Power Management of Online Data-Intensive Services

David Meisnert, Christopher M. Sadler?, Luiz André Barroso?,
Wolf-Dietrich Webert and Thomas F. Wenischt

"The University of Michigan

ABSTRACT

Much of the success of the Internet services model can be
attributed to the popularity of a class of workloads that we
call Online Data-Intensive (OLDI) services. These work-
loads perform significant computing over massive data sets
per user request but, unlike their offline counterparts (such
as MapReduce computations), they require responsiveness in
the sub-second time scale at high request rates. Large search
products, online advertising, and machine translation are
examples of workloads in this class. Although the load in
OLDI services can vary widely during the day, their energy
consumption sees little variance due to the lack of energy
proportionality of the underlying machinery. The scale and
latency sensitivity of OLDI workloads also make them a chal-
lenging target for power management techniques.

We investigate what, if anything, can be done to make
OLDI systems more energy-proportional. Specifically, we
evaluate the applicability of active and idle low-power modes
to reduce the power consumed by the primary server com-
ponents (processor, memory, and disk), while maintaining
tight response time constraints, particularly on 95th-percentile
latency. Using Web search as a representative example of
this workload class, we first characterize a production Web
search workload at cluster-wide scale. We provide a fine-
grain characterization and expose the opportunity for power
savings using low-power modes of each primary server com-
ponent. Second, we develop and validate a performance model
to evaluate the impact of processor- and memory-based low-
power modes on the search latency distribution and consider
the benefit of current and foreseeable low-power modes. Our
results highlight the challenges of power management for this
class of workloads. In contrast to other server workloads,
for which idle low-power modes have shown great promise,
for OLDI workloads we find that energy-proportionality with
acceptable query latency can only be achieved using coordi-
nated, full-system active low-power modes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’11, June 4-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

tGoogle, Inc.

Categories and Subject Descriptors

C.5.5 [Computer System Implementation]: Servers

General Terms

Design, Measurement

Keywords

Power Management, Servers

1. INTRODUCTION

Modern data centers’ energy efficiency is undermined by
server hardware that fails to provide good power-performance
trade-offs for data center workloads that have periods of low
utilization. Ideally systems would exhibit energy-proportion-
ality, wherein servers consume power in proportion to their
load. Current servers are far from energy proportional—it is
common for a server with only 10% load to draw 50-60% of
its peak power consumption. Energy-proportional operation
could increase server efficiency by a factor of two [5] as well
as increase the efficacy of data center techniques like power
capping [14].

In this paper we examine, for the first time, power man-
agement for a class of data center workloads, which we refer
to as Online Data-Intensive (OLDI). This workload class
would benefit drastically from energy proportionality be-
cause it exhibits a wide dynamic load range. OLDI work-
loads are driven by user queries/requests that must inter-
act with massive data sets, but require responsiveness in
the sub-second time scale, in contrast to their offline coun-
terparts (such as MapReduce computations). Large search
products, online advertising, and machine translation are
examples of workloads in this class. As shown in Figure 1,
although the load on OLDI services varies widely during the
day, their energy consumption sees little variance due to the
lack of energy proportionality of the underlying machinery.

Previous research has observed that energy-proportional
operation can be achieved for lightly utilized servers with
full-system, coordinated idle low-power modes [20]. Such
a technique works well for workloads with low average uti-
lization and a narrow dynamic range, a common charac-
teristic of many server workloads. Other work observes
that cluster-level power management (e.g., using VM migra-
tion and selective power-down of servers) can enable energy-
proportionality at the cluster level even if individual systems
are far from energy proportional [27].

As we will show, full-system idle low-power modes fare
poorly for OLDI services because these systems have a large

Percent of Max Capacity

|
24 36 48
Hour of the day

Figure 1: Example diurnal pattern in queries per
second (QPS) for a Web Search cluster: Non-peak peri-
ods provide significant opportunity for energy-proportional servers.
For a perfectly energy proportional server, the percentage of peak
power consumed and peak QPS would be the same. Server power
is estimated for systems with 45% idle power.

dynamic range and, though sometimes lightly loaded, are
rarely fully idle, even at fine time scales. Cluster-grain ap-
proaches that scale cluster size in response to load variation
are inapplicable to OLDI services because the number of
servers provisioned in a cluster is fixed. Cluster sizing is de-
termined primarily based on data set size instead of incom-
ing request throughput. For a cluster to process an OLDI
data set for even a single query with acceptable latency, the
data set must be partitioned over thousands of nodes that
act in parallel. Hence, the granularity at which systems can
be turned off is at cluster- rather than node-level.

Fundamentally, the architecture of OLDI services demands
that power be conserved on a per-server basis; each server
must exhibit energy-proportionality for the cluster to be
energy-efficient, and the latency impact of any power man-
agement actions must be limited. We find that systems
supporting OLDI services require a new approach to power
management: coordination of active low-power modes across
the entire utilization spectrum. We demonstrate that nei-
ther power management of a single server component nor
uncoordinated power management of multiple components
provide desirable power-latency tradeoffs.

We report the results of two major studies to better un-
derstand the power management needs of OLDI services.
First, we characterize a major OLDI workload, Google Web
Search, at thousand-server, cluster-wide scale in a produc-
tion environment to expose the opportunities (and non-op-
portunities) for active and idle low-power management. We
introduce a novel method of characterization, activity graphs,
which enable compact representation of the activity levels
of server components. Activity graphs provide designers the
ability to identify the potential of per-component active and
idle low-power modes at various service load levels. Second,
we perform a study of how latency constrains this potential,
making power management more difficult. We construct and
validate a performance model of the Web Search workload
that predicts the 95th-percentile query latency under differ-
ent low-power modes. We demonstrate that our framework
can predict 95th-percentile latency within 10% error. Using
this framework, we explore the power-performance tradeoffs
for available and future low-power modes.

We draw the following conclusions about power manage-
ment for major server components:

1) CPU active low-power modes provide the best
single power-performance mechanism, but are not
sufficient for energy-proportionality. Voltage and fre-
quency scaling (VFS) provides substantial power savings for

small changes in voltage and frequency in exchange for mod-
erate performance loss (see Figure 15). Looking forward,
industry trends indicate that VFS power savings will be re-
duced in future technology generations as the gap between
circuits’ nominal supply and threshold voltages shrink [6],
suggesting that power savings may not be realized from VFS
alone. Furthermore, we find that deep scaling yields poor
power-performance tradeoffs.

2) CPU idle low-power modes are sufficient at the
core level, but better management is needed for
shared caches and on-chip memory controllers. We
find that modern CPU cores have aggressive clock gating
modes (e.g., C1E) that conserve energy substantially; power
gating modes (e.g., core C6) are usable, but provide little
marginal benefit at the system level (see Figure 16). How-
ever, we observe that non-core components such as shared
caches and memory controllers must remain active as long as
any core in the system is active. Thus, we find opportunity
for full socket idle management (e.g, socket C6) is minimal.

3) There is great opportunity to save power in the
memory system with active low-power modes during
ample periods of underutilization. We observe that the
memory bus is often highly underutilized for periods of sev-
eral seconds. There is a great opportunity to develop active
low-power modes for memory (e.g., [10]) and we demonstrate
that these would provide the greatest marginal addition to
a server’s low-power modes. Because the memory system is
so tightly coupled to CPU activity, it is rare for DRAM idle
periods to last long enough to take advantage of existing idle
low-power modes (e.g., self-refresh) (see Figure 7).

4) Unlike many other data center workloads, full-
system idle power management (e.g., PowerNap) is
ineffective for OLDI services. Previous research has
demonstrated that energy-proportionality can be approached
by rapidly transitioning between a full-system high-perform-
ance active and low-power inactive state to save power dur-
ing periods of brief idleness [20]. Whereas such a technique
works well for many workloads, we demonstrate that it is
inappropriate for the ODLI workload class. Because peri-
ods of full-system idleness are scarce in OLDI workloads, we
evaluate batching queries to coalesce idleness, but find that
the latency-power trade-offs are not enticing.

5) The only way to achieve energy-proportional op-
eration with acceptable query latency is coordina-
tion of full-system active low-power modes. Rather
than requiring deep power savings out of any one compo-
nent, we observe that systems must be able to leverage mod-
erate power savings in all their major components. Since
full-system idleness is scarce, power savings must be achieved
with active low-power modes. Furthermore, system-wide co-
ordination of power-performance states is necessary to main-
tain system balance and achieve acceptable per-query la-
tency.

The rest of this paper is organized as follows. In Section 2,
we discuss the unique aspects of OLDI services, how these
impact power management, and prior work. To identify op-
portunities for power management, we present our cluster-
scale Web Search characterization in Section 3. In Section
4, we develop and validate a Web Search performance model
to determine which of these opportunities are viable from a
latency perspective, and draw conclusions from this model
in Section 5. Finally, in Section 6, we conclude.

100¢

801

607

407

Percentage of Queries

<« >

207

|
|
Mean | 95th—Percentile

0 1 2 3 4
Latency (Normalized to 1/u)

Figure 2: Example leaf node query latency dis-
tribution at 65% of peak QPS.

2. BACKGROUND

Online data-intensive services are a relatively new work-
load class and have not undergone an extensive characteriza-
tion study in the systems community. A defining feature of
these workloads is that latency is of the utmost importance.
User experience is highly dependent on system responsive-
ness; even delays of less than 400 ms in page rendering time
have a measurable impact on web search queries per user
and ad revenue [24]. Therefore, search operators focus not
only on the mean but also on the tail of the latency dis-
tribution, and express targets for the 95th or 99th latency
percentile of the distribution. Achieving such tail latency
targets is challenging since queries have varying computing
demands. Figure 2 shows a cumulative distribution of query
latency (normalized to the mean) for a web search cluster
operating at 65% of its peak capacity. There is a 2.4x gap
between mean and 95th-percentile latency. The relevance
of tail latencies is an additional challenge for power man-
agement schemes as many of them affect tail latencies more
than they affect the mean.

2.1 Understanding OLDI Services

Cluster Processing in Web Search. The sheer size of
the Web index and the complexity of the scoring system
requires thousands of servers working in parallel to meet la-
tency requirements. Figure 3 depicts the distributed, multi-
tier topology of a Web search cluster [4]. Queries arrive at a
Web server front-end, which forwards them to a large collec-
tion of leaf nodes using a distribution tree of intermediary
servers. The index is partitioned (i.e., sharded) among all
the leaf nodes, so that each performs the search on its index
shards. There may be some shard replication across ma-
chines but it tends to be limited given DRAM costs. As a
result, every leaf node is involved in processing each search
query to maximize result relevance. The query distribution
tree aggregates all results and returns the highest-scoring
ones back to the front-end server.

Leaf nodes are the most numerous in a search cluster.
Because of the high fan-out of the distribution tree, leaf
nodes account for both the majority of query processing and
cluster power consumption. Hence, we restrict our study
to power savings for these servers. Note, however that the
importance of the 95% latency becomes even more relevant
when studying performance at the leaf-node level, since the

==

Front End

Back End

U_‘ Leaf

Majority of Nodes

Figure 3: Web Search cluster topology.

entire service latency can be dominated by the latency of
a single slow leaf. Although the effect of slow leaf nodes
can be limited using latency cutoffs, in practice these tend
to be conservative—prematurely terminating a search can
compromise query result relevance.

Though other data-intensive workloads share similarities

with OLDI services, there are some critical differences that
make OLDI a particularly challenging target for power and
energy optimizations. For example, personalized services
such as Web mail and social networking also manipulate
massive amounts of data and have strict latency require-
ments for user interaction. A key difference between these
workloads and OLDI services is the fraction of data and com-
puting resources that are used by every single user request.
For a Web search cluster, a query typically touches all of the
machines in the cluster. (Efficient index structures tend to
be partitioned in the document identifier space. Therefore
a query term can find document results in every single par-
tition, requiring queries to be broadcast to every leaf node.)
By contrast, a Web mail request will access primarily the
users’ active mailbox and a small fraction of the machines
in the serving cluster. MapReduce-style computations can
touch all of the machines and data in a cluster, but their
focus on throughput makes them more latency tolerant, and
therefore an easier target for energy optimizations, which
tend to increase latency.
Diurnal Patterns. The demands of an OLDI service can
vary drastically throughout the day. The cluster illustrated
in Figure 1 is subject to load variations of over a factor
of four. To simplify our discussion, we will focus on three
traffic levels based on percentage of peak achievable traffic:
low (20%), medium (50%) and high (75%). We choose 75%
of peak as our high traffic point because, although clusters
can operate near 100% capacity when needed, it is common
for operators to set normal maximum operating points that
are safely below those peaks to ensure service stability.

2.2 Taxonomy of Low-Power Modes

Component-level low power modes fall into two broad
classes, idle low-power modes, and active low-power modes.
We briefly discuss each and introduce a generic model for
describing an idealized low-power mode that encompasses
both classes. Figure 4 illustrates a wide variety of active and
idle low-power modes and classifies each according to both
the spatial (fraction of the system) and temporal (activa-

® Idle Mode
B Active Mode
Power Savings

1 Least [——mmmmm Most
hours -
Server
E-) Shutdown Consolidation
5 min o
= Disk Spin-Down
]
c s + o
© I:|Dual Speed Disk
9 g MemScale @PowerNap
< 1
ms
lo- o CPU DVFS
g- DRAM Self-Refresh
1 (6]
I“—’ us ® Core Parking ° Socket Parking
Clock Gating
ns+ ©
| | | | >
1 >
Core Component Server Cluster

Spatial Granularity

Figure 4: Low-power mode taxonomy. Modes with
the greatest power savings must be applied at coarse granularity.
Modes that apply at fine granularity generally yield less savings.

tion time scale) granularity at which each operates. Darker
points are used for modes that provide greater relative power
savings. Coarser modes tend to save more power, but are
more challenging to use because opportunity to use them is
more constrained.

Idle Low-Power Modes. Idle low-power modes save power
during periods of full inactivity (e.g., ACPI C-states, DRAM
power-down, and disk spin-down); no processing can proceed
while they are in use. Because these modes can power off
support circuitry (e.g., clocks, buses, etc.) that must remain
powered when the components are active, they often have
the greatest power savings. For example, PowerNap [20] re-
duces a server’s power consumption by as much as 95%. The
main challenge in using these modes is finding enough long
periods of inactivity. Idle low-power modes are characterized
by a transition latency to enter and leave the mode. Some
components offer multiple modes with increasing transition
latency and power savings (e.g., ACPI C-states).

Active Low-Power Modes. Active low-power modes throt-
tle performance in exchange for power savings, which poten-
tially extends the time necessary to complete a given amount
of work, but still allows processing to continue. Their power
savings potential is often limited by support circuitry that
must remain powered regardless of load. Some components
offer multiple active low-power modes with increasing per-
formance reduction and power savings (e.g., ACPI P-states).
Abstract Power Mode Model. Figure 5 illustrates the
abstract model we use to determine upper bounds on power
savings. A power mode can be activated for a period L
in which utilization is less than or equal to a threshold U.
For idle low-power modes, U is zero. For active low-power
modes, U is bounded by the slowdown incurred when oper-
ating under the low power mode. For example, a low power
mode that incurs a factor of two slowdown may not be used
when U > 50% as the offered load would then exceed the
processing capacity under the mode. To save power, a com-
ponent must transition in/out of a mode with latency Tir.

2.3 Related Work

Numerous studies examine power management approaches
for processors [12, 13, 23, 25], memory [9, 10, 11, 13], and
disk [7, 15, 22]. A detailed survey of CPU power man-
agement techniques can be found in [18]. Others consider

T T
tr tr
— —
o} 1 I
=
/3] |
n_ -

Time

L

Figure 5: Idealized low-power mode. L is the length of
the idle period and T3, is the time required to transition in and out
of the low-power state.

system-level mechanisms to mitigate the lack of component
energy-proportionality [20, 27]. Our study builds on this
literature by quantifying the opportunity (or lack thereof)
for these classes of techniques in OLDI services, which, be-
cause of their latency sensitivity, bring a unique set of power
management challenges.

Many authors have examined cluster-level approaches, such
as dynamic resizing, load dispatching, and server/virtual
machine consolidation, to achieve energy-proportionality by
powering down unused systems (e.g., [8, 16, 27]). As noted in
Section 2, the distributed data sets and latency constraints
of OLDI services make such approaches difficult or impossi-
ble to apply to this workload class.

Recently, many studies have looked at using low-power,
low-cost server components to improve energy-efficiency for
data center workloads [19, 28, 29]. We take an approach that
is agnostic of “small” or “big” cores. Previous studies have
focused on improving the peak efficiency of server systems.
Instead we seek server-level energy-proportionality through
low-power modes to save power during non-peak periods.

3. CLUSTER-SCALE CHARACTERISTICS

In this section, we characterize the Web Search workload
at 1000-node cluster scale. Opportunities for power savings
often occur at very fine time-scales, so it is important to un-
derstand the magnitude and time-scale at which components
are utilized [20]. We present our characterization, and ana-
lyze its implications on opportunity for power management,
using a new representation, which we call activity graphs.
Our characterization allows us to narrow the design space
of power management solutions to those that are applicable
to OLDI services. In Section 5 and 6, we further analyze
promising approaches from a latency perspective.

3.1 Experimental Methodology

We collected fine-grained activity traces of ten machines
from a Web search test-cluster with over a thousand servers
searching a production index database. The test workload
executes a set of anonymized Web Search queries, with the
query injection rate tuned to produce each of the QPS loads
of interest (low, medium, and high). The behavior of the
test runs was validated against live production measure-
ments, however the latency and QPS levels reported here

1r —U=80% 1 — U=80% 1r —U=80%
a —U=50% a — U=50% a —U=50%
© 0.8F U=30% 508 U=30%) 5 0.8l U=30%
S F------ ---U=10% S ---U=10% S ---U=10%
;: o ---Idle - ---Idle - ---ldle
o 0.6} A o 0.6t
E N = £
[N = [
S 0.4f S k]
o c c
il il o
g0z
w w w

0 L L L ‘\~ \L“~ 0 L L s I S) L =<

100us 1ms 10ms 100 ms 1s 10s 100us 1ms 10ms 100 ms 1s 10s 10 ms 100 ms 1ls 10s

L (Time Interval)

(a) 20% QPS

L (Time Interval)

(b) 50% QPS

L (Time Interval)

(c) 75% QPS

Figure 6: CPU activity graphs. Opportunities for CPU power savings exist only below 100 ms regardless of load.

] 1 1
> BRI > >
Vi AR Vi VI
208 TTmeal =038 = 0.8f
< ... 5 5
- Sl — -
o 0.6 | D06 o 0.6
£ ! £ £
= \ = L =
S 0.4 — U=80% S 048 - — U=80% S 0.4 —U=80%
S —U=50% g N —U=50% S —U=50%
& 0.2F U=30%) & 0.2 N U=30% & 0.2F U=30%
i - - - U=10% o ---U=10%] o ---U=10%)
0 ---ldle | N “1---dle | o TTTTTeee ---Idle
100 ms 1s 10s 100s 1000 s 100 ms 1ls 10s 100s 1000 s 100 ms 1ls 10s 100s 1000 s
L (Time Interval) L (Time Interval) L (Time Interval)
(a) 20% QPS (b) 50% QPS (c) 75% QPS
Figure 7: Memory activity graphs. Memory bandwidth is undersubscribed, but the sub-system is never idle.
1 1 1t
=] =) =)
\4 F==a R \4 \
08 s, =038 = 0.8f
S ~. . I ©
- N - -
> 0.6f Y D06 o 0.6f
£ NS 5 £
[vl = =
5 04r N — U=80%] 504 — U=80% 5 0.4r —U=80%
S N —U=50% S —U=50% S —U=50%
S 0.2l A U=30% S 02 U=30% 8 0.2 U=30%
s N - - - U=10% s ---U=10% i ---U=10%
0) 0 e ---Idle o ---Idle
100 ms 1s 10s 100's 1000 s 100 ms 1ls 10s 100s 1000 s 100 ms 1s 10s 100's 1000 s

L (Time Interval)

(a) 20% QPS

L (Time Interval)

(b) 50% QPS

L (Time Interval)

(c) 75% QPS

Figure 8: Disk activity graphs. Periods of up to tens of seconds with moderate utilization are common for disks.

do not correspond exactly to any particular Google search
product—there are multiple production search systems at
Google and their exact behavior is a result of complex trade-
offs between index size, results quality, query complexity and
caching behavior. We are confident that the parameters we
chose for our test setup faithfully represents the behavior
and energy-performance trade-offs of this class of workloads.

We collect raw utilization metrics for CPU, memory band-
width, and disk I/O bandwidth with in-house kernel and
performance counter-based tracing tools that have a negli-
gible overhead and do not have a measurable impact on ap-
plication performance. CPU utilization is aggregated across
all the processors in the system. Our memory and disk in-
strumentation computes utilization as the fraction of peak

bandwidth consumed over a given window; our resolution is
limited to 100 ms windows.

3.2 Activity Graphs

Activity graphs compactly describe the opportunity for
power savings at a range of utilizations and time-scales of in-
terest. Figures 6-8 show the activity graphs for a Web search
workload at multiple traffic levels (denoted by queries-per-
second or QPS). These graphs depict a function A(L,U)
that gives the fraction of time a component spends at or
below a given utilization U for a time period of L or greater:

A(L,U) = Pr(l > L,u < U) (1)

This formulation allows us to determine the fraction of time

where any particular power mode might be useful. Perhaps
as importantly, it lets us quickly rule out low-power modes
that are inapplicable. We assume that an oracle guides tran-
sitions in and out of the mode at the start and end of each
period L. Most modes do not save power during this transi-
tion and may halt processing during transitions; accordingly,
for our study we assume that T3, must be an order of mag-
nitude less than L for a low-power mode to be effective.

Example: Reading Figure 6(a). We now demonstrate
how to interpret the results of an activity graph, using Fig-
ure 6(a) as an example. Suppose we wish to evaluate a CPU
active low-power mode that incurs a 25% slowdown (i.e., it
can only be used below 1/1.25 = 80% utilization) and has a
transition time of 1 ms (i.e., it is only useful for L of about
10 ms or greater). We can see that at 20% QPS, this mode is
applicable nearly 80% of the time. Conversely, if transitions
latency limited this mode to periods of 1 second or greater,
there would be almost no opportunity for the mode.

3.3 Characterization Results

We now discuss the activity graphs shown in Figures 6, 7,
and 8, for CPU, memory and disk, respectively.

CPU. Figure 6 show activity graphs for CPU. There is al-
most no opportunity for CPU power management at a time-
scale greater than one second even at low loads; instead
power modes must be able to act well into the sub-second
granularity to be effective. Perhaps most interestingly, the
1 ms time scale captures nearly all the savings opportunity
regardless of the utilization threshold, suggesting that it is
unnecessary to design modes that act on granularities finer
than 50-100us. Additionally, while increased QPS reduces
the overall opportunity for power management at each uti-
lization level, it does not change the time-scale trends.

Memory. Figure 7 presents the activity for memory. Two
features are prominent. First, we observe that the mem-
ory bus is greatly underutilized, with many long periods
during which utilization is below 30%. Hence, active low
power modes that trade memory bandwidth for lower power
(e.g., [10]) are applicable even if they have relatively large
transition times. Second, the memory bus is never idle for
100ms or longer. Unfortunately, our instrumentation cannot
examine sub-100ms granularities. However, by estimating
finer-grained memory idleness from our CPU traces (by as-
suming the memory system is idle when all CPUs are idle),
we find that idle periods longer than 10 us are scarce even at
low QPS values. We conclude that DRAM idle low-power
modes require sub-us transitions times to be effective for
these workloads, which is an order of magnitude faster than
currently available DRAM modes.

Disk. Finally, Figure 8 shows the activity graphs for disk.
The activity trends for disk differ from CPU and memory
because varying QPS shifts the time-scales over which uti-
lization levels are observed. Whereas the majority of time
spent at or below 30% utilization is captured in 10-second
intervals at 20% QPS, this opportunity shifts to an order of
magnitude finer time-scale when load increases to 75% QPS.
As with memory, disk bandwidth is not heavily utilized even
at high QPS; the majority of time is spent below 50% uti-
lization even at a 1 second granularity. Unlike memory, disk
exhibits periods of idleness at 100 ms to 1 s time-scales,
especially for low QPS.

A particularly interesting property of disk activity pat-

Table 1: Low-power mode characteristics.

Power Mode Tir Uthreshold % Ref.
CI1E — ACPI C3 10 ps Idle 2% [2]
C1E — ACPI C6 100 us Idle 44% [2]
Ideal CPU V4q Scaling 10 us 50% 88% [2]
Ideal Mem. V44 Scaling 10 us 50% 88% [17]
Dual-Speed Disk 1 sec 50% 59% [22]
Disk Spin-Down 10 sec Idle 77% [7]

g 100

S I 20% QPS

e o I 50% QPS

) [175% QPS

£

g 60

n

g

g 40

a

g 20

o

£

0
S o

Figure 9: Power savings potential for available low-
power modes.

terns is that disks rarely see peak utilization—moderate
utilization levels persist for long periods. This observation
suggests that active low-power modes that provide less than
2-3x performance degradation (i.e., that can be used in pe-
riods of 30-50% utilization) at time scales of a few seconds
may be quite useful. Unfortunately, most available or pro-
posed power modes for disks act on time scales substan-
tially greater than one second [15, 22]. Accordingly, this
data suggests that the main challenge in saving disk power
lies in reducing power mode transition time. Alternatively,
a non-volatile storage solution that could trade bandwidth
for power would be useful.

3.4 Analysis: Evaluating Low-Power Modes

Using the activity graphs, we now examine power-savings
effectiveness, that is, the product of applicability and power
reduction, for existing and proposed power modes. Table 1
lists the idle and active power modes we consider for CPU,
memory, and disk, as well as our assumptions for transition
time (T3,), utilization threshold (wrhreshola), and normalized
power savings, while using a power mode (%). We use
these parameters to derive an estimate of the potential per-
component power savings at each QPS level. Here Pnominal
is the power consumed under normal operation and Pyode
the power when the mode is active. For the iQEal Vaa scaling

3
P, L

modes, we assume that —Mede — (L)" which is an
PNominal FMax

optimistic upper bound on the potential of frequency and
voltage scaling. Note that, to our knowledge, no current
memory device can scale supply voltage during operation;
however, we include it as a proxy for other potential memory
active low-power modes. Disk active mode savings are taken
from [22]. The quantity =Mede— for idle power modes is

PNominal
simply the ratio of the idle mode power to the power at

_ SMem=l.OO
Memzl'05

1.75f] -
SMem—l.16

Stotal (Per—Query Slowdown)

1 12
Sceu

1.4 1.6 1.8
(CPU Slowdown)
(a) Average query slowdown as a function of CPU
slowdown (holding memory slowdown constant).

=
3
g 175 T,
2 PR
%] ’,r' M -
> »- g
g 1.5 S =1.0
o _
% _SCPU_l'l
a 1.25¢ Scpy=13
= _
K] ---Scpy=16
n _
1 - SCPU_Z'O

2

1 1.2 1.4 16 18
SMem (Memory Slowdown)

(b) Average query slowdown as a function of mem-
ory slowdown (holding CPU slowdown constant).
Data points at Spmem = 1.3 exhibit test-harness-
specific memory bandwidth effects and are ex-
cluded from the regression.

Figure 10: Per-query slowdown regression. Dots represent measured values; lines show values predicted by the regression model.

idle without the mode. We calculate the normalized per-
component power savings using the following model:

Psaving PNominal — (1 = A(L,U)) - PNominal + A(L,U)) - Pmode

PNominal PNominal
P AP
=1—((1—A)+A'&)=A'M
PNominal PNominal

(2

Figure 9 reports the power savings opportunity for each low-
power mode at each QPS level. The ACPI C3 state provides
minimal opportunity because it does not lower CPU power
much below the savings already achieved by C1E, which cur-
rent processors automatically enter upon becoming idle [2].
On the other hand, ACPI C6 (also referred to as power-
gating or core-parking for the Nehalem architecture) can
provide moderate savings, especially at low-utilization. Us-
ing scaling for processor and memory provides substantial
opportunity for benefit. Though the opportunity for CPU
scaling decreases with increasing load, the opportunity for
memory scaling remains large. Disk spin-down is inapplica-
ble to this workload due to its prohibitive transition latency.
However, a dual-speed disk has moderate power savings po-
tential, especially at low QPS. Improving transition latency
could further increase the opportunity for dual-speed disks,
but we leave this study for future work.

4. LEAF NODE PERFORMANCE MODEL

The activity graphs reveal the potential of low-power modes
with respect to throughput constraints, but do not consider
whether their impact on service latency will be acceptable.
As noted in Section 2, OLDI services place tight constraints
on 95th-percentile latency. To predict impacts on query la-
tency, in this section, we develop a performance model that
relates per-component slowdowns to the overall query la-
tency distribution. Our validation against hardware mea-
surements shows that our model estimates 95% query la-
tency to within 9.2% error. In Section 5, we will apply this
model to estimate the power-performance pareto frontiers
of a variety of current and hypothetical CPU and memory
low power modes for various service level agreement (SLA)

targets on 95th-percentile query latency. We elected not
to explore disk power/performance trade-offs based on the
results in Section 3.3.

Query latency is composed of time a query spends in ser-
vice and the time it must wait to receive service:

LQuery - LService + LWait (3)

We first construct a model to predict the impact of reduced
component performance on Lservice, the expected time to
execute a single query without queuing. We then incor-
porate the service model into a queuing model to estimate
Lwait and determine the total latency, Lquery as a function
of low-power mode settings and contention.

4.1 Modeling Lse,vice

Rather than model specific low power modes, we instead
capture directly the relationship between per-component per-
formance and query service time; our model can then be
applied to existing/hypothetical per-component low power
modes by measuring/assuming a specific power-latency trade-
off for the mode. We develop the query service time model
empirically by measuring the impact of per-component slow-
downs in a controlled test environment. We then perform
a linear regression on the measured performance results to
derive the overall service time relationship.

We replicate the behavior of a production leaf node on a
16-core x86 server with 32GB of memory. Our test harness
reproduces an arrival process, query set, and web index com-
parable to production environments. Our test server allows
us to vary the CPU and memory performance and measure
their impact on average query execution time. We vary pro-
cessor performance using frequency scaling; we scale all cores
together at the same clock frequency.

The most effective method to vary memory latency in our
test environment is to decrease the interconnect speed be-
tween the processor and DRAM. Varying interconnect speed
has the potential to introduce both latency and bandwidth
effects. To construct a platform agnostic model, we wish to
exclude bandwidth effects (which are specific to the mem-
ory system implementation of our test harness) and capture

Low C
v

—— Exponential
Empirical

95th—Percentile Latency
(Normalized to 1/u)
2 N W L a o o ©

D[
a1

70 75 80
QPS (%)

Figure 11: Arrival process greatly influences
quantile predictions.

only latency effects in our model; the latency model can
be augmented with bandwidth constraints as appropriate.
Bandwidth effects are generally small at low utilization [26].
However, for this workload and test system, we have deter-
mined that memory bandwidth becomes a constraint at the
slowest available interconnect speeds. Hence, we have cho-
sen to exclude these settings from our regression, but report
the measured values in our figures for interested readers. We
also include measurements from one of the excluded settings
in our validation to expose these bandwidth-related queuing
effects.

Given component slowdowns Scpu and Swvem (the relative
per-query latency increase in the processor and memory) we
would like to determine the function Stotal = f(Scpu, SMem)

= LSLC;’E%“:L]”“ where Stotal is the overall per-query slow-
down.

First, we measured the latency of queries delivered to the
leaf node one at a time (hence eliminating all contention
effects). This experiment confirmed our intuition that the
relationship between CPU and memory slowdown and per-
query slowdown is linear, providing a sanity check on our
use of a linear regression model.

Next we measured the Stotal, ScPU, SMem triple for each
available processor and memory setting while loading the
leaf node to capacity, but only issuing new queries once out-
standing queries complete. This experiment captures the
interference effects (e.g., in on-chip caches) of concurrent
queries while isolating service latency from queuing latency.
Because of the previously-discussed bandwidth effects, we
can use only three memory-link-speed settings to approxi-
mate the slope of the Smem relationship. Whereas the abso-
lute accuracy of Stotal estimates will degrade as we extrap-
olate Smem beyond our measured results, we nevertheless
expect that general trends will hold.

We empirically fit the measured data using a linear re-
gression on an equation with the form:

Stotal = SB, S =11, Scrpu, SMem, ScPU - SMem]
B =1[Bo, B, Ba, Bs]"

Using a least-squares regression, we find that the 3 vector
has the values:

B = [-0.70, 0.84, 1.17, —0.32]" (5)

(4)

10.01

0.8-

0.6
[[
o [a)
(@] o

0.4

0.2r

G0 200 400

Time (us)

Figure 12: Distribution of time between query
arrivals.

This formulation predicts Stota with an average error of 1%
and a maximum error of 1.2%.

The values of the 8 parameters yield intuition into the
workload’s response to component slowdown. The 1 and B2
values show a strong linear relationship between application
slowdown and CPU and memory slowdown. Interestingly,
the negative value of (3 indicates that slowing CPU and
memory together may be beneficial.

Figures 10(a) and 10(b) provide two views of how CPU
and memory slowdown affect average query latency. They
further illustrate how our regression predictions (represented
by lines) compare to measured values (represented by points).

4.2 Modeling L.

To capture query traffic and contention effects, we aug-
ment our per-query service time model with a queuing model
describing the overall behavior of a leaf node. We model the
leaf node as a G/G/k queue—a system with an arbitrary
interarrival and service time distribution, average through-
put A (in QPS), average service rate p (in QPS), k servers,
average load p = ik and a unified queue. Whereas this
model does not yield a closed-form expression for latency, it
is well-defined and straight-forward to simulate. We use the

approach of [21] to simulate the leaf-node queuing system.

Interarrival Distribution. We have found that the dis-
tribution of query arrival times at the leaf node can greatly
influence 95th-percentile latencies. Naive loadtesting clients
tend to send queries at regular intervals, resulting in fewer
arrival bursts and fewer, longer idle intervals than what is
seen with actual user traffic. Figure 11 shows how different
assumptions for interarrival distribution influence predic-
tions for 95th-percentile latency; the difference is most pro-
nounced at moderate QPS. We have found that actual user
traffic tends to show higher coefficient of variation (C, =
1.45) than an exponential distribution and considerably higher
than a naive (Low C,) arrivals. We have modified our load-
testing client to replay the exact distribution seen by live
traffic and were able to validate these effects. Our validation
demonstrates the perils of using naive loadtesting clients,
and suggests that in absence of real user traces, exponential
distributions could be used with reasonably small errors.
Figure 12 depicts the production system arrival distribu-
tion at a leaf node. The interarrival distribution has distin-
guishing notches at .007(1/u) and .01(1/p). This shape is an

1r 40.03
0.8t
{0.02
0.6
['8
[a) o
o a
0.4
0.01
0.2
CDF
—PDF
0

c"O 5 10 15 20
Time (ms)

Figure 13: Distribution of query service times.

artifact of the multi-tier server topology shown in Figure 3.
We have also observed that the shape of the interarrival dis-
tribution does not change significantly with varying QPS,
only its scale. This property allows us to use the distribu-
tion measured at a single QPS and scale it to achieve an
arbitrary throughput for our model.

Service Distribution. The service time distribution de-
scribes the amount of time spent executing each query. It is
parameterized by u, the average service rate (in QPS); 1/u,
the average query execution time, is given by the Lservice
model described in Section 4.1. Since multiple queries are
serviced concurrently, the aggregate service rate is k - p. In
our case, k is 16.

The service time distribution measured is shown in Figure
13. Though the variance of this distribution is not particu-
larly high (C,=1.12), the 95th-percentile of the distribution
is nearly 3 times greater than the mean. This variability
is largely intrinsic to the computing requirements of each
individual query.

The service distribution shape, as with the interarrival dis-
tribution, does not change significantly with average query
latency changes, allowing us to model power modes’ effects
as a service rate modulation, p’ = 1/ STotal.

Autocorrelation. Our simulation approach [21] gener-
ates interarrival and service times randomly according to
the scaled empirical distributions, which assumes that the
arrival/service sequences are not autocorrelated (i.e., con-
secutive arrivals/services are independent and identically-
distributed). We have validated this assumption in traced
arrival and service time sequences (there is less than 5%
autocorrelation on average). This independence is impor-
tant to establish, as it allows us to generate synthetic in-
terarrival /service sequences rather than replaying recorded
traces.

4.3 Validation

To validate our performance model, we measured the per-
formance of the Web Search workload at the three QPS lev-
els of interest and all applicable performance settings. Fig-
ure 14 compares the 95th-percentile latency predicted by
our model (lines) against measured values on our test node
(points). At low QPS, the predicted latency is primarily
a function of the Lgervice performance model, as queuing
rarely occurs. As QPS reaches the maximum level, queuing

w
o

N
o

95th-Percentile Latency (ms)
[N
U"I o

ey
o

40 50 60 70
QPS (%)

N
o
w
o

Figure 14: Performance model validation: Dots and
lines repesent measured and modeled values, repsectively.

Table 2: Typical Server Power Breakdown.

Power (% of Peak) CPU Memory Disk Other

Max 40% 35% 10% 15%
Idle 15% 25% 9% 10%

effects and our model for Lwais increase in importance; our
overall model predicts 95th-percentile latency accurately in
both regions, achieving an average error of 9.2%.

S. LATENCY-POWER TRADEOFFS

Our performance model allows us to quantify the trade-
offs between power and latency for both proposed and cur-
rently available power modes for our OLDI workload. In this
section, our analysis will draw the following conclusions: (1)
Full-system, coordinated low-power modes provide a far bet-
ter latency-power tradeoff than individual, uncoordinated
modes. (2) Idle low-power modes do not provide signifi-
cant marginal power savings over C1E. (3) There is a need
to develop full-system, coordinated active low-power modes,
because full-system idleness is difficult to find.

We assume similar server power breakdown and power
scaling as in [3]; these assumptions are summarized in Table
2. In this analysis, we consider processor and memory volt-
age and frequency scaling, processor idle low-power modes,
and batching queries to create and exploit full-system power
modes (i.e., PowerNap [20]).

5.1 Active Low-Power Modes

First, we investigate the applicability of active low-power
modes for CPU and memory; in particular, we assess the
power savings of frequency and voltage scaling. In an ideal
CMOS processor, voltage scales proportionally to frequency.
Accordingly, power consumption is reduced cubically with
respect to processor frequency (P f3). In reality, how-
ever, reducing processor frequency does not allow an equiv-
alent reduction in processor voltage [6, 25]. Divergence from
the ideal model is due to the inability to scale voltage with
the required ideal linear relationship to frequency, and the
growing static power consumed by modern processors. This
divergence is much more pronounced in high-end server pro-
cessors than low-end processors, because by definition they
are optimized for performance (low threshold voltage and

1007 1007 1007
g g g ——
S 75¢ 3 75\i @ T5f---mm-- T EEE————mmeecoooo
a a < a
k] k] k]
£ \Ak 5 H
8 sot 8 BOp--- 8 sot
[[[
S IS IS
@ p— @ p— 9] p—
g 25l CPU g 25l CPU g 25l CPU
& fmeem=emeemme--e-o-d —— Memory T —— Memory oy —— Memory
Optimal Mix Optimal Mix Optimal Mix
- - - Proportional - - - Proportional - - - Proportional
Q Q Q
10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20

95th-Percentile Latency (ms)

(a) 20% QPS.

95th-Percentile Latency (ms)

(b) 50% QPS.

95th-Percentile Latency (ms)

(c) 75% QPS.

Figure 15: System power vs. latency trade-off for processor and memory scaling (P f2‘4): The point "A"
represents Scpu = 1.5 and "B" represents Svem = 1.5. “A” and “B” do not appear in graph (c) because the latency exceeds 20 ms.

high supply voltage) rather than power (high threshold volt-
age and low supply voltage).

In addition, limited voltage scaling and automated idle
power modes (e.g., C1E) lead to essentially constant idle
power, no matter what voltage/frequency mode is selected.
To provide an optimistic scenario, we evaluate the expected
power savings assuming (P oc f2*), which was derived from
an embedded processor [6] and matches theoretical predic-
tions of practical scaling limits [30]. For this case, we also
optimistically assume that the ratio of static power to ac-
tive power remains constant. Data from today’s high-end
servers [1] suggests much more modest power savings asso-
ciated with DVFS, with energy savings approaching zero for
some DVFS modes.

Although full-featured voltage and frequency control (e.g.,
DVFS) is not currently available for modern memory sys-
tems, the power consumption of these devices follow similar
relationships with respect to voltage and frequency [17]. We
therefore hypothesize a memory power mode that resembles
the optimistic processor frequency and voltage scaling sce-
nario. Recent work [10] has already begun exploring active
low-power modes for main memory.

Figure 15 shows total server power as a function of 95th-
percentile latency for each QPS level. Three scenarios are
considered: CPU scaling alone (“CPU”), memory scaling
alone (“Memory”) and a combination of CPU and memory
scaling (“Optimal Mix”). Since there are many permutations
of CPU/memory settings, we show only pareto-optimal re-
sults (best power savings for a given latency).

In isolation, the latency-power tradeoff for CPU scaling
dominates memory scaling. Memory slowdown impacts over-
all performance more and saves less power at higher QPS.
However, at 20% one can see that memory scaling may do
better at times. Different server configurations may shift
this balance; in particular, recent trends indicate that the
fraction of power due to memory will increase. Our results
show that coordinated scaling of both CPU and memory
yields significantly greater power reductions at all target
latencies than scaling either independently. This observa-
tion underscores the need for coordinated active low-power
modes: components must scale together to maintain system
balance. With our optimistic scaling assumption, we can
achieve better—than—energy-proportional operation at 50%
and 75% QPS. At 20% QPS, power consumption becomes
dominated by other server components with large idle power
(e.g., disk, regulators, chipsets, etc.).

100¢
I~
o
(4]
o gof
6
'%' -
S 60r
[]
S
g a0
3
% Il Core + Socket Parking
& 20f Il Core Parking
28 [ISocket Parking
* [INo Management

20% QPS 50% QPS 75% QPS

Figure 16: System power savings for CPU idle low-
power modes: Core parking only yields marginal gains over
C1E. Power savings from socket parking is limited by lack of per-
socket idleness.

Table 3: Processor idle low-power modes.

Power (% of Peak)

Active Idle (HLT) _ Parking
Core Socket
Per-Core (x4) 20% 4% 0% 0%
Uncore 20% 20% 20% 0%

5.2 Processor idle low-power modes

Next, we explore idle CPU power modes, where the CPU
enters a low-power state but other components remain ac-
tive. Modern CPUs already use the ACPI C1 or C1E state
whenever the HLT instruction is executed. We would like to
understand the benefit of using deeper idle low-power modes.
For comparison, we evaluate using ACPI C6, which can be
applied either at the core or socket level. At the core level,
ACPI C6 or “Core Parking” uses power gating to eliminate
power consumption for that core. It has a transition time of
less than 100 ps [2]. At the socket level (“Socket Parking”),
we assume that an integrated memory controller must re-
main active but all caches may be powered down yielding a
50% reduction in non-core power consumption. This mode
requires socket-level idleness and incurs a 500 ps transition
time. For both modes, we assume the mode is invoked im-
mediately upon idleness and that transition to active occur
immediately upon a query requiring the resource. Socket
power consumption in each state is summarized in Table 3.

100 100

100

= —T= 0.10(1/u, = <
[[[
§ T=1000 g g %
e - - - Proportional s M JSHEE il
f= c c
Q (9% [
S o o
[[[
& 50 O | LR L EEE LR R T EE L 50
9] 5} 5}
3 g g
S S T = 0.10(T/0 S 5 T, = 0.10(I/p
.2 ____________________________ ,z _T‘ =1.00(1/u, %\ _T‘ =1.00(1/,
an n - - - Proportional n - - - Proportional

0 0 0

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

95th-Percentile Latency (ms)

(a) 20% QPS.

95th—Percentile Latency (ms)

(b) 50% QPS.

95th-Percentile Latency (ms)

(c) 75% QPS.

Figure 17: System power vs. latency trade-off for query batching with PowerNap: “A” represents a batching policy

that holds jobs for periods equal to 10x the average query service time.

[
o
o

Il 1x SLA
|| I 2x SLA
[J5x SLA

o]
o

D
o

IS
o

N
o

System power (Percent of Peak)

o

O
AN
<4

AN
N 00@ éfer
& &
< &8

> O @ R > O R
@Q'Zr dg\(\ 00\ Q}é'z’ 0\(‘\& dz}\o Od\ ?}éo
O) S 2 N

< &8 < &8
20% QPS 50% QPS

75% QPS Diurnal

Figure 18: Power consumption at each QPS level for a fixed 95th-percentile increase: The dotted line at each
QPS level represents the power consumption of an energy proportional system.“Diurnal” represents the time-weighted daily average from
Figure 1. An energy-proportional server would use 49% of its peak power on average over the day.

Figure 16 depicts the power savings opportunity for pro-
cessor idle low-power modes. The transition time of these
modes is sufficiently low that the 95th-percentile is not af-
fected significantly. We observe that ACPI C6 applied at
the core level (“Core Parking”), socket level (“Socket Park-
ing”) or in combination (“Core + Socket Parking”) does not
provide a significant power reduction. Since modern proces-
sors enter C1E at idle (i.e., the HLT instruction), the idle
power of the processor is not high. Therefore, compared to
a baseline scenario (“No Management”), using core or socket
parking does not provide much benefit. Larger power sav-
ings are likely possible if work is rescheduled amongst cores
to coalesce and thus extend the length of the idle periods,
enabling the use of deeper idle power modes.

5.3 Full-system Idle Power Modes

Finally, we investigate using a full-system idle low-power
mode to recover power consumed by all server components.
We evaluate PowerNap, which provides a coordinated, full-
system low-power mode with a rapid transition time to take
advantage of idle periods and has shown great promise for
non-OLDI server applications [20]. We assume that while
in PowerNap mode, the server consumes 5% of peak but
cannot process queries.

It is extremely rare for full-system idleness to occur natu-
rally for our workload, even at low QPS values. Instead, we
coalesce idle periods by batching queries to the leaf node.
Queries are accumulated at a higher level node in the search
tree and released after a given timeout to the leaf node.
Increasing the timeout allows for longer periods in the Pow-
erNap mode. Our approach is similar to that of [12].

Figure 17 shows the power-latency tradeoff given a tran-
sition time, T}, of both one tenth and equal to the average
query processing time (1/u). (Note the larger scale of the
horizontal axis in this figure relative to Figure 15). We find
that in order to save an appreciable amount of power, Pow-
erNap requires relatively long batching intervals incurring
large latency penalties. The point (“A”) represents a batch-
ing policy with a timeout period of 10x the average query
service time. Even with a relatively short transition time,
the latency-power trade-off is not enticing across QPS levels.

5.4 Comparing Power Modes

Out of the power modes explored thus far, we would like
to identify the best mode given an SLA latency bound. For
this evaluation, we define our initial SLA to be the 95th-
percentile latency at 75% QPS. Figure 18 compares the
power saving potential of system active low-power modes
(“Scaling”) from Section 5.1, processor idle low-power modes
(“Core”) from Section 5.2, and system idle low-power modes
(“PowerNap”) from Section 5.3 given a latency bound of 1x,
2x, and 5x of this initial SLA. At 20% QPS, none of the

power management schemes can achieve energy-proportionality

(a power consumption of 20% of peak) even at a 5x latency
increase, although scaling falls just short. For 50% and 75%
QPS, coordinated scaling can achieve slightly better than
energy proportional power consumption for a 2x latency in-
crease, but other techniques cannot regardless of SLA.

To understand the overall daily potential for power sav-
ings, we show the time-weighted average power consumption
(“Diurnal”) using the QPS variations shown in Figure 1.
Once again, only scaling is able to achieve a power con-

sumption at or better than energy proportional operation
for a 2x or greater latency increase. This result supports our
claim that OLDI services can achieve energy-proportionality
only with coordinated, full-system scaling active low-power
modes; other power management techniques simply do not
provide a suitable power-latency tradeoff for the operating
regions of this workload class.

6. CONCLUSION

Our work explores the power management opportunities
of OLDI services—an application class that is central to the
success of online Internet services, and yet presents formidable
power management challenges. These workloads are highly
latency sensitive, and their data set usage does not scale
down with traffic, making it infeasible to simply turn off ma-
chines during off-peak periods. Our two studies, a cluster-
scale examination of per-component utilization and a val-
idated model to examine the latency impact of low-power
modes, provide a series of actionable conclusions to guide
further development of server low-power modes. We find:
(1) CPU active low-power modes provide the best single
power-performance mechanism, but, by themselves, cannot
achieve energy-proportionality; (2) there is a pressing need
to improve idle low-power modes for shared caches and on-
chip memory controllers, however, existing modes are suffi-
cient at the cores; (3) there is substantial opportunity to save
memory system power with active low-power modes during
ample periods of underutilization, but there appears to be
little, if any, opportunity for existing idle low-power modes;
(4) even with query batching, full-system idle low-power
modes cannot provide acceptable latency-power tradeoffs;
and (5) coordinated, full-system active low-power modes
hold the greatest promise to achieve energy-proportionality
with acceptable query latency by maintaining system bal-
ance across the dynamic load range of the workload.

Acknowledgements. The authors would like to thank
Paolo Ferraris, Dean Gaudet, Greg Johnson, Artur Klauser,
Christian Ludloff, Mahesh Palekar, Jeff Raubitschek, Bianca
Schroeder, Divyesh Shah, Arun Sharma, Sivagar Natarajan
Sivagar, Gautham Thambidorai, and Tamsyn Waterhouse
for their consultation and technical assistance in our experi-
ments and the anonymous reviewers for their feedback. This
work was supported in part by grants from Google and NSF
grants CNS-0834403, CCF-0811320, and CCF-0815457.

7. REFERENCES

[1] “AMD Family 10h Server and Workstation Processor Power
and Thermal Data Sheet Rev 3.15,” 2010.

[2] “Intel Xeon Processor 5600 Series. Datasheet, Vol. 1,” 2010.

[3] L. A. Barroso and U. Holzle, The Datacenter as a
Computer. Morgan Claypool, 2009.

[4] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a
planet: The %00516 cluster architecture,” IEEE Micro,
vol. 23, no. 2, 2003.

[5] L. A. Barroso and U. Holzle, “The case for energy-propor-
tional computing,” IEEE Computer, vol. 40 no. IIZJ, 2007.

[6] D. Blaauw, S. Das, and Y. Lee, “Managing variations
through adaptive design techniques,” Tutorial at International
Solid-State Circuits Conference, 2010.

[7] E. V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving
disk energy in network servers,” in Proc. International
Conf. on Supercomputing, 2003.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle, “Managing energy and server resources in
hosting centers,” in Symp. on Operating System
Principles, 2001.

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]
(18]
(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

V. Delaluz, M. Kandemir, N. Vijaykrishnan,

A. Sivasubramaniam, and M. J. Irwin, “Hardware and
software techniques for controlling DRAM power modes,”
IEEFE Trans. Comput., vol. 50, no. 11, 2001.

Q. Deng, D. Meisner, T. F. Wenisch, and R. Bianchini,
“MemScale: Active Low-Power Modes for Main Memory,”
in Architectural Support for Programming Languages
and Operating Systems, 2011.

B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini,
“Limiting the power consumption of main memory,” in
International Symp. on Computer Architecture, 2007.
M. Elnozahy, M. Kistler, and R. Rajamony, “Ener
conservation policies for web servers,” in Proc. l% ENIX
Symp. on Internet Technologies and Systems, 2003.
X. Fan, C. S. Ellis, and A. R. Lebeck, “The synergy between
power-aware memory systems and processor voltage
scaling,” in Workshop on Power-Aware Computing
Systems, 2003.

X. Fan, W.-D. Weber, and L. A. Barroso, “Power
provisioning for a warehouse-sized computer,” in
International Symp. on Computer Architecture, 2007.
S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and

H. Franke, “DRPM: dynamic speed control for power
management in server class disks,” in International Symp.
on Computer Architecture, 2010.

T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr., and

R. Bianchini, “Energy conservation in heterogeneous server
clusters,” in Principles and Practice of Parallel
Programming, 2005.

J. Janzen, “Calculating memory system power for DDR
SDRAM,” Micron DesignLine, vol. 10, no. 2, 2001.

S. Kaxiras, M. Martonosi, Computer Architecture Tech-
niques for Power-Efficiency. Morgan Claypool, 2009.

K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and
S. Reinhardt, “Understanding and designing new server
architectures for emerging warehouse-computing
environments,” in International Symp. on Computer
Architecture, 2008.

D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap:
Eliminating server idle power,” in Arch. Support for
Programming Languages and Operating Systems, 2009.
D. Meisner and T. F. Wenisch, “Stochastic Queuing
Simulation for Data Center Workloads,” in Exascale
Evaluation and Research Techniques Workshop, 2010.
E. Pinheiro and R. Bianchini, “Energy conservation
techniques for disk array-based servers,” in International
Conf. on Supercomputing, 2004.

K. Rajamani, C. Lefurgy, S. Ghiasi, J. Rubio, H. Hanson, and
T. W. Keller, “Power management solutions for computer
systems and datacenters,” in International Symp. on
Low-Power Electronics and Design, 2008.

E. Schurman and J. Brutlag, “The user and business impact
of server delays, additional bytes, and HTTP chunking in
web search,” Velocity, 2009.

D. Snowdon, S. Ruocco, and G. Heiser, “Power Management
and Dynamic Voltage Scaling: Myths & Facts,” in Power
Aware Real-time Computing, 2005.

S. Srinivasan et al, “CMP memory modeling: How much
does accuracy matter?” in Workshop on Modeling,
Benchmarking and Simulation, 2009.

N. Tolia, Z. Wanig, M. Marwah, C. Bash, P. Ranganathan,
and X. Zhu, “Delivering energy proportionality with non
energy-proportional systems — optimizing the ensemble,” in
HotPower, 2008.

VJ Reddi, Benjamin Lee, Trishul Chilimbi, and Kushagra
Vaid, “Web Search Using Mobile Cores: Quantifying and
Mitigating the Price of Efficiency,” in International Symp.
on Computer Architecture, 2010.

Willis Lang and Jignesh M. Patel and Srinath Shankar,
“Wimpy Node Clusters: What About Non-Wimpy
Workloads?” in Workshop on Data Management on
New Hardware, 2010.

FE. Xie, M. Martonosi, and S. Malik, “Intraprogram dynamic
voltage scaling: Bounding opportunities with analytic
modeling,” Trans. Archit. Code Optim, vol. 1, 2004.

