this measure corresponds directly to the storage

100% - 25% 1
multi-chip
g 80% - g 20% -
3] (]
2 <
» 60% - w 15% A
[= (=
— i “ X
8 40% | 8 10% | i\ o
2 2 i A
S i £ [i 0\
°\° 20%) 5% - "': \“\ ‘f‘\j{”’\ :?\ .
. K NG ’ ‘_ s =‘",/ : N
s o 0o Webeped R AN }\ﬁm-. ——
(3]
1 10 100 1000 10000 1 10 102 103 10* 10° 100 10
Stream length Distance (misses)
100% 25% -
2 single-chip single-chip <
S 80% - 2 20% - A
1 8 "
£ 60% - £ 15% - i
i
o c oy
& 40% @ A
= ° o 10% '
[4SS game==—=—""]
., 20% [E 5% !
E *_,:__r_—_---:sc ------ 3% R |
-]
0,
© 0% I 0% -
1 10 100 1000 10000) s ’ . 6 .
1 10 10 10 10 10 10 10
Distance (misses)
100% - 25% 7
" intra-chip —&— OLTP DB2
£ o | w 20% - Web Apache
§ 80% g ° Web Zeus
@ = | S DSS Qry1
o/ - o, B
ﬁ 60% 3 15% ---e---DSS Qry2
o = e DSS Qry17
é 40% - § 10% - x Qry
n
- | @2
. 20% : 5% - A
8 0% 0% ’/) = : ¢ T T e “Xeme
1 10 100 1000 10000
1 10 102 10° 10* 100 100 10

Stream length

Distance (misses)

FIGURE 4: Temporal stream length (left) and reuse distance (right).

required to remember the stream in a log of all misses at the
first processor [25].

We report the probability density function of reuse distance in
Figure 4 (right). We truncate the distribution at ten million
misses as such distances correspond to substantial real execu-
tion time (approaching one second of wall-clock time) and are
unlikely to be exploited by prefetching.

Discussion. Coherence misses typically have far shorter reuse
distances than replacement misses. A replacement miss
implies that the corresponding block has been displaced by
other cache allocations. As L2 capacities are large, typically
thousands of L2 misses occur between a block’s allocation and
eviction. Blocks accessed more frequently than every ten thou-
sand misses will not be evicted from L2, which places a soft
lower bound on replacement miss reuse distance. In contrast,
coherence-miss reuse distances are determined by the distance
between production and consumption of shared data, and can
be arbitrarily short (near zero in cases of contention).

The critical difference between the reuse behavior of these two
miss classes results in the substantial difference in the center
of mass of the reuse distributions across contexts. As the
multi-chip context is dominated by coherence activity, reuse
distances tend to be short, and nearly all stream reuse distances
are below ~200,000 misses. Intra-chip temporal streams also
frequently exhibit low reuse distances: in addition to coher-
ence activity, intra-chip replacement streams may recur fre-
quently because L1 capacity is limited (1000 lines).

In contrast, in the single-chip context, reuse distances tend to
be much longer, with the longest distances approaching ten
million misses. In single-chip, replacement misses dominate.
Replacement misses have high reuse distances because of the
substantial L2 capacity. The key implication of this result is
that single-chip systems will require larger storage to track the
same fraction of temporal streams as multi-chip systems.

Several peaks in the DSS reuse distance distribution arise from
specific query behaviors, and are not representative of average

Table 2: Miss Categories.

Cross-application categories

Bulk memory copies

Kernel and user memory copy functions, such as memcpy, bcopy, align cpy 1,and default copyout.
This last function is particularly notable as it copies the results of I/O arriving via DMA from kernel to user buffers,

and figures prominently in the overall contribution of memory copies.

System call implementation

Kernel functionality invoked on behalf of user threads within system call interfaces. The most frequent system calls all
involve I/O, with pol1, open, read, write, and stat dominating.

Kernel task scheduler

Functions that perform kernel thread prioritization and dispatching, as briefly described in Section 2.1. Extensive dis-
cussion of the operation of the Solaris scheduler appears in [18].

Kernel MMU and trap handlers

Functions (other than system calls) that are entered via the kernel’s trap vector table. The most frequent traps are the
instruction access MMU missand data access MMU miss traps, which fill virtual-to-physical trans-
lations into the on-chip MMU from software caches and page tables. Register window management traps, where a
window of eight integer registers are read from or written to a software stack, also contribute substantially. SPARC
trap handling is described in detail in [24].

Kernel synchronization primitives

Solaris-supplied mutex and condition variable primitives. This category also includes functions that manage the
linked lists of threads waiting on a mutex or condition variable.

Kernel - other activity

All remaining functionality that can be definitively tied to the Solaris kernel but is not part of a category that stands out
as a major contributor to memory access behavior in any application or context. Many of the functions in this category
deal with various forms of kernel memory and resource management.

Web-specific categories

Kernel STREAMS

Implementation of stream based I/O, such as stdin and stdout. Consists largely of functions that move pointers to
strings or portions of strings among thread-safe queues.

Kernel IP packet assembly

Functions that divide data written to sockets into individual IP packets.

Web server worker threads

All activity within either Apache or Zeus—perhaps surprisingly, relatively little of the overall SpecWeb activity
occurs in web server code: most operations are performed by the OS on behalf of the web server.

CGI - perl input processing

A single function, Perl sv_gets, which parses the requests passed from the web server to perl.

CGI - perl execution engine

The Perl pp * functions, which implement the primitive operations that make up perl’s control flow graph. Exam-
ples include Perl pp const, Perl pp print, and Perl pp return.

CGI - perl other

Other functionality of perl that is not readily identifiable .

DB2-specific categories

Kernel block device driver

A small number of functions that manage 1I/O to block devices, such as disks.

DB?2 index, page, and tuple accesses

Functions in the sqli, sqgld, and sqlpg modules of DB2. The sgqli module accounts for most of this category,
and includes functions which manipulate and traverse indices. The example we describe in Section 2.1 arises in this
category. The sgld module includes functions that access individual database rows, such as sgldRowUpdate or
sgldRowFetch. The sqglpg module includes functions that manipulate entire buffer pool pages, such as flushing
pages to disk or calculating page checksums.

DB2 SQL request control

The DB2 modules sgqlrr and sglra which manipulate context information for a particular database transaction/
request (e.g., state of database cursors).

DB2 interprocess communication

Functions which pass data between the DB2 server and client processes.

DB2 SQL runtime interpreter

The sgqlri module. The functions in this module implement primitive operations that appear in a parsed database
execution plan, analogous to the Perl pp * functions of the perl interpreter.

DB2 - other activity

Any other DB2 functionality whose overall contribution to misses is small or where function names do not allow us to
determine their functionality.

behavior. Query one exhibits a reuse distance peak below ten
misses. These misses are the result of the lock contention. All
three queries exhibit peaks just under 10,000 misses in all con-
texts. These peaks arise from the bulk kernel-to-user copies of

data arriving from disk.

5. Code Module Analysis

Our previous results have demonstrated that the vast majority
of misses in commercial applications are repetitive. However,
the black-box approach of our trace analyses does not tell us
why temporal streams arise. In this section, we provide quanti-
tative evidence that ties temporal streams to specific applica-

tion behaviors.

categories into those that apply to all three application classes
and those specific to each. In the following tables, we report
each category’s contribution to the overall miss breakdown,
and the fraction of misses within a category that are part of
temporal streams.

5.1 Web applications

One of the most surprising results of our web server analysis is
that the http server software itself accounts for only a tiny frac-
tion of memory activity—about 3% of off-chip misses and 5%
of L1 misses. Instead, activity is dominated by the communi-
cation between perl scripts that generate dynamic page con-
tent, the web server software, and kernel interfaces that send
http replies to the network.

Miss categories. We briefly describe each miss category in
Table 2. For easier comparison across applications, we divide

Table 3: Temporal stream origins in Web applications.

multi-chip single-chip intra-chip
% misses in streams % misses in streams % misses in streams

Uncategorized / Unknown 8.4% 7.9% 7.1% 4.9% 7.6% 6.5% I
Cross-application categories

Bulk memory copies 12.6% 7.4% 20.3% 14.2% 6.3% 3.7%

System call implementation 11.0% 8.8% 18.0% 15.1% 22.8% 20.5%

Kernel task scheduler 8.8% 6.7% 3.5% 3.0% 2.6% 2.3%

Kernel MMU & trap handlers 3.7% 2.8% 4.4% 3.4% 13.6% 12.0%

Kernel synchronization primitives 7.5% 7.1% 2.1% 1.8% 2.5% 2.4%

Kernel - other activity 4.6% 3.4% 4.7% 3.8% 5.2% 4.7%
Web-specific categories

Kernel STREAMS subsystem 16.3% 12.9% 7.8% 6.2% 12.5% 10.3%

Kernel IP packet assembly 8.4% 6.9% 4.1% 3.4% 7.3% 6.7%

Web server worker thread pool 2.5% 1.8% 3.2% 2.3% 5.4% 4.4%

CGI - perl input processing 1.9% 1.9% 3.9% 3.9% 0.8% 0.8%

CGI - perl execution engine 7.6% 5.2% 11.1% 9.2% 7.1% 5.3%

CGI - perl other activity 6.5% 4.9% 10.0% 8.8% 6.3% 4.9%
Overall% in streams 77.7% 80.0% 84.5%

SPECWeb specifies that some client web requests be satisfied
by static pages served by the web server, and some by dynamic
pages that are generated via the web server’s Common Gate-
way Interface (CGI). The majority of web server activity
arises from the creation and delivery of these dynamic pages.
Much of the tuning of a SPECWeb implementation centers on
careful orchestration of the CGI interaction. Our workloads
employ the FastCGI interface, where a pool of perl processes
await client requests, and the web server dispatches requests to
an available process as requests arrive [5]. FastCGI drastically
improves performance over traditional CGI by avoiding pro-
cess creation overheads on each request. The web server and
perl communicate using the standard I/O streams, which are
implemented in Solaris’s STREAMS sub-system.

The interprocess communication implemented in STREAMS
results in many temporal streams. The STREAMS code breaks
data passed via read and write system calls into individual
messages, which pass through a series of modules that may
perform various processing steps, such as packetization or
header assembly [23]. The kernel STREAMS code manages
synchronization and message passing among modules. Both
the locks and the manipulation of message pointers within
these queues result in highly-repetitive access sequences—
about 80% occur in temporal streams.

The perl processes that generate the dynamic web content also
exhibit many temporal streams, albeit somewhat less repetitive
than kernel activities. The function that parses the input to the
dynamic content generation scripts, Perl sv_gets, is the
single most repetitive function we have identified, with just
under 99% of its misses repeating a prior temporal stream. The
implementations of individual perl statements and expressions
also result in about 75% repetitive miss behavior. We conjec-
ture that misses in the perl execution engine repeat because
each of the thousands of requests invoke the same script, and
hence traverse the same control flow graph. Thus, accesses to

control flow graph representation within the execution engine
are likely to repeat.

Within OS activity, the largest miss contributor is system calls,
in particular, pol1. This system call is used by the web server
to accept incoming connections and pass them to a worker
thread for processing.

Because of the many http and perl threads created to keep up
with incoming requests, the OS scheduler and synchronization
primitives result in many temporal streams (see example two
in Section 2.1). The repetitive synchronization activity arises
mostly from Solaris condition variables, where manipulation
of queues of sleeping threads are the likely source of temporal
streams.

Finally, we note that bulk memory copies account for a sub-
stantial fraction of misses, particularly in the single-chip con-
text. More than half of these copies are repetitive. We have
found that the repetitive copies arise because of reused 1/0
buffers for incoming network data.

Although perl’s behavior may be an artifact of SPECWeb,
many of the other temporal streams we observe are inherent in
web serving. For example, the STREAMS and IP packet
assembly code must be exercised by any web server on
Solaris. Scheduling and synchronization activity will also
occur in any busy web server, as current web servers maintain
hundreds to thousands of threads for servicing incoming con-
nections. Hence, we believe our results broadly represent web
serving beyond the specific workloads studied here.

5.2 Online transaction processing

The most significant miss sources in OLTP are the index,
tuple, and page accesses issued to the database buffer pool,
accounting for between one sixth and one fifth of all misses.
Within this category, index accesses are the largest contributor
(see example one in Section 2.1).

Table 4: Temporal stream origins in OLTP (DB2).

multi-chip single-chip intra-chip
% misses % in streams % misses % in streams % misses % in streams

Uncategorized / Unknown 11.4% 9.7% 10.9% 5.5% 13.6% 11.3% I
Cross-application categories

Bulk memory copies 4.4% 1.5% 10.8% 1.5% 2.9% 1.6%

System call implementation 7.4% 2.1% 19.1% 2.1% 5.9% 3.1%

Kernel task scheduler 9.1% 9.1% 0.5% 0.5% 3.2% 3.2%

Kernel MMU & trap handlers 11.2% 10.0% 9.3% 7.2% 16.9% 15.5%

Kernel synchronization primitives 5.7% 5.7% 0.2% 0.2% 2.4% 2.4%

Kernel - other activity 6.7% 5.0% 8.9% 6.0% 5.4% 4.5%
DB2-specific categories

Kernel block device driver 2.3% 2.2% 0.7% 0.6% 3.3% 3.3%

DB2 index, page & tuple accesses 16.6% 13.1% 23.4% 16.8% 15.1% 13.1%

DB2 SQL request control 9.5% 9.1% 2.5% 2.3% 7.9% 7.6%

DB2 interprocess communication 3.5% 3.4% 1.4% 1.2% 7.6% 7.4%

DB2 SQL runtime interpreter 3.7% 3.5% 2.6% 2.4% 4.4% 4.2%

DB2 - other activity 8.4% 5.1% 9.8% 4.7% 11.2% 9.3%
Overall% in streams 79.5% 51.0% 86.5%

The higher layers of the DB2 execution engine, which build
transaction and query processing capabilities on top of the
storage manager interface, are more repetitive than the buffer
pool management functionality. The transaction management,
execution plan interpreter, and interprocess communication
components all exhibit 90% repetition. These observations
support prior conjecture that the coherence activity in data-
bases comes from meta-data—data structures that do not
reside on disk or within the buffer pool, such as locks, transac-
tion tables, or the query plans manipulated by the optimizer
and runtime interpreter [3]. We expect these repetitive activi-
ties to arise in any transaction-oriented database workload,
even if accesses to the data managed within the database are
not repetitive.

The Solaris scheduler and synchronization primitives contrib-
ute substantially to the miss profiles where coherence activity
plays a significant role (multi-chip, intra-chip), but are absent
in the single-chip system. This profile is characteristic of
coherence activity to a relatively small number of addresses—
cache lines migrate between processors, but are never evicted
due to capacity constraints.

Within the Solaris kernel, we see that trap handlers, and in par-
ticular traps filling translations into the SPARC MMU, result
in a large number of temporal streams. A single page table
lookup can require several main memory accesses, and, since
many mappings are loaded repetitively into the MMU, the
misses incurred during the translation process repeat.

5.3 Decision support

The obvious characteristic of DSS miss breakdowns is the
prominence of bulk memory copies. Half or more of all mem-
ory access activity arises from these copies. The copies tend to
be of power-of-two sizes, with page-sized 4KB copies most
frequent. Unlike in the web applications, where bulk copies
are often repetitive, copies in DSS do not reuse buffers and are

generally non-repetitive. It is the prevalence of these copies
that renders temporal streams all but useless for DSS work-
loads—bulk copies are either bandwidth bound, or already
addressed by far simpler stride prefetchers.

The second most important miss contributors in DSS are index
and tuple accesses, as in OLTP workloads. However, unlike
OLTP, off-chip misses in these functions are not repetitive—
the DSS workloads typically scan over data only once. We do
observe some intra-chip repetition. We attribute this to the
nested-loop joins in queries 2 and 17, which loop over portions
of a database table that exceed L1, but do not exceed L2
capacity. In general, we conclude that DSS workloads exhibit
few temporal streams because most data are visited only once.

6. Conclusion

To our knowledge, our study is the first to identify specific
application/OS behaviors that lead to the recurring temporal
streams underlying a variety of prefetching techniques. Tem-
poral streams are inherent in many programming idioms; one-
half to three-quarters of misses occur in streams. Streams are
frequently tens, hundreds, and even thousands of misses long.
Furthermore, we observe drastic differences between the off-
chip access patterns of single- and multi-chip multiprocessors,
which have critical implications on the design and storage
requirements of prefetching in general, and temporal streams
in particular.

The memory access activity in commercial server applications
is spread over a wide variety of functionality, with no particu-
lar activity standing out. We believe this flat distribution is a
testament to the years of investment in optimizing these appli-
cations—any code that produced disproportionate misses has
been stamped out. Furthermore, the lack of outlying “bad”
behavior illustrates why it is so challenging to optimize these
applications further, and why we must resort to mechanisms as

Table 5: Temporal stream origins in DSS (DB2).

multi-chip single-chip intra-chip
% misses % in streams % misses % in streams % misses % in streams

Uncategorized / Unknown 3.6% 3.0% 1.8% 0.6% 7.3% 2.0% I
Cross-application categories

Bulk memory copies 46.3% 16.2% 66.7% 28.7% 35.5% 16.3%

System call implementation 0.6% 0.6% 0.4% 0.4% 1.9% 1.8%

Kernel task scheduler 2.9% 2.4% 0.1% 0.1% 0.7% 0.7%

Kernel MMU & trap handlers 1.5% 1.0% 1.4% 0.8% 5.7% 4.8%

Kernel - other activity 13.1% 9.2% 6.0% 2.6% 12.8% 9.5%
DB2-specific categories

Kernel block device driver 6.3% 6.0% 0.6% 0.5% 8.7% 8.3%

DB2 index, page & tuple accesses 18.0% 2.7% 19.2% 1.5% 14.6% 6.1%

DB2 SQL runtime interpreter 1.9% 1.8% 0.6% 0.5% 5.8% 5.6%

DB2 - other activity 52% 3.2% 3.3% 1.7% 6.9% 4.1%
Overall% in streams 46.1% 37.4% 59.2%

complex as temporal stream prefetching to achieve perfor-
mance gains.

Acknowledgements

The authors would like to thank the anonymous reviewers for
their feedback on drafts of this paper. This work was partially
supported by grants and equipment from Intel, two Sloan
research fellowships, an NSERC Discovery Grant, an IBM
faculty partnership award, and NSF grant CCR-0509356.

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on
a modern processor: Where does time go? In The VLDB Journal,
Sept. 1999.

L. Barroso, K. Gharachorloo, R.McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A

(2]

scalable architecture base on single-chip multiprocessing. In Proc. of

the 27th Intn’l Symp. on Computer Architecture, June 2000.

L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system

characterization of commercial workloads. In Proc. of the 25th Intn’l

Symp. on Computer Architecture, June 1998.

R. Bayer and E. McCreight. Organization and maintenance of large

ordered indices. Acta Informatica, 1(3), Sep. 1972.

M. Brown. FastCGI: A high-performance web server interface. http:/

/its.mak.ac.ug/fastcgi/doc/fastcgi-whitepaper/fastcgi.htm.

M. J. Charney and A. P. Reeves. Generalized correlation-based hard-

ware prefetching. Technical Report EE-CEG-95-1, School of Electri-

cal Engineering, Cornell University, Feb. 1995.

T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching

for general-purpose programs. In Proc. of the Conf. on Programming

Language Design and Implementation (PLDI), June 2002.

Y. Chou. Low-cost epoch-based correlation prefetching for commer-

cial applications. In Proc. of the 40th Intn’l Symp. on Microarchitec-

ture, Dec. 2007.

M. Ferdman and B. Falsafi. Last-touch correlated data streaming. In

IEEE Intn’l Symp. on Performance Analysis of Systems and Software

(ISPASS), 2007.

C. G. Nevill-Manning and 1. H. Witten. Identifying hierarchical

structure in sequences: A linear-time algorithm. Journal of Artificial

Intelligence Research, 7, 1997.

[11] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki,
and B. Falsafi. Database servers on chip multiprocessors: Limita-
tions and opportunities. In 3rd Biennial Conf. on Innovative Data

(3]

(4]
(3]
(6]

(7]

(8]

(9]

[10]

10

Systems Research (CIDR), Jan. 2007.

[12] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches.
IEEE Trans. on Computers, C-38(12), Dec. 1989.

[13] Z. Hu, M. Martonosi, and S. Kaxiras. TCP: Tag correlating prefetch-
ers. In Proc. of the 9th Symp. on High-Performance Computer Archi-
tecture, 2003.

[14] D. Joseph and D. Grunwald. Prefetching using Markov Predictors. In
24th Intn’l Symp. on Computer Architecture, Jun. 1997.

[15] A.-C. Lai and B. Falsafi. Dead-block prediction & dead-block corre-
lating prefetchers. In Proc. of the 28th Intn’l Symp. on Computer Ar-
chitecture, July 2001.

[16] J. R. Larus. Whole program paths. In Proc. of the Conf. on Program-
ming Language Design and Implementation (PLDI), 1999.

[17] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. [EEE Computer,
35(2):50-58, Feb. 2002.

[18] J. Mauro and R. McDougall. Solaris Internals. Sun Microsystems
Press, 2001.

[19] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global
history buffer. In Proc. of the 10th Symp. on High-Performance
Computer Architecture, Feb. 2004.

[20] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and accurate
database workload representation on modern microarchitecture. In
Proc. of the 15th IBM Center for Advanced Studies Conference, Oct.
2005.

[21] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread
for correlation prefetching. In Proc. of the 29th Annual Intn’l Symp.
on Computer Architecture, May 2002.

[22] S. Somogyi, T.F. Wenisch, A. Ailamaki, B.Falsafi, and
A. Moshovos. Spatial memory streaming. In Proc. of the 33rd Annu-
al Intn’l Symp. on Computer Architecture, June 2006.

[23] Sun Microsystems. STREAMS Programming Guide. Sun Microsys-
tems Press, 2005.

[24] D. L. Weaver and T. Germond. The SPARC Architecture Manual,
Version 9. SPARC International, 1994.

[25] T.F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi. Temporal streaming of shared memory. In Proc. of
the 32nd Annual Intn’l Symp. on Computer Architecture, June 2005.

[26] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of computer
system simulation. /EEE Micro, 26(4), Jul.-Aug. 2006.

	Abstract
	1. Introduction
	2. Temporal Streams
	2.1 Motivating Examples

	3. Analysis Methodology
	4. Temporal Stream Characterization
	4.1 Miss Classification
	4.2 Fraction of misses in temporal streams
	4.3 Strided patterns and temporal streams
	4.4 Temporal stream length
	4.5 Stream reuse distance

	5. Code Module Analysis
	5.1 Web applications
	5.2 Online transaction processing
	5.3 Decision support

	6. Conclusion
	Acknowledgements
	References

