Thin Servers with Smart Pipes:
Designing SoC Accelerators for Memcached

Kevin Lim
. HP Labs
kevin.lim@hp.com
Parthasarathy
Ranganathan
HP Labs

David Meisner
. Facebook
meisner@fb.com

Ali G. Saidi
ARM R&D
ali.saidi@arm.com

Thomas F. Wenisch
EECS, Univ. of Michigan

twenisch@eecs.umich.edu

partha.ranganathan@hp.com

ABSTRACT

Distributed in-memory key-value stores, such as memcached, are
central to the scalability of modern internet services. Current
deployments use commodity servers with high-end processors.
However, given the cost-sensitivity of internet services and the
recent proliferation of volume low-power System-on-Chip (SoC)
designs, we see an opportunity for alternative architectures. We
undertake a detailed characterization of memcached to reveal
performance and power inefficiencies. Our study considers
both high-performance and low-power CPUs and NICs across
a variety of carefully-designed benchmarks that exercise the
range of memcached behavior. We discover that, regardless
of CPU microarchitecture, memcached execution is remarkably
inefficient, saturating neither network links nor available memory
bandwidth. Instead, we find performance is typically limited by
the per-packet processing overheads in the NIC and OS kernel—
long code paths limit CPU performance due to poor branch
predictability and instruction fetch bottlenecks.

Our insights suggest that neither high-performance nor low-
power cores provide a satisfactory power-performance trade-off,
and point to a need for tighter integration of the network interface.
Hence, we argue for an alternate architecture—Thin Servers
with Smart Pipes (TSSP)—for cost-effective high-performance
memcached deployment. TSSP couples an embedded-class low-
power core to a memcached accelerator that can process GET
requests entirely in hardware, offloading both network handling
and data look up. We demonstrate the potential benefits of our
TSSP architecture through an FPGA prototyping platform, and
show the potential for a 6X-16X power-performance improvement
over conventional server baselines.

1. INTRODUCTION

Internet services are increasingly relying on software architec-
tures that enable rapid scale-out over clusters of thousands of
servers to manage rapid growth. As the volume of data that must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’13 Tel Aviv, Israel

Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

be processed at interactive speeds increases, only such scale-out
architectures can maintain performance and availability with sus-
tainable costs in light of hardware failures. Due to their large scale,
efficiency is of particular concern for numerous services (e.g., web
search, social media, video sharing, web email, collaborative edit-
ing, and social games).

Distributed in-memory key-value stores, such as memcached,
have become a central piece of infrastructure to allow online
services to scale, with some services relying on thousands
of memcached servers (e.g., Facebook [27], Zynga, Twitter,
YouTube). Today, operators use the same commodity high-end
servers for their memcached clusters as for other aspects of their
software infrastructure. However, in light of recent trends enabling
cost-effective volume low-power System-on-Chip (SoC) designs
and several prior studies advocating embedded-class CPUs in the
data center [5, 24, 31], we perceive an opportunity to consider new
architectures for memcached.

To discover performance- and power-efficiency bottlenecks, we
undertake a detailed architectural characterization of memcached.
Our study considers both high-performance and low-power
CPUs and network interfaces (NICs), and measures a variety
of carefully-designed benchmarks that explore the range of
memcached behavior. We develop a load-testing methodology
and infrastructure to allow us to reproduce precisely-controlled
object size, popularity, and load distributions to mimic the traffic
amemcached server receives from a large client cluster.

Our characterization paints a frustrating picture—neither high-
performance (Xeon-class) nor current low-power (Atom-class)
multi-core systems provide appealing cost-performance scaling
trends. We discover that, regardless of CPU microarchitecture,
memcached execution is remarkably inefficient, saturating neither
network links nor available memory bandwidth (we estimate that
more than 64 Xeon-class cores are needed to saturate a 10Gb
Ethernet link assuming perfect multicore software scalability).
Instead, we find performance is typically limited by the per-
packet processing overheads in the NIC and OS kernel. Front-
end (branch prediction and fetch) stalls are a key performance
bottleneck across CPU microarchitectures. Despite the small
codebase of memcached itself, frequent trips into the TCP/IP
stack, kernel, and library code result in poor instruction supply due
to ICache misses, virtual memory (VM) translation overheads and
poor branch predictability. ICache and ITLB performance are often
an order of magnitude worse relative to benchmarks commonly
used for microarchitecture design (e.g., SPEC). Furthermore, large
last-level caches seem to provide little benefit. Conversely, we
find that advanced NIC features that optimize packet hand-off from

NIC to CPU, such as segment offload and receiver-side scaling, are
crucial to achieving high throughput.

Our measurements suggest that Xeon CPUs do not provide a
sufficient performance advantage to justify their cost-premium,
and yet, Atom cores cannot achieve high throughput or low
latency under load. The results also point to a need for tighter
integration of the network interface. Hence, we argue for a new
architecture—Thin Servers with Smart Pipes (TSSP)—for power-
efficient high-performance memcached deployment. TSSP seeks
to maintain the energy-efficiency advantage of low-power cores
while mitigating their poor performance when handling networking
operations under high load. To this end, TSSP couples an
embedded-class low-power core to an accelerator for networking
operations that can process memcached GET requests entirely in
hardware in an integrated SoC.

We evaluate the feasibility and potential of such a GET
accelerator using an FPGA prototyping platform [14]. Our
evaluation using this prototype demonstrates that a TSSP
implementation built using a low-power core and integrated
reconfigurable logic (e.g., as in the Xilinx Zynq platform) can
exceed the performance-per-watt of conventional baseline servers
by 6X-16X; implementation in a custom ASIC will likely enable
additional efficiency gains.

The rest of this paper is organized as follows. In Section 2,
we provide brief background on memcached. We describe our
load testing framework in Section 3. We delve into individual
performance bottlenecks in Section 4. Based on our insights, in
Section 5, we propose an SoC memcached accelerator design
and evaluate its performance and energy-efficiency advantages. In
Section 6 we cover related work, and in Section 7 we conclude.

2. BACKGROUND

We first briefly describe the operation of memcached clusters
and their importance in large-scale internet services. Many internet
workloads leverage memcached as a caching layer between a
web server tier and back-end databases. Memcached servers
are high-performance, distributed key-value stores, with objects
entirely stored in DRAM. Under normal usage, each memcached
server is a best-effort store, and will discard objects under an LRU
replacement scheme as main memory capacity is exhausted. Keys
are unique strings and may be at most 250 bytes in length, while the
stored values are opaque data objects and must be 1 MB or smaller.
Memcached is implemented using a hash table, with the key used
to index into the table, and the value (along with other bookkeeping
information) stored as an object in the table.

The memcached interface comprises a small number of simple
key-value operations, the most important being GET and SET.
Memcached is attractive because the server interface is general—
data is simply stored and retrieved according to a single key, a
model which can be applied to nearly any workload. For example,
responses to database queries can be cached by using the SQL
query string as a key and the response as the value. Clients
access data stored in the memcached cluster over the network,
maintaining an independent connection to each server. Typically,
clients use consistent hashing (similar to the method in [15]),
providing a key-to-node hash that load-balances and can adapt to
node insertions and deletions while ensuring that each key maps to
only a single server at any time.

Moreover, memcached is easy to scale from a cluster
perspective. Memcached servers themselves do not directly
interact, nor do they require centralized coordination. If either
throughput or capacity demands grow, a pool can be scaled
simply by directing clients to connect to additional servers;

consistent hashing mechanisms immediately map a fraction of
keys to the new servers. Operationally, it is useful that key-
value throughput can be scaled independent of the back-end storage
system (database servers are typically considerably more expensive
than memcached servers).

As the demands of internet service workloads continue to grow,
so too do the performance requirements of memcached caching
layers. For companies such as Facebook, not only has the number
of users grown exponentially, but so too has the amount of data
required to process each user request. This increasing processing
requirement is inexorably linked to the energy efficiency of the
underlying hardware. Data centers are typically limited by peak
power delivery (i.e, once installed, a data center can only deliver a
fixed number of mega-watts). Therefore, the throughput per watt of
the caching layer is a fundamental limitation of the memcached
installation and a large improvement in energy efficiency translates
to an opportunity to improve performance through greater scale-out
within the data center power budget.

3. METHODOLOGY

Our goal is to perform an in-depth architectural characterization
of the performance of existing servers to identify any inefficiencies
and bottlenecks when running memcached. In this section
we discuss our methodology for evaluating server hardware by
load-testing memcached. Although the API is simple, from
a performance standpoint the memcached workload is more
complex than it may appear. Previous studies of memcached
have used simple load testing tools, such as memblaster or
memslap, which do not attempt to reproduce the statistical
characteristics of live traffic. As our results will demonstrate,
the manner in which memcached is loaded drastically alters
its behavior and microarchitectural bottlenecks. In particular,
we find that the object size distribution has a large impact on
system behavior. The existing load testing tools use either a
fixed or uniform object size distribution and a uniform popularity
distribution, which yield misleading conclusions.

To this end, we develop a stress-testing framework that emulates
the traffic that a large cluster of client machines offer to a
memcached server, using publicly available data and popularity
statistics that approximate typical memcached use cases. Our
workloads exhibit similar statistical properties as recently reported
for several production clusters at Facebook [6].

3.1 Workloads

Memcached behavior can vary considerably based on the size
and access frequency of the objects it stores (the actual values
are opaque byte strings and do not affect behavior). Hence,
we have designed a suite of five memcached workloads that
capture a wide range of behavior. Our goal is to create a set
of easy-to-understand yet realistic micro-benchmarks that expose
memcached performance sensitivity. We refer interested readers
to [6] for statistical analyses of live memcached traffic.

Each of our workloads is defined by an object size distribution,
popularity distribution, fraction of set requests, and whether or
not MULTI-GET requests are used. (MULTI-GETs aggregate
numerous GET requests into a single request-and-response
exchange to reduce networking overheads.) Summary statistics for
each of our workloads are provided in Figure 1. The measured
popularity distributions are shown in Figure 1 (probability as a
function of rank). The zipf-like distribution is consistent with a
previous study by Cha et al [13].

FixedSize. Our simplest workload uses a fixed object size of 128 B
and uniform popularity distribution. We include this workload

10°

100%j
10"
80% L
; 102F T
60% / w R
o : 210° e,
5 | ,. 8
40% ; : 10* -
‘f —_ FixedSizg -+ ImgPreview|
20%)| { |- ImgPreview 10° --- MicroBlog |
¢ | --- MicroBlog/FriendFeed| — Wiki 1
P — wiki 1085 T 3 3 04
0% * 10 10 1 10 10
32B 1KB 32KB 1MB .
Obiect Size Object Rank
Name Single/Multi-get % Writes Object Size Type
Avg. Std. Dev. Min Max
FixedSize Single-get 0% 128 B 0B 128 B 128 B Plain Text
MicroBlog Single-get 20% 1 KB 0.26 KB 0.56 KB 2.7KB Plain Text
Wiki Single-get 1% 2.8 KB 10.4 KB 0.30 KB 1017 KB HTML
ImgPreview Single-get 0% 25 KB 124 KB 4 KB 908 KB JPEG Images
FriendFeed Multi-get 5% 1 KB 0.26 KB 0.56 KB 2.7KB Plain Text

Figure 1: Workload Characteristics. We construct a set of workloads to expose the broad range of memcached behavior. The object size distributions of the workloads differ

substantially. Our measurements show that popularity for most web objects follows a zipf-like distribution, although the exact slope may vary.

because small objects place the greatest stress on memcached
performance; anecdotal evidence suggests production clusters
frequently cache numerous small objects [1].

MicroBlog. This workload represents queries for short snippets
of text (e.g., user status updates). We base the object size and
popularity distribution on a sample of “tweets” (brief messages
shared between Twitter users) collected from Twitter. The text of a
tweet is restricted to 140 characters, however, associated meta-data
brings the average object size to 1KB with little variance. Even the
largest tweet objects are under 2.5KB in size.

Wiki. This workload comprises a snapshot of articles from
Wikipedia.org. We use the entire Wikipedia database, which has
over 10 million entries. Each object represents an individual article
in HTML format. Articles are relatively small, 2.8 KB on average,
but have a notable variance because some articles have significantly
more text. This workload exhibits the highest normalized object
size variance (relative to the mean) of any of our workloads. Object
popularity is derived from the page view count for each article.
ImgPreview. This workload represents photo objects used in
photo-sharing sites. We collect a sample of 873,000 photos and
associated view counts from Flickr. In particular, Flickr provides
a set of “interesting” photos every day; we collect these photos
because they are likely to be accessed frequently. Photo sharing
sites often offer the same images in multiple resolutions. In a
typical web interaction, a user will view many low-resolution
thumbnails before accessing a high-resolution image. We collect
a sample of these thumbnails, which are on average 25 KB in
size. We focus on thumbnails because larger files (e.g., high-
resolution images) are typically served from data stores other than
memcached (e.g., Facebook’s Haystack system [8]).
FriendFeed. We construct our final workload to understand the
implications of heavy use of MULTI-GET requests. Facebook
has disclosed that MULTI-GETs play a central role in its use of
memcached [16]. This workload seeks to emulate the requests
required to construct a user’s Facebook Wall, a list of a user’s
friends’ most recent posts and activity. We reuse the distributions
from our MicroBlog workload, as Facebook status updates and
tweets have similar size and popularity characteristics [6].

Xeon Atom
Processor 1x 2.25 GHz 6-core Xeon 1.6 Ghz Atom
Westmere L5640 D510 Dual-core 2x SMT
12 MB L3 Cache 1 MB L2 Cache
DRAM 3x 4GB DDR3-1066 2x 2GB DDR2-800 SDRAM
Commodity Realtek RTL8111D Gigabit -
Enterprise Broadcom NetXtreme II Gigabit Intel 82574L Gigabit
10GbE Intel X520-T2 10GbE NIC Intel X520-T2 10GbE NIC

Table 1: Systems Under Test (SUT).

3.2 Load Testing Framework

We next describe the load-testing infrastructure we developed
to emulate load from a large client cluster. To fully saturate the
target server, we employ several load generator clients that each
emulate 100 memcached clients via separate TCP/IP connections.
Throughout our experiments, we explore the tradeoff between
server throughput and response time by varying the request
injection rate of our load generator clients; the clients automatically
tune their offered load as high as possible while still meeting a
specified latency constraint.

The load-testing infrastructure first populates and then accesses
the memcached server according to the specific workload’s object
size and popularity distributions. To maximize efficiency, we use
memcached’s binary network protocol. Furthermore, we disable
Nagle’s algorithm, which causes packet buffering, to minimize
network latency [26].

The primary objective of our investigation is to determine which
aspects of system architecture impact memcached performance.
Accordingly, we intentionally decouple our study from network
switch saturation, since many other studies have investigated
efficient techniques to avoid switch over-subscription in data center
networks [3, 4, 17]. All experiments use dedicated switches or
cross-over links between the load generators and test servers.

3.3 Systems under test

We study two drastically different server systems, a high-
end Xeon-based server and a low-power Atom-based server,
and three different classes of network interface cards (NIC),

. [l FixedSize
100 g 127 M MicroBlog
— Achieved — cPU 10
2.5M — Theoretical — Network 2 mgrreview
80 G (== FriendFeed
2M S s
< 60 2
c < .
4 k] - 6
& 1.5M E 5
N 40 UQ-, 4
M 5 @
<,
500K 20 a -
0 0 Xeon Atom
48 648 1KB 64KB B 648 64KB €0 0

Fixed Object Size

Figure 2: Fixed object size microbenchmark. memcached’s behavior varies greatly as a function of
object size. For small objects, the workload is far from its theoretical performance (see left) because it is
processing constrained (see right). Conversely, large objects are primarily network bandwidth bound and do
not require much processing at all. Realistic workloads, however, have variation in object size and operate

between these two extremes.

spanning consumer-grade, manufacturer-installed, and high-end
10GbE NICs. The details of each system are shown in Table 1. By
exchanging NICs and selectively disabling cores, we evaluate 21
different system configurations. Our goal is to cover a wide range
of possible server memcached configurations to gain greater
insight into the importance of the different microarchitectural
bottlenecks.

The Xeon-class system is typical of the memcached servers
described in media reports. Though our test system includes
only 12GB of RAM (lower than is typically reported), we have
confirmed that memory capacity has no direct effect on latency or
throughput. (Note that memory capacity per node indirectly affects
performance because the share of a cluster’s overall load directed
to a particular server is proportional to the server’s share of the
overall cluster memory capacity.) The Atom system represents
a low-power alternative to improve energy efficiency and enable
greater scale-out within a fixed data center power budget, as
suggested in several recent studies [24, 31]. We study several
NICs to demonstrate that the feature set of the NIC and driver,
rather than the theoretical peak network bandwidth, primarily affect
memcached performance, particularly for small object sizes.

All systems run Ubuntu 11.04 (2.6.38 kernel) with memcached
1.4.5. We gather utilization, response time, bandwidth, and
microarchitectural statistics using our load generators, sysstat,
and perf.

4. MEMCACHED BOTTLENECKS

To understand how to design optimized memcached systems,
we begin with a simple microbenchmark to determine when
memcached is network-bandwidth-limited and when CPU
performance begins to matter. Figure 2 depicts this result. In
the left sub-figure, we report the actual and theoretical (based on
network bandwidth) requests-per-second for GET-requests to fixed-
size objects. Below a critical size of about 1 KB, an enormous gulf
opens between theoretical and actual performance. In the right sub-
figure, we illustrate the cause: the performance bottleneck shifts
from the network to the CPU. In Figure 3, we see that the CPI
for memcached is unusually high (relative to e.g., SPEC) and
far away from the theoretical peak instruction throughput of either
microarchitecture.

In the rest of this section, we explore the causes and
implications of memcached microarchitectural bottlenecks. First,

1KB
Fixed Object Size

Figure 3: Microarchitectural inefficiency with Memcached.
Modern processors exhibit unusually high CPI for Xeon and
Atom-based servers. Xeon-class systems operate at less than
one eighth of their theoretical instruction throughput. Atom-
class systems fare even worse. Compared to other workloads
(e.g., SPEC CPU), these CPIs are high and demonstrate that
current microarchitectures are a poor match for memcached.
We identify specific microarchitectural hurdles in 4.1.

in Section 4.1, we explore why memcached exhibits the
exceedingly poor CPIs seen in Figure 3. In Section 4.2, we explore
the impact of the server’s networking stack. Then, we examine the
overall picture of power efficiency of Atom and Xeon systems to
consider the hypothesis that low-power cores might enable better
peak-power efficiency than servers built with high-performance
processors in Section 4.3. Finally, we comment on the broader
implications for memcached system architecture in Section 4.4.

4.1 Microarchitecural Inefficiency

We begin by investigating what microarchitectural bottlenecks
cause the poor CPI we observe in memcached. We gather
performance counter data for a variety of microarchitectural
structures on both Atom and Xeon cores. We report results with
error bars indicating one standard deviation from the mean.

Broadly, our results suggest that current processors (whether
Xeon-class or Atom-class) do not run memcached efficiently:
Xeons achieve only one eighth and Atoms only one sixteenth
of their theoretical peak instruction throughput. Prior to
undertaking this microarchitectural study, our expectation was
that memcached might be memory bandwidth bound, with
performance limited primarily by the speed of copying data to
outgoing network packets. In fact, measuring bandwidth to main
memory, we find it is massively underutilized, always falling
under 15% of max throughput and often much less (e.g., 5% for
MicroBlog).

Surprisingly, the most significant bottlenecks lie in the
processor front-end, with poor instruction cache and branch
predictor performance. Neither increased memory bandwidth, nor
larger data caches are likely to improve performance. Future
architectures must address these bottlenecks to achieve near-wire-
speed processing rates. We address caching, address translation,
and branch prediction behavior in greater detail.

Caching bottlenecks. Figure 4 presents cache performance
metrics. Our most surprising finding is that the instruction cache
performance of memcached is drastically worse than typical
workloads. A typical SPEC CPU 2006 integer benchmark incurs at
most ten misses per thousand instructions. In contrast, Figure 4 (a)
reveals rates up to 15x worse. Our result is surprising because
memcached itself comprises little code, fewer than 10,000 source
lines. The poor instruction behavior is due to the massive footprint
of the Linux kernel and networking stack.

=
=

,_
=3

%. [FixedSize » [FixedSize %. [FixedSize
E 140 HEEE MicroBlog _5 140 Bl MicroBlog E 10 HEE MicroBlog
g 120 . Wiki 8 190 . Wiki g 120 Wik
5 I ImgPreview ﬁ I ImgPreview 3 I ImgPreview
S 100 [FriendFeed £ 100 [FriendFeed > 100 3 FriendFeed
2 %0 S w0 2 50
o = °
< 60 g o0 g 60
S 40 8 40 S 40
3 s 3 -
£ 20 s 20 2 20
= =
0 Xeon Atom 0 Xeo Atom 0 Xeon Atom
(32KB) (32KB) (32KB (24KB) (256KB) (1MB)
(a) L1 ICache MPKI (b) L1 DCache MPKI (c) L2 MPKI
100 100 100
I FixedSize I FixedSize I FixedSize
I MicroBlog I MicroBlog § I MicroBlog
80 - Wiki 80 - Wiki 80 - Wiki
;\3 I ImgPreview ;\5\ I ImgPreview ;\3 I ImgPreview
@ 60 =9 FriendFeed @ 60 =9 FriendFeed o 60 =9 FriendFeed
© © ©
1] 1] (%]
& 40 & 40 & 40
= = =
20 20 20
, IIII T L omfill EEmes ! '.II '.I.
Xeon Atom Xeo Atom Xeon Atom
(32KB) (32KB) (32KB (24KB) (256KB) (1MB)
(d) L1 ICache miss rate (e) L1 DCache miss rate (f) L2 miss rate

Figure 4: Caching Behavior. Memcached performance suffers from an inordinate number of ICache misses (over an order of magnitude worse than SPEC benchmarks). L1 data
caching performs significantly better. L2 caching performs moderately well, although many of the hits are to service instructions. The Xeon also has a 12MB L3 (data not shown),

but it provides little benefit, exhibiting miss rates as high as 95%.

L1 data cache behavior is more typical of other workload classes
(e.g., SPEC). There are numerous compact but hot data structures
accessed as a packet traverses the networking stack that can be
effectively cached in L1. L2 caches are moderately effective,
missing between 15-25% of the time as seen in Figure 4 (c).
However, the majority of L2 accesses are for instructions that do
not fit in the L1 instruction cache; if these are removed, the L2 data
cache miss rates are substantially higher, in excess of 50%. Unlike
the Atom, the Xeon processor also has a large L3 cache. We find
the L3 to be highly inefficient, with miss rates from 60% to nearly
95%, a finding that suggests that increasing data cache sizes will
yield little gain.

Overall, our analysis suggests that memcached requires far
more instruction cache capacity than cores currently provide
(primarily to hold the OS networking stack), but will not gain from
larger data caches.

Virtual memory translation bottlenecks. In most applications,
TLB misses are rare events and the overhead of virtual memory
is hidden. A recent characterization of the Parsec Benchmark
suite [10] finds that ITLB miss rates typically occur at a rate of
3x10™* MPKI to 1 MPKI. DTLB miss rates fall generally in the
range of 1x10~2 to 10 MPKI, but can be as high as 140 MPKI. In
Figure 5, we see comparable TLB behavior for Xeon, but find that
Atom provides an insufficient ITLB (16 entries vs. 128 for Xeon),
which contributes significantly to its instruction fetch stalls. DTLB
pressure is not a problem for either class of core.

Branch prediction bottlenecks. Figure 6 demonstrates that the
front-end bottlenecks seen in the instruction caches also extend to
the branch predictor. Despite numerous bulk memory copies with
tight, predictable loops, branch misprediction rates are significant,
particularly on the Atom, which has a considerably less capable
branch predictor than Xeon.

The table in Figure 6 lists the top functions by execution time
that also have misprediction rate of > 10%. Many of the memory

copies that dominate the total execution time are not present in the
list. While they have many branches, they are highly predictable
with mispredict rates of < 1%.

The entire networking stack is well represented in the table
from the entry into the kernel from userspace sys_sendmsg,
through the tcp stack tcp_ *, the device layer dev_ x, and finally
the NIC driver e1000_+. The networking stack has significant
irregular control flow, due to the complexity of the protocols
and numerous performance optimizations. The kernel memory
management functions are invoked primarily to allocate and free
buffers for network packets.

Usercode also contains highly unpredictable branches. Several
synchronization functions (e.g., _pthread_mutex_lock)
figure prominently in the time breakdown, and have poor branch
predictability because branch outcomes depend on synchronization
races for contended locks. Other memcached functions contain
case statements that change behavior based on the current
connection state or request, which are difficult to predict.

4.2 Impact of NIC quality

While it may seem obvious that memcached performance
depends on networking performance, it is somewhat surprising that
the quality of a NIC (i.e., its efficiency on a per-packet basis) is
more important than raw bandwidth. We find that the choice of
NIC is critical—not all NICs are created equal. We now explain
the features that differentiate NIC performance and quantify their
benefit.

There are a variety of features that advanced NICs can support,
listed in Figure 7. Segment offloading allows the driver to provide
the NIC a payload that is larger than the protocol maximum
transfer unit; the NIC handles the task of splitting the packet,
saving the CPU time of generating additional packet headers.
Software batching, also called Generic Receive Offload (GRO),
batches multiple smaller requests between the driver and the TCP
stack, which ultimately reduces TCP stack invocations, reducing

ot

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

SRS
ot

10}

Misses per Kilo-Instructions (mpki)
[N}
ot [

Atom .
(16 Entries)

Xeon
(128 Entries)
(a) Instruction TLB MPKI

%70 Il FixedSize

£ BN MicroBlog

@ 60 B Wiki

-% 50 EEl ImgPreview

=] [FriendFeed

g 40

230

<

8_20

3

210

=

0 Xeon Atom
(128 Entries) (16 Entries)
(b) Data TLB MPKI

Figure 5: Virtual memory behavior. The Atom microarchitecture suffer from numerous translation misses due to its ITLB mere 16 entries. DTLB misses fall within a nominal

range for both processor classes.

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

10

jnnng

Misprediction Rate (%)
[oe]

Xeon Atom

Function %Time Misprediction Rate
tep_sendmsg (k) 2.12% 10.74%
copy_user_generic_string (k) 1.81% 10.97%
pthread_mutex_lock 1.04% 37.56%
event_handler 0.82% 13.68%
memcached main 0.77% 18.68%
tep_clean_rtx_queue (k) 0.77% 15.23%
kmem_cache_alloc_node (k) 0.72% 11.43%
dev_queue_xmit (k) 0.71% 12.19%
e1000_clean_rx_irq (k) 0.71% 18.27%
sys_sendmsg (k) 0.63% 12.96%

Figure 6: Branch Prediction. The table lists the top ten functions with misprediction > 10% out of fifty that consume the most execution time for the Microblog workload running

on the Atom system.

processing time. These features coupled with the more optimized
interface between the driver and device (many fewer programmed
I/0 requests) in the Enterprise NIC result in a 70% - 110%
performance increase in all but one workload.

Multiple-queue (MQ) support allows the NIC to communicate
with a driver running on more than one core. The receive portion
of this, Receiver-Side-Scaling (RSS), hashes packet header fields
in the NIC to choose among the available receive queues, each
assigned to a different core. The hashing ensures that a single
core processes all packets received on a particular flow, improving
locality. Transmit scaling allows multiple CPUs to enqueue packets
for transmission simultaneously without the need for locks. For the
FixedSize workload, an impressive performance improvement of
47% is achieved with multiple queues. The gains are so pronounced
in this workload because its average packet size is the smallest.
Most of the other workloads see little gain at 1Gb/s line speeds
because a single CPU core is able to keep up with the resulting
request rate due to the larger average packet size.

The 10GbE and 10GbE+4MultQueue bars in each cluster show
the effectiveness of using a 10Gb/s NIC (with and without multiple-
queues, respectively). The impact of greater network bandwidth
(10GbE bar) varies drastically. For workloads with large average
object size (Wiki and ImgPreview), gains are up to 22x. (Both
ports of the 10GbE NIC are utilized for testing and thus the
maximum bandwidth from the 10Gb NIC is actually 20Gb.) Unlike
the Enterprise NIC, the 10GbE NIC supports hardware batching,
or Receiver Side Coalescing, which performs similar batching in
hardware. Enabling multi-queue support further increases these
gains. In contrast, the workloads with small average packet sizes
(Microblog and FriendFeed) are able to utilize 1.4Gbps, 2.2Gbps

respectively, only a small fraction of the available bandwidth.

4.3 Power-Performance Across Architectures

Efficiency relative to peak server power is a crucial concern in
designing memcached clusters. Since peak power consumption
is often the limiting factor in the capacity of a data center, using
machines with a better throughput per peak watt may allow the
deployment of additional capacity. If Atom-based servers provide
better throughput efficiency with respect to peak power, then, in
the aggregate, a memcached cluster with a fixed power-budget
constraint could support higher overall throughput with Atom-
based systems, even though individually the servers support fewer
requests each.

The sustainable throughput of a server depends on the latency
constraint imposed on each individual request. As we offer more
load to a server, throughput increases until we reach saturation,
but per-request latency grows even faster due to queueing effects.
Hence, we consider the power efficiency of each type of server as a
function of a target 95th-percentile request latency. Figure 8 shows
the power efficiency in kOps per peak watt for both Atom and
Xeon for our FixedSize and ImgPreview workload, given a specific
latency constraint (defined by the x-axis). As latency requirements
may vary per deployment, we show a continuum of latency targets.
We define “peak watt” as the highest full-system power draw we
ever observed for each server across our experiments, measured by
a Yokogawa power meter connected to the AC side of the power
supply. We assume that a data center is provisioned based on this
peak power (the implications of power capping schemes are beyond
the scope of this study). Note that power efficiency is a measure of
data center provisioning capacity, and is not a measure of energy

5

Q.

<

(@)}

Commodity Enterprise ~ 10GbE 3

Approximate Price $10 $145 $850 E
Segment Offload® X v v i}
Multi-Queue® X v v g
Software Batch X v v o
Hardware Batch X X v e
S

o

z

“While the Realtek NIC hardware supports multiple queues and segment
offload, the former isn’t supported by the Linux driver and the latter is disabled
by the driver by default.

I FixedSize
Il MicroBlog
E Wiki

I ImgPreview
™ FriendFeed

=N W OO =] 0 ©

(Requests per second)

o

NIC Configuration

Figure 7: NIC Features. NICs have a number of key features that distinguish their performance beyond pure bandwidth. The data presented is the maximum achievable throughput
with the various NICs and a latency constraint of Sms with all 6-cores of the Xeon enabled. We demonstrate the performance of each of two classes of 1GbE NIC (Commodity
and Enterprise) and a 10GbE model. We also selectively disable and enable multiple-queues(MQ). Note that adding these features can be expensive as is apparent with the switch
between commodity and enterprise. However, these features can be quite powerful, for example with FixedSize Enterprise and MQ provide over a 2.5x performance boost. Wiki and
ImgPreview suffer from being network bandwidth bound and achieve large gains from the switch to 10GbE alone.

efficiency.

Surprisingly, even though the Atom is a low-power processor
with a significantly lower peak power than the Xeon, its power
efficiency is considerably worse. A cluster provisioned with Xeons
outperforms one provisioned with Atom servers by as much as a
factor of 4 for a given fixed power budget.

4.4 Implications

Our analysis has revealed significant microarchitectural bottle-
necks that cause both Atom- and Xeon-based servers to achieve
surprisingly low instruction throughput for memcached. While
the notion of using low-power servers to improve scalability un-
der a power constraint initially appears appealing, our results in
Section 4.3 indicate that this strategy falls short on two fronts: (1)
current Atom-based systems fail to match the low per-packet pro-
cessing latency that current Xeons can achieve at moderate loads,
which may preclude their use from a latency perspective, and (2)
at almost any load, the worst-case power draw of the current Atom
remains too high to justify the loss in per-server throughput—Xeon
systems are simply more efficient from a provisioning perspective.

What, then, might architects do to improve the capacity of a
memcached cluster without resorting to raising the power budget
and deploying additional Xeons? One alternative might be to
leverage multicore scaling and deploy servers (Atom or Xeon) with
a larger number of cores. However, our throughout measurements
indicate that, even if throughput scales linearly with the number of
cores (which is difficult to achieve from a software perspective)
at least 6 Xeon cores are needed to saturate a 1Gb ethernet
link and over 64 Xeon cores are required to saturate a 10Gb
link when serving small (128-byte) values. Simply scaling the
number of cores per server is not an appealing avenue to improve
memcached provisioning efficiency.

However, our microarchitectural analysis also reveals a number
of opportunities to eliminate processing bottlenecks that plague
both the Atom and Xeon. Foremost, we note that the long execution
paths in the networking stack are one of the central causes of
poor microarchitectural performance. The large code footprint of
the kernel, networking stack and NIC driver thrashes instruction
supply mechanisms. Secondly, our analysis of the impact
of NIC improvements shows that tighter integration between
NIC and CPU (e.g., segment offload and multi-queue support)
substantially improves performance. These observations point us
towards a design where we leverage hardware acceleration of the

networking stack to accelerate the common-case paths through the
memcached code. This approach can simultaneously accelerate
packet processing and remove the pressure that the networking
stack places on the microarchitectural structures for instruction
supply. In the next section, we propose Thin Servers with Smart
Pipes, a new architecture for memcached based on this concept.

5. OVERCOMING BOTTLENECKS:
THIN SERVERS WITH SMART PIPES

Our microarchitectural analyses motivate an architecture that
addresses networking bottlenecks and their associated kernel
burden. We leverage the opportunity from the industry trend
towards increasing ease of integrating processors with accelerators
and networking components in an SoC design. We propose an SoC
architecture that implements the most latency- and throughput-
critical memcached task, GET operations, in hardware. Our
design pairs a hardware GET processing engine and networking
stack near the NIC, integrating both with a conventional CPU to
handle less latency- and throughput-sensitive operations.

As recent studies of large-scale memcached deployments
indicate an up to 30:1 GET/SET ratio [6], shifting GET processing
to hardware allows approximately 97% of operations to be
offloaded from the core enabling drastic improvements in both
performance and performance/watt. However, by reserving more
complex functionality to software, we avoid the programmability
difficulties of a hardware-only implementation for non-critical
operations (e.g., logging). Because the vast majority of processing
shifts from the CPU to a hardware pipeline, our approach enables
an embedded-class core to handle the remaining load. Hence, we
can gain the power reductions of an embedded-class core without
sacrificing latency and throughput, as in the Atom-based system.
We therefore call our design Thin Servers (embedded class cores)
with Smart Pipes (integrated, on-die NIC with nearby hardware to
handle memcached GET requests).

5.1 TSSP Architecture

The overall TSSP architecture is shown in Figure 9. The SoC
comprises one or more CPUs, a memcached hardware unit, and a
NIC, which communicate to handle incoming requests. A system
MMU translates virtual addresses that can be shared between
software and hardware. The SoC has two memory controllers and
a shared interconnect that includes both the processors and the 1/0
devices. The hardware accelerator can respond to a GET request

35 ® Atom 4 Xeon
3
AR
25 A
" N
g .t
=z 2 4h
] V.
S &
& A
Z1L5 A
Q A
e}
1 e 00 o o T
A s® ®
0.5 Y T
0 -
0.0001 0.001 0.01 0.1 1
Latency (s)
(a) FixedSize.

=4
o

© Atom A Xeon

B

A 4
2 A £
£04 N
= A
£ A
o3 4
3
& A
=02
SO° T o) o
0.1 A of
0 ¢
0.0001 0.001 0.01 0.1 1
Latency (s)
(b) ImgPreview.

Figure 8: Power Efficiency vs. Latency. These figures show power efficiency (throughput per peak Watt) as a function of 95th-percentile latency constraint for Atom and Xeon for

the FixedSize and ImgPreview workloads.

Memcache
Accelerator

Processors t t

7y l System MMU I

\4 t

Interconnect & L3 cache

{L /
\‘ A

Memory Memory
Controller Controller

NIC <>

Memcached Accelerated SoC

Figure 9: Thin Server with Smart Pipe architecture. Our TSSP design includes
low-power cores, an integrated NIC, and a tightly coupled memcached accelerator
in an SoC. The memcached accelerator is used to process GET requests entirely in
hardware.

without any software interaction, but all other request types and
memory management are handled by software.

Our design leverages several common characteristics of
memcached workloads. First, we optimize for GETs, as
they vastly outnumber SETs and other request types in most
memcached deployments [6]. Second, as memcached is a best-
effort cache, we use UDP, a lighter-weight protocol than TCP that
provides more relaxed packet delivery guarantees, for requests that
will be handled by the hardware GET accelerator. Requests that
must be reliable (e.g., SETs), are transmitted over TCP and will be
executed by software. Our decision to split traffic between TCP
and UDP matches optimizations reported for some memcached
deployments to improve software performance [9]. We verify in
Section 5.5 that simply switching all traffic from TCP to UDP is
insufficient to obtain the power-efficiency that TSSP can achieve.
Lastly, we split memcached’s lookup structure (hash table) from
the key and value storage (slab-allocated memory) to allow the
hardware to efficiently perform look-ups, while software handles
the more complex memory allocation and management.

Figure 10 shows in detail the NIC and the memcached
hardware unit. The flow affinitizer, which normally routes between
several hardware queues destined for different cores based on
IP address, port, and protocol, has been modified to allow the

memcached accelerator to be a target. Similarly, on the transmit
path, the NIC has been modified to allow packets to both be
transmitted through the normal DMA descriptor rings as well as
from the memcached hardware. After a packet is routed to the
memcached hardware, it is passed to a UDP Offload Engine
which decodes the packet and places the memcached payload into
a buffer for processing. This design requires few NIC modifications
and leverages flow affinity features already present in Gigabit NICs
to route traffic across the accelerator (UDP on memcached port)
and software (TCP on memcached port).

After the traffic is routed, our memcached hardware deciphers
the request and passes control signals along with the key to a
hardware hash table implementation. Since one of our design goals
is to allow the hardware to respond to GETs without software
involvement, the hardware must be able to perform hash-table
lookups. This hash table must be hardware-traversable, so we
choose a design in which the hardware manages all accesses to
the hash table (including on behalf of cores) to avoid expensive
synchronization between the hardware and software. Figure 11
illustrates the hash table and slab memory management scheme.

A critical concern with hardware hash tables is the requirement
to bound the number of memory accesses per lookup, which makes
some space-efficient software designs (e.g., cuckoo-hashing)
infeasible. Kirsch and Mitzenmacher [22] demonstrate how to use
key relocation and a small O(100) CAM structure to make hash
conflicts extremely rare. For a given hash there are four possible
slots in which a key may reside; if a conflict occurs and none of
the four locations is available, the hardware attempts to relocate a
victim key to a secondary location. Should this relocation fail, the
hardware places the offending key in the CAM. In the extremely
rare case the CAM is full, a key is discarded (in violation of the
design objective to replace keys in LRU order).

We design each hash table entry to contain a fixed-size identifier
(key’), a pointer to the memory location of the object (key,
value, bookkeeping information), and a bit to indicate if it is free.
Memcached keys are of variable size, ranging from 1 to 255 bytes;
storing the keys directly in the hash table would make it difficult to
manage space and traverse the hash table in hardware. Therefore
we only store a 64-bit identifier, key’, based on the actual key in
the hash table. We can calculate key’ in several ways, for example,
using the low-order bits from each byte of the actual key. Thus
when a hash table look up is performed, each entry has its key’
compared with the key’ of the requested key.

Upon a match, the full key (stored in memory) is compared. The

Standard NIC with support for multiple receive (e.g RSS) and transmit queues
—| L
Flow
Affinitizer Bus Interface Unit
I~ | || [RXDMA, Buffering, Checksum] <«
-+ S u
PHY MAC >
> > ‘L 1
1
TX Buffer | Bus Interface Unit
<] ~L| [TX DMA, Buffering, Checksum]
Packet Input UDP Output Response
Decipher |¢— Memory |« Offload [« Memory |« Packet
P (FIFO) Engine (FIFO) Generator
Key to > .
) Hash Accounting
(Eﬁ:soh) ™| Lookup Ly | | Update |
Data >
A Access
(W | il
4
Memcached Accelerator

Figure 10: NIC and GET accelerator details. The major device blocks for the GET
accelerator are illustrated in this figure along with how the accelerator is integrated
into a typical NIC. The PHY, in the left side of the figure, would be connected to the
data center network, while the connections on the right side of the figure are connected
to the SoC fabric as shown in Figure 9.

hardware then updates the key’s last-access timestamp (for LRU
replacement) and builds a memcached response packet. If no
match is found, the hardware sends a miss response packet. The
response packet is passed to the UDP offload engine, which adds
UDP and IP headers and forwards the complete packet to the NIC
hardware for transmission.

5.2 Software Support

Whereas TSSP manages the memcached hash table in
hardware, other aspects, such as memory allocation, key-value
pair eviction and replacement, logging, and error handling, are
implemented in software. Leaving these less frequent, yet more
complex, operations to software enables software updates and
improves the feasibility of the hardware design (in particular the
slab memory allocation is difficult to implement in hardware).

To insert new entries into the cache (e.g., on a SET), the software
slab allocator reserves memory and copies the object (the key,
value, and some accounting information) into place. The software
then instructs the hardware accelerator (via programmed 1/0) to
probe the hash table with the desired key. The hardware responds
indicating that space is available, or returns a pointer to an object
that must be evicted. If an eviction is necessary (due to hash table
overflow), software then frees the corresponding object’s storage.
The software then instructs the hardware to place the new object in
the hash table, and the hardware calculates and stores the object’s
key’ and address in the hash table.

To implement LRU replacement for stale objects, the software
maintains a list of the oldest objects in each slab. If this list
reaches a pre-determined low-water-mark, software scans the slab
linearly and enters the oldest N objects to the replacement candidate
list. Object timestamps are updated upon access by the hardware.
When an object is selected for replacement, its address is sent to
the hardware to remove it from the hash table and its storage is
recycled.

5.3 Evaluation platform
TSSP performance is determined primarily by the speed of

Flags Software Owned |
1
Time 1
stamp —— Slab
Key L
eoe
Value o
1 |t
A
A
i
vowe | TLLT LT LT[L]
pointer
T T T
o | 1
key'] peme=s ' 0
___________ 1
e Lo Secondary
Flags | Hashed Key
[Valid] |-
Hardware Owned

Figure 11: TSSP - Hardware and Software data structures. The ownership of the
data structures is split between the hardware and software, allowing software to handle
complex operations such as memory management or logging. The hardware owns the
primary hash table to enable quick lookups and processing.

GET operations. Therefore to evaluate our proposal, we seek
to understand the implications of accelerating GETs in hardware.
The full system interactions and multi-gigabyte workloads of
memcached make it difficult to use simulation to model our
design with sufficient accuracy. Instead, we leverage a recent
hardware prototype [14] that implements memcached entirely
as an FPGA appliance. This FPGA appliance implements
SETs and GETs entirely in hardware, and includes numerous
design compromises to implement memory management and
key replacement fully in hardware. In contrast, we employ
hardware acceleration only for GETs, relying on software for
remaining functionality in the context of an SoC design coupling
a general-purpose embedded core with a memcached-optimized
accelerator. However, the existing FPGA design still serves as
a useful platform to make performance projections for our TSSP
GET accelerator.

The existing FPGA implementation targets an Altera DE4
development board with a Stratix IV 530 FPGA. The board has two
4GB DDR2 memory modules and four 1GbE ports. The design
comprises a custom-built memcached implementation, a UDP
offload engine, memcached packet parsing, hash calculation, hash
table lookups, and slab memory management. Additional Altera IP
blocks are used to implement the Ethernet IP and DDR2 memory
controller.

5.4 Area and Power

We estimate the power and area requirements of TSSP based
on a detailed breakdown of the FPGA design. The hardware
components reused in TSSP require a total of approximately 8,000
Look Up Tables (LUTSs), barely 2% of the FPGA.

Based on the existing hardware breakdown, we estimate the
implementation costs of TSSP in the Xilinx Zynq platform [2],
an SoC platform with a dual-core ARM A9 processor and on-
die configurable logic. The Zynq can operate at frequencies
up to 1GHz and provides 78,000 configurable LUTs—more than
sufficient for our design—in a 6W power envelope. We estimate
TSSP’s full-system power requirements by adding the Zyng’s
power requirements to that of similar non-CPU components of
the Atom-based server system studied previously. As TSSP is an
SoC that integrates additional components, such as the NIC, it can

System Power Perf. Perf./W Norm. Perf./W
(W) (KOps/Sec) (KOps/Sec/W)

TSSP 16 282 17.63 16.1x
Xeon-TCP 143 410 2.87 2.6x
Xeon-UDP 143 372 2.60 2.4x
Atom-UDP 35 58 1.66 1.5x
Atom-TCP 35 38 1.09 1.0x

Table 2: TSSP energy efficiency comparison for FixedSize workload. Results for
Xeon and Atom systems are shown for both TCP and UDP to isolate benefits from
using UDP connections.

achieve lower power than the Atom platform (the Zynq platform
includes an integrated NIC). Combined, we arrive at an overall full-
system power estimate of 16W. A Zyng-based platform implements
the TSSP GET accelerator in programmable logic; a custom ASIC
could further reduce power requirements at the cost of ease of
upgradability as memcached software implementations evolve.

5.5 Performance and Efficiency

We estimate the performance of our TSSP architecture based
on measured processing time of the FPGA implementation of
portions of the memcached application. (In some cases, we
had to limit the key sizes and value sizes of the workload to
fit the constraints of the FPGA platform, but we do not expect
this to change our results qualitatively.) We calculate total GET
throughput by measuring end-to-end latency for GET operations
on the FPGA as a function of key and value size. We then
calculate total processing time for the stream of GET operations
seen in our workloads from these per-request measurements. Since
GET operations do not require software intervention or hardware
communication between the TSSP accelerator and core, the end-
to-end latency measured on the FPGA accounts for the entire GET
turnaround time. This calculation allows us to determine the total
time required to complete a certain number of operations, and we
thus translate the result to overall throughput. We focus specifically
on those workloads that are almost exclusively GET operations,
which include the FixedSize, Wiki, and ImgPreview workloads.
Based on each request’s value size, we determined the latency for
the prototype to process the GET request.

Our results show that, based on an FPGA prototype running at
125MHz with a 1Gigabit Ethernet NIC, our proposed TSSP design
achieves throughputs of 282 KOps/s, 68 KOps/s, and 80 KOps/s for
the FixedSize, ImgPreview, and Wiki workloads, respectively.

Combining our power and throughput numbers, we calculate the
overall efficiency of our TSSP architecture. The results, based
on the FixedSize workload, are shown in Table 2. We see that
compared to the baseline Atom and Xeon systems using TCP, the
TSSP design provides 16X improvement over the Atom design,
and 6X improvement over the Xeon design. We expect greater
improvements if the accelerator were implemented as an ASIC
rather than in an FPGA.

Based on the bottlenecks identified for the Atom-based system,
one reasonable hypothesis is that a low-power core with an
improved front end could perform as well as TSSP. To match the
efficiency of TSSP, however, an improved Atom system requires a
10X performance improvement within its existing power envelope.
We note that the Xeon system, which dedicates significantly
more resources to the front-end, still achieves only 7X better
performance than Atom with a far higher power draw. Hence, even
with a front end as capable as Xeon, we do not expect an Atom
system to match the performance or power-performance efficiency
of TSSP. Similarly, though TCP offload might improve high-end
system performance, TSSP provides a 6X performance/watt gain

over the Xeon system and high-end NIC we analyze; we do not
expect TCP offload alone to provide a 6X performance boost and
instead expect that TSSP will maintain its efficiency advantage.

To ensure our use of UDP in the TSSP architecture was not
the only source of efficiency improvement, we also tested our
existing servers using UDP. While moving to UDP does improve
Atom performance significantly (by 53%), its power efficiency
remains well below that of the Xeon, and our TSSP design still
provides greater than 10X improvement. On the other hand,
UDP only minimally impacts Xeon performance, incurring a
small degradation as some packets are dropped. Comparing
our baseline TCP results to our UDP results indicates that our
TSSP benefits come primarily from shifting software burden into
hardware. Our findings regarding the impact of UDP have been
corroborated by Facebook engineers [1], who indicate that for a
large-scale deployment, switching to UDP provides at most a 10%
performance improvement.

6. RELATED WORK

Other memcached-optimized designs. Memcached has been
studied in the context of the Tilera many-core processor
architecture [9]. Although that study demonstrates substantial
performance gains, it does not enumerate the scalability bottlenecks
in memcached that we identify (e.g., the NIC and TCP/IP stack),
and still focuses on a high-power, high-performance solution.
Other work [18] has looked at using a GPU to accelerate the
hash table look up portion of memcached. In contrast, our
work designs a solution targeting key energy-efficiency bottlenecks
across the entire system stack, using a low-power SoC design with
memcached-optimized accelerators.

The work in [14] discusses our experiences developing a
memcached appliance on an FPGA platform, implementing the
entire algorithm in hardware. TSSP’s objective differs from [14],
improving in its functionality rather than in performance. The
prior design is an FPGA-only implementation that supports only
GET and SET operations, neglecting other important operations,
such as INCR, ADD, or CAS, and makes numerous design
compromises (e.g., restrictive memory management, no support for
software upgrades, logging or debugging). TSSP on the other hand
avoids these restrictions by relying on hardware only to accelerate
the common case (GETs), allowing software to provide a full-
featured memcached system. Based on recent industry trends,
our proposed SoC TSSP design is likely to have more market
acceptance than the FPGA-only design.

Improving networking. Other studies have also identified the
network stack as one of the key bottlenecks for memcached
performance. One work has proposed using non-commodity
networking hardware (e.g., Infiniband) and RDMA interfaces [20]
to improve performance. Other work proposes to improve
performance using a software-based RDMA interface over
commodity networking [30]. Meanwhile, Kapoor and co-authors
have implemented user-level networking and request partitioning
to remove network bottlenecks [21]. In comparison, we focus
on commodity Ethernet-based systems, as Ethernet currently leads
to more cost-effective clusters. Unlike RDMA-based solutions,
which can push the performance burden to the client machines,
our design supports the standard memcached interface with no
modifications.

Improving software scalability. In earlier versions of
memcached, heavy contention on a few key locks caused poor
software scalability. In response, some works [25, 32] propose

modified designs that use partitioned structures to achieve better
scalability. Additionally, memcached developers have also tried
to improve scalability in recent releases by adding finer-grained
locking. These developments are orthogonal to our work, as they
do not address the significant networking overheads we identified,
and do not greatly improve the energy efficiency of a single system.

Other work. Similar to our examination of Xeon- and Atom-
class servers, the power-performance trade-offs between “wimpy”
or “beefy” architectures have been considered for other workloads
[24, 31], but have not been studied for memcached. Others have
looked at addressing the scalability of TCP/IP stacks and NICs and
ways to reduce packet processing overheads. There is significant
interest in designing ultra-low latency networked systems, but most
work has focused on removing software overheads [7, 29]. Studies
considering hardware modification include TCP onloading[23, 28],
Direct Cache Access (an architectural optimization to deliver
packets into the CPU cache) [19], and tighter coupling between
the NIC and CPU to provide “zero-copy” packet delivery [11, 12].
We believe these networking optimizations could also be applied in
our TSSP architecture.

7. CONCLUSIONS

Memcached has rapidly become one of the central tools in the
design of scalable web services with several important commercial
deployments including Facebook, Twitter, Wikipedia, etc. Based
on a detailed power/performance characterization across both high-
performance and low-power CPUs, we identify several interesting
insights about current system bottlenecks. Notably, processing
bottlenecks associated with the networking stack are one of the
central causes for poor performance. Based on the insights from
our characterization, we propose a new design—Thin Servers
with Smart Pipes (TSSP)—that integrates low-power embedded-
class cores with a memcached-optimized accelerator in a custom,
yet volume, SoC for future memcached servers. Our TSSP
architecture, carefully splits responsibilities between the hardware
accelerator and software running on the core, and can scale
across multiple memcached versions and scenarios. We assess
the feasibility and evaluation of our design using a prototype
memcached FPGA implementation. Our results (conservatively)
show the potential for a factor of 6-16X improvement in energy
efficiency over existing servers. We also believe that our design
will have applicability to other emerging data- and network-centric
workloads, such as distributed file systems, other key-value stores,
and in-memory databases.

8. ACKNOWLEDGMENTS

The authors would like to thank Sai Rahul Chalamalasetti and
Alvin AuYoung for their suggestions and contributions to the paper.
This work was partially supported by NSF CCF-0815457.

References

[1] Private communication with Facebook engineers, 2012.
[2] Zyng-7000 All Programmable SoC, 2012.

[3] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu.
Energy proportional datacenter networks. In Proceedings
of the International Symposium on Computer Architecture,
2010.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera : Dynamic flow scheduling for data center

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

networks. In Proceedings of the Symposium on Networked
Systems Design and Implementation, 2010.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. In Proceedings of the Symposium on Operating
Systems Principles, 2009.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, 2012.

L. A. Barroso. = Warehouse-scale computing: Entering
the teenage decade. In Proceedings of the International
Symposium on Computer Architecture, 2011.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in haystack: facebook’s photo storage. In
Proceedings of the Symposium on Operating System Design
and Implementation, 2010.

M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele.
Many-core key-value store. In Proceedings of the
International Green Computing Conference, 2011.

A. Bhattacharjee and M. Martonosi. Characterizing the
TLB behavior of emerging parallel workloads on chip
multiprocessors. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, 2009.

N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski,
A. L. Schultz, and S. K. Reinhardt. Performance Analysis
of System Overheads in TCP / IP Workloads. In Proceedings
of the International Conference on Parallel Architectures and
Compilation Techniques, 2005.

N. L. Binkert, A. G. Saidi, and S. K. Reinhardt.
Integrated network interfaces for high-bandwidth TCP/IP. In
Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems,
2006.

M. Cha, A. Mislove, and K. P. Gummadi. A measurement-
driven analysis of information propagation in the flickr social
network. In Proceedings of the International Conference on
World Wide Web, 2009.

S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung,
P. Ranganathan, and M. Margala. An FPGA memcached
appliance. In Proceedings of the International Symposium
on Field Programmable Gate Arrays, 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available Key-
value Store. In Proceedings of the Symposium on Operating
Systems Principles, 2007.

Facebook. Memcached Tech Talk with M. Zuckerberg, 2010.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VI2: a
scalable and flexible data center network. In Proceedings of
the Conference on Data Communication, 2009.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor,
and T. M. Aamodt. Characterizing and evaluating a key-
value store application on heterogeneous cpu-gpu systems. In
Proceedings of the International Symposium on Performance
Analysis of Systems and Software, 2012.

R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache Access
for High Bandwidth Network I/O. 1In Proceedings of the
International Symposium on Computer Architecture, 2005.

J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W.
ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, and
D. K. Panda. Memcached design on high performance rdma
capable interconnects. In Proceedings of the International
Conference on Parallel Processing, 2011.

R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: predictable low latency for data center
applications. In Proceedings of the Symposium on Cloud
Computing, 2012.

A. Kirsch and M. Mitzenmacher. The power of one move:
Hashing schemes for hardware. IEEE/ACM Transactions on
Networking, 18(6):1752 —1765, dec. 2010.

G. Liao and L. Bhuyan. Performance measurement of an
integrated nic architecture with 10gbe. In Proceedings of the
Symposium on High Performance Interconnects, 2009.

K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge,
and S. Reinhardt. Understanding and Designing New
Server Architectures for Emerging Warehouse-Computing
Environments. In Proceedings of the International
Symposium on Computer Architecture, 2008.

Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. Cphash:
a cache-partitioned hash table. In Proceedings of

[26]

[27]

(28]

[29]

(30]

[31]

(32]

the Symposium on Principles and Practice of Parallel
Programming. ACM, 2012.

G. Minshall, Y. Saito, J. C. Mogul, and B. Verghese.
Application performance pitfalls and TCP’s Nagle algorithm.
SIGMETRICS Performance Evaluation Review, 27(4), 2000.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling
memcache at facebook. In Proceedings of the Symposium on
Networked Systems Design and Implementation, 2013.

G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. Tcp
onloading for data center servers. Computer, 37(11), nov.
2004.

S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and
J. K. Ousterhout. It’s time for low latency. In Proceedings of
the Conference on Hot Topics in Operating Systems, 2011.

P. Stuedi, A. Trivedi, and B. Metzler. Wimpy nodes with
10gbe: leveraging one-sided operations in soft-rdma to boost
memcached. In Proceedings of the USENIX Annual Technical
Conference, 2012.

V. Janapa Reddi, Benjamin Lee, Trishul Chilimbi, and
Kushagra Vaid. Web Search Using Mobile Cores:
Quantifying and Mitigating the Price of Efficiency. In
Proceedings of the International Symposium on Computer
Architecture, 2010.

A. Wiggins and J. Langston. Enhancing the Scalability of
Memcached, 2012.

