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Abstract

Emerging nonvolatile memory technologies (NVRAM)
promise the performance of DRAM with the persistence of
disk. However, constraining NVRAM write order, necessary
to ensure recovery correctness, limits NVRAM write concur-
rency and degrades throughput. We require new memory inter-
faces to minimally describe write constraints and allow high
performance and high concurrency data structures. These
goals strongly resemble memory consistency. Whereas mem-
ory consistency concerns the order that memory operations
are observed between numerous processors, persistent mem-
ory systems must constrain the order that writes occur with
respect to failure. We introduce memory persistency, a new ap-
proach to designing persistent memory interfaces, building on
memory consistency. Similar to memory consistency, memory
persistency models may be relaxed to improve performance.
We describe the design space of memory persistency and de-
sirable features that such a memory system requires. Finally,
we introduce several memory persistency models and evalu-
ate their ability to expose NVRAM write concurrency using
two implementations of a persistent queue. Our results show
that relaxed persistency models accelerate system throughput
30-fold by reducing NVRAM write constraints.

1. Introduction

Emerging nonvolatile memories (NVRAM) promise high per-
formance recoverable systems. These technologies, required
as replacements for Flash and DRAM as existing technolo-
gies approach scaling limits [16], pair the high performance
and byte addressability of DRAM with the durability of disk
and Flash memory. Future systems will place these devices
on a DRAM-like memory bus, providing systems with mem-
ory performance similar to DRAM, yet recoverability after
failures.

However, ensuring proper recovery requires constraints on
the ordering of NVRAM writes. Existing DRAM intercon-
nects lack the interface to describe and enforce write ordering
constraints; ordering constraints that arise from memory con-
sistency requirements are usually enforced at the processor,
which is insufficient for failure tolerance with acceptable per-
formance. Recent work has suggested alternative interfaces to
enforce NVRAM write order and guarantee proper recovery,
for example, durable transactions and persist barriers [28, 10].
Although intuitive and suitable to specific applications, we
wish to investigate a more general framework for reasoning

about NVRAM write ordering, including mechanisms for ex-
pressing write constraints that are independent of specific
concurrency control mechanisms.

Instead, we recognize that the problem of ordering NVRAM
writes strongly resembles memory consistency. Memory con-
sistency restricts the visible order of loads and stores (equiva-
lently, allowable visible memory states) between processors
or cores, allowing many operations to reorder while providing
the intended behavior. Memory consistency models define
an interface and set of memory order guarantees for the pro-
grammer, but separate the implementation; several distinct
implementations may fulfill the same memory consistency
model, allowing sophisticated optimization (e.g., speculation
[2, 29, 4, 14, 25]). Relaxing the memory consistency model
places an additional burden on the programmer to understand
the model and insert correct annotations, but often allows
greater performance.

We introduce Memory Persistency, a framework motivated
by memory consistency to provide an interface for enforcing
the order NVRAM writes become durable, an operation we
refer to as a “persist." Memory persistency prescribes the order
of persist operations with respect to one another and loads and
stores, and allows the programmer to reason about guarantees
on the ordering of persists with respect to system failures;
memory persistency is an extension of consistency models
for persistent memory operations. The memory persistency
model relies on the underlying memory consistency model
and volatile memory execution to define persist ordering con-
straints and the values written to persistent memory.

In this paper, we define memory persistency, describe the
design space of memory persistency models, and evaluate
several persistency models. Much like consistency, we iden-
tify strict and relaxed classes of persistency models. Strict
persistency relies on implicit guarantees to order persists and
couples persistent semantics to the underlying memory consis-
tency model: any two stores to the persistent address space that
are guaranteed to be observed in a well-defined order from the
perspective of a third processor imply well-ordered NVRAM
writes. Thus, the same mechanisms the consistency model
provides a programmer to enforce order for stores also enforce
order for the corresponding persists. Alternatively, relaxed
persistency separates volatile and persistent memory execu-
tion, allowing the order of persist operations to differ from
the order in which the corresponding stores become visible.
Relaxed persistency facilitates concurrent persists even when
sequential consistency orders shared memory access visibil-
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ity. Whereas separating memory consistency and persistency
provides advantages to programmability and performance, it
also introduces new challenges, as separate annotations define
allowable reorderings for visibility and persistence of writes
to the persistent address space.

Using this framework, we consider successively relaxed
memory persistency models (two existing models, including
[10], and a newly introduced model) and demonstrate how
programmers can exploit the reorderings they allow through
example implementations of a thread-safe persistent queue.
We discover that conservative memory consistency (such as
sequential consistency) with strict persistency must rely on
thread parallelism to enable NVRAM write concurrency. On
the other hand, relaxed persistency allows high instruction
execution performance, NVRAM write concurrency, and sim-
plified data structures.

Finally, we evaluate our memory persistency models and
queue designs. Just as with memory consistency, a memory
persistency model is defined separately from its implementa-
tion. Instead of assuming specific storage technologies and
memory system implementations, we measure NVRAM write
performance as the critical path of persist ordering constraints,
assuming that NVRAM writes form the primary system bottle-
neck and that practical memory systems effectively use avail-
able concurrency. We demonstrate that relaxed persistency
models substantially improve write concurrency over sequen-
tial consistency with strict persistency; for a 500ns NVRAM
write latency, these concurrency gains improve performance
to the throughput limit of instruction execution—as much as
30x speedup over strict persistency.

2. Background

This section provides an overview of NVRAM technologies
and memory consistency.

2.1. Nonvolatile Memories

Several NVRAM storage technologies promise performance
and byte-addressability comparable to DRAM with the per-
sistence of disk and flash memory. Examples include phase
change memory (PCM), which stores data as different phases
in a chalcogenide glass, and spin-transfer torque memory
(STT-RAM), which stores state as electron spin. Due to their
high performance and byte-addressability, we expect future
NVRAM devices to connect to processors via a DRAM-like
bus. Whereas integrating byte-addressable persistent stor-
age presents interesting problems to operating systems and
memory management, we assume that memory provides both
volatile and persistent address spaces.

NVRAMs frequently exhibit asymmetric read and write
latencies; writing to a cell requires more time than reading.
Long write times are compounded by using multi-level cells
(MLC), which increase storage density but require iterative
writes to change the cell value. As a result, NVRAM writes

require up to 1µs, depending on NVRAM cell technology,
device interconnect, and the use of MLC cells [23].

NVRAM technologies differ from existing storage technolo-
gies in other ways. For example, many NVRAM technologies
have limited write endurance; cells may only change value a
limited number of times. While important, previous work sug-
gests efficient hardware to mitigate write-endurance concerns
[24]. We do not consider write endurance in this work.

2.2. Memory Consistency

Memory consistency models allow programmers to reason
about the visible order of loads and stores among threads.
The most conservative model, Sequential Consistency (SC),
prescribes that all loads and stores occur as some interleaving
of the program orders of each thread, often requiring delays.
To avoid these delays, relaxed consistency models explicitly
allow certain memory operations to reorder. Threads view
operations from other threads occurring out of program order,
and observed orders may differ between threads. Popular
examples of relaxed consistency include Total-Store Order
(TSO) and Relaxed-Memory Order (RMO) [27].

We view persists as memory events for which memory
consistency must account. Whereas traditional memory con-
sistency models define allowable orders of loads and stores,
memory persistency must also determine allowable orders of
persists. We leverage a rich history of memory consistency
work to help define the memory persistency design space.

3. Memory Persistency Goals
Correct recovery of durable systems requires persists to ob-
serve some set of happens-before relations, for example, that
persists occur before an externally observable action, such as a
system call. However, we expect NVRAM persists to be much
slower than stores to the volatile memory system. Provided the
minimal set of happens-before relations is observed, the gap
between volatile execution and NVRAM write performance
can be shrunk by optimizations that increase concurrency. We
are interested in defining persistency models that create oppor-
tunities for two specific optimizations: persist buffering, and
persist coalescing.

Persist Buffering. Buffering durable writes and allowing
thread execution to proceed ahead of persistent state greatly ac-
celerates performance [10]. Such buffering overlaps NVRAM
write latency with useful execution. To be able to reason
about buffering, we draw a distinction between a “store," the
cache coherence actions required to make a write (including
an NVRAM write) visible to other processors, and a “persist,"
the action of writing durably to NVRAM. Buffering permits
persists to occur asynchronously; persists occur after their
corresponding stores, but persists continue to execute in their
properly constrained order.

Ideally, persist latency is fully hidden and the system exe-
cutes at native instruction execution speed. With finite buffer-
ing, performance is ultimately limited by the slower of the
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average rate that persists are generated (determined by volatile
execution rate) and the rate persists complete. At best, the
longest chain (critical path) of persist ordering constraints
determines how quickly persists occur (at worst, constraints
within the memory system limit persist rate, such as bank
conflicts or bandwidth limitations). In defining persistency
models, our goal is to admit as much persist concurrency as
possible by creating a memory interface that avoids unneces-
sary constraints. Persistency model implementations might
buffer persists in existing store queues and caches or via new
mechanisms, such as buffers within NVRAM devices.

Persist Coalescing. We expect NVRAM devices will guar-
antee atomic persists of some size (e.g., eight-bytes [10]), a
feature we call persist granularity. Multiple persists within
a memory block of persist granularity may coalesce (be per-
formed in a single persist operation) provided no happens-
before constraints are violated. Persist coalescing creates an
opportunity to avoid frequent persists to the same address,
and allows caching/buffering mechanisms to act as band-
width filters [15]. Coalescing also reduces the total number
of NVRAM writes, which may be important for NVRAM
devices that are subject to wear. Larger persist granularity
facilitates greater coalescing. Similarly, persistency models
that avoid unnecessary ordering constraints enable additional
coalescing.

We do not consider specific implementations for persist co-
alescing. Coalescing may occur in software or as an extension
to existing cache systems. Regardless of which mechanism
coalesces persists, it must ensure that no happens-before con-
straints are violated.

Whereas similar performance gains may be achieved in soft-
ware by the application programmer explicitly storing values
in volatile memory and precisely controlling when they persist,
we believe that automatic persist coalescing is an important
feature. Automatic coalescing relieves the programmer of
the burden to manually orchestrate coalescing and specify
when persists occur via copies. Additionally, automatic co-
alescing provides backwards compatibility by allowing new
devices to increase persist granularity and improve coalescing
frequency.

4. Memory Persistency
Recovery mechanisms define specific required orders on per-
sists. Failure to enforce this order results in data corruption. A
persistency model enables software to label those persist-order
constraints necessary for recovery-correctness while allow-
ing concurrency among other persists. As with consistency
models, our objective is to strike a balance between program-
mer annotation burden and the amount of concurrency (and
therefore improved performance) the model enables.

We introduce memory persistency as an extension to mem-
ory consistency to additionally order persists and facilitate
reasoning about persist order with respect to failures; memory
persistency is a new consistency model for persists. Concep-

tually, we reason about failure as a recovery observer that
atomically reads all of persistent memory at the moment of
failure. Ordering constraints for correct recovery thus be-
come ordering constraints on memory and persist operations
as viewed from the recovery observer. With this abstraction,
we can apply the reasoning tools of memory consistency to
persistency—any two stores to the persistent memory address
space that are ordered with respect to the recovery observer im-
ply an ordering constraint on the corresponding persists. Con-
versely, stores that are not ordered with respect to the observer
allow corresponding persists to be reordered or performed
concurrently. The notion of the recovery observer implies that
even a uniprocessor system requires memory persistency as
the single processor must still interact with the observer (i.e.,
uniprocessor optimizations for cacheable volatile memory may
be incorrect for persistent memory).

In defining a new consistency model for persists, we ad-
ditionally define a new memory order. Program execution
typically defines memory order as a set of memory opera-
tions and a partial order between them. We distinguish the
memory order of communicating processors (volatile memory
order—constrained by memory consistency) from the memory
order that defines persist order (persistent memory order—
constrained by memory persistency). Any store operations or-
dered according to persistent memory order imply ordered per-
sists. Both orderings comprise memory events to the volatile
and persistent address spaces—loads and stores to the volatile
address space may still order stores to the persistent address
space in persistent memory order (and thus order persists).
Persistent memory order contains the same events as volatile
memory order (e.g., load and store events and their values), but
the two may contain different sets of ordering constraints. The
constraints of persistent memory order need not be a subset of
the constraints from volatile memory order; complex persis-
tency models constrain the order of persists whose underlying
stores are concurrent, as we show later.

Much like consistency models, there may be a variety of
implementations for a particular memory persistency model.
Like the literature on consistency, we separate model seman-
tics from implementation; our focus in this work is on ex-
ploring the semantics. Whereas we do discuss some imple-
mentation considerations, we omit details and leave system
design and optimization to future work. We divide persistency
models into strict and relaxed classes, and consider each with
respect to the underlying consistency model.

4.1. Strict Persistency

Strict persistency couples memory persistency to the memory
consistency model, using the existing consistency model to
specify persist ordering. Under strict persistency, the recovery
observer participates in the memory consistency model pre-
cisely as if it were an additional processor; persistent memory
order is identical to volatile memory order. Hence, any store
ordering that can be inferred by observing (volatile) mem-
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ory order implies a persist ordering constraint. Persist order
must match the (possibly partial) order in which stores are
performed in a particular execution.

Conservative consistency models, such as SC, do not al-
low stores from each thread to reorder from the perspective
of other threads; all stores, and therefore persists, occur in
each thread’s program order. However, such models can still
facilitate persist concurrency by relying on thread concurrency
(stores from different threads are often concurrent). On the
other hand, relaxed consistency models, such as RMO, allow
stores to reorder. Using such models, it is possible for many
persists from the same thread to occur in parallel. However,
the programmer is now responsible for inserting the correct
memory barriers to enforce the intended behavior, as is cur-
rently the case for shared-memory workloads.

Strict persistency unifies the problem of reasoning about
allowable volatile memory order and allowable persist order
(equivalently, allowable persistent states at recovery). How-
ever, directly implementing strict persistency implies frequent
stalls—consistency ordering constraints (e.g., at every mem-
ory operation under SC and at memory barriers under RMO)
stall execution until NVRAM writes complete. A programmer
seeking to maximize persist performance must rely either on
relaxed consistency (with the concomitant challenges of cor-
rect program labelling), or must aggressively employ thread
concurrency to eliminate persist ordering constraints (introduc-
ing complexity and synchronization overheads). As we will
show, decoupling persistency and consistency ordering allows
recoverable data structures with high persist concurrency even
under SC.

We introduce one important optimization to strict persis-
tency, buffered strict persistency, which can improve perfor-
mance while still guaranteeing strict ordering of persists and
visible side effects. Buffered strict persistency allows instruc-
tion execution to proceed ahead of persistent state, thus al-
lowing overlap of volatile execution and serial draining of
queued persist operations. In terms of the recovery observer,
buffered strict persistency allows the observer to lag arbitrar-
ily far behind other processors in observing memory order.
Therefore, the persistent state of the system corresponds to
some prior point in the observable memory order. As side
effects may otherwise become visible prior to earlier persists,
we introduce a persist sync operation to synchronize instruc-
tion execution and persistent state (i.e., require the recovery
observer to “catch up" to present state). The persist sync al-
lows the programmer to order persists and non-persistent, yet
visible, side effects. While we recognize the need for persist
sync, we do not consider its design, nor evaluate it in this
work.

4.2. Relaxed Persistency

Strict persistency provides mechanisms to reason about per-
sist behavior using pre-existing memory consistency models.
However, memory consistency models are often inappropri-

ate for persist performance. Conservative consistency models
such as SC and TSO serialize the visible order of stores; al-
though high performance implementations of these models ex-
ist for volatile instruction execution [26, 17], the high latency
of NVRAM persists suggests that more relaxed persistency
models may be desirable.

We decouple memory consistency and persistency models
via relaxed persistency. Relaxed persistency loosens persist or-
dering constraints relative to the memory consistency model—
that is, the visible order of persists (from the perspective of
the recovery observer) is allowed to deviate from the visible
order of stores (volatile and persistent memory orders contain
different constraints). Relaxing persistency requires separate
memory consistency and persistency barriers. Memory con-
sistency barriers enforce the visibility of memory operation
ordering with respect to other processors, while memory per-
sistency barriers constrain the visible order of persists from
the perspective of only the recovery observer.

Relaxing persistency allows systems with conservative con-
sistency, such as SC, to improve persist concurrency without
requiring additional threads or complicating thread commu-
nication. In the rest of this paper we introduce and explore
relaxed persistency models under SC.

Simultaneously relaxing persistency and consistency allows
the visibility of loads and stores to reorder among processors,
and further allows the order of persists to differ from the order
of stores. An interesting property of such systems is that mem-
ory consistency and persistency barriers are decoupled—store
visibility and persist order are enforced separately—implying
that persists may reorder across store barriers and store visibil-
ity may reorder across persist barriers. Separating store and
persist order complicates reasoning about persists to the same
address, as we show next.

4.3. Relaxed Persistency and Persist Atomicity

Memory models with separate consistency and persistency
barriers allow stores and persists to occur in different orders,
including stores and persists to a single address. While un-
intuitive, this decoupling is desirable when synchronization
(such as a lock) guarantees that races cannot occur; treating
persist barriers additionally as store barriers would unneces-
sarily delay instruction execution. We extend the concept of
store atomicity to define and enforce intended behavior.

Consistency models often guarantee store atomicity—stores
to each address are serialized—a property provided by cache
coherence [1]. Similarly, persistency models may guaran-
tee persist atomicity—persists to each address are serialized,
implying that recovery determines a unique value for each
address (our recovery observer implies persist atomicity, but
failure models involving several recovery observers would
not). Memory systems with both store and persist atomicity
may still allow the order of stores and persists to deviate—the
serialized order of stores differs from the serialized order of
persists. We define strong persist atomicity to describe pro-
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Thread 1:

Persist A

P. Barrier

Persist B

Thread 2:

Persist B

P. Barrier

Persist A

Barrier-enforced order
Strong persist atomicity-

enforced order

Figure 1: Cache Coherence Ordered Persists. Thread 1’s store
visibility reorders while still attempting to enforce persist or-
der. The resulting persist order cycle is resolved by violating
strong persist atomicity or by preventing stores from reorder-
ing across persist barriers.

gram executions that observe store and persist atomicity, and
where the order of stores to each address agrees with the order
of persists. Strong persist atomicity allows programmers to
order persists by relying on store atomicity to order stores to
the same address. Just as relaxed consistency may not always
provide store atomicity (e.g., release consistency), relaxed
persistency may not guarantee persist atomicity. Such persis-
tency models must define new notions of "properly labelled
programs" that guarantee strong persist atomicity.

Despite being an intuitive property, strong persist atom-
icity removes many memory reordering opportunities. The
example in Figure 1 demonstrates that it is not possible to si-
multaneously (1) allow store visibility to reorder across persist
barriers, (2) enforce persist barriers, and (3) guarantee strong
persist atomicity. The example considers two distinct objects
in the persistent address space, A and B. Two threads persist
to these objects in different program orders. Thread 1’s execu-
tion reorders the visibility of stores, while Thread 2 executes
its stores in program order. Note that persist barriers signify
that we still intend for thread 1’s persist to B to occur after its
persist to A, but the values produced by these operations may
become visible to other processors out of program order.

We annotate Figure 1 with the persist order constraints
(happens-before relationships) due to persist barriers and
strong persist atomicity. As shown, these constraints form
a cycle. If A and B cannot persist atomically, the defined
order cannot be enforced. The cycle can be resolved by ei-
ther coupling persist and store barriers—every persist barrier
also prevents store visibility from reordering—or by relax-
ing strong persist atomicity, providing additional barriers to
enforce strong persist atomicity only where needed.

5. Persistency Models

Section 4 outlined potential classes of persistency models.
We now introduce several specific persistency models to be
evaluated later in Section 8. All models assume SC as the
underlying memory consistency model, and successively re-
lax persistency to introduce specific optimizations. For each
model we discuss its motivation, give a definition, describe
necessary program annotations, and offer possible implemen-
tations.

5.1. Strict Persistency

Motivation. Our first persistency model is Strict Persistency,
as discussed in Section 4. Strict persistency simplifies reason-
ing about persist ordering by coupling persist dependences to
the memory consistency model. No additional persist barriers
are required, easing the burden on the programmer. While
strict persistency provides an intuitive first model, under SC it
imposes persist ordering constraints that unnecessarily limit
persist concurrency for many data structures, and requires pro-
grammers to resort to multi-threading to obtain concurrency.

Definition. Under strict persistency, persist order observes
all happens-before relations implied by volatile memory or-
der (i.e., volatile and persistent memory orders are identical).
Thus, all persists are ordered with respect to the program order
of the issuing thread. Note that, like store operations, persists
from different threads that are unordered by happens-before
(i.e., the recovery observer cannot distinguish which is first)
are concurrent.

Implementation. A straight-forward implementation of
strict persistency stalls issue of subsequent memory accesses
until a store and its corresponding persist both complete. Con-
ventional speculation mechanisms may allow loads to specula-
tively reorder with respect to persistent stores [13]. Buffered
strict persistency can be implemented by serializing persists to
a single, totally ordered queue in front of persistent memory
(e.g., in a bus-based multiprocessor, persists can be queued af-
ter they are serialized by the bus). Delays occur when buffers
fill or when persist sync instructions drain the queue.

Advanced implementations might use one persist queue per
thread/core or extensions to the existing cache system. Mecha-
nisms are required to ensure that persists on each thread occur
in program order and that persists obey strong persist atom-
icity. Load-before-store races must correctly order persists
between threads; enforcing such orders remains a challenge
even for existing memory consistency (hence the popular-
ity of TSO). Strict persistency under SC may also be imple-
mented using in-hardware NVRAM logs or copy-on-write
and indirection to give the appearance of SC while persists
occur concurrently. An intriguing possibility couples existing
hardware transactional memories (HTM) and persistent trans-
actions (e.g., [30, 28]), partitioning program execution into
transactions that enforce atomicity, isolation, and durability—
resembling persistent BulkSC [5].

5.2. Epoch Persistency

Motivation. Strict persistency under SC introduces many
persist dependences unnecessary for correct recovery. The
most common unnecessary persist dependence occurs due
to the program-order constraint of SC. Programs frequently
persist to a large, contiguous regions of memory that logically
represent single objects, but which cannot persist atomically
(due to their size). Under strict persistency, persists serialize.

Previous work proposed for the Byte-Addressable File Sys-
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tem defined a new model to allow concurrent persists from
each thread while constraining persist order when necessary
(we refer to this model as BPFS) [10]. Doing so requires
annotation by the programmer in the form of persist barriers
to divide execution into persist epochs. Epoch persistency is
similar to BPFS (we introduce subtle differences, described
below). Epoch persistency additionally allows persists to ad-
dresses protected by a lock to reorder with respect to the lock
operations (e.g., avoid delaying the lock release while the
persist completes).

Definition. Epoch persistency separates volatile and persis-
tent memory orders; persistent memory order contains a subset
of constraints from volatile memory order. Any pair of persists
ordered by persistent memory order may not be observed out
of that order with respect to the recovery observer.

Volatile memory order satisfies SC. Each thread’s execution
is additionally separated into persist epochs by persist barrier
instructions. Epoch persistency inherits persistent memory
order constraints from volatile memory order: (1) any two
memory accesses on the same thread and separated by a persist
barrier are ordered, (2) any two memory accesses that conflict
(are to the same or overlapping addresses and at least one is
a store/persist) assume the order from volatile memory order
(strong persist atomicity is guaranteed), and (3) eight-byte
persists are atomic with respect to failure.

Persist barriers enforce that no persist after the barrier may
occur before any persist before the barrier. Persists within
each epoch (not separated by a barrier) are concurrent and
may reorder or occur in parallel. Additional complexity arises
in reasoning about persist ordering across threads. We define a
persist-epoch race as persist epochs from two or more threads
that include memory accesses that race (to volatile or persistent
memory), including synchronization races, and at least two
epochs include persist operations. Persists between racing
epochs may not be ordered, even though the underlying stores
are ordered by SC—epochs are not serializable. However,
strong persist atomicity (rule 2) continues to order persists.
Consequently, two persists to the same address are always
ordered even if they occur in racing epochs.

Discussion. Epoch persistency provides an intuitive mech-
anism to guarantee proper recovery as it is impossible at re-
covery to observe a persist from after a barrier while failing
to observe a persist from before the same barrier. However,
many persists (those within the same epoch) are free to occur
in parallel, improving persist concurrency.

As noted in our definition, reasoning about persist order
across threads can be challenging. Synchronization operations
within persist epochs impose ordering across the store and
load operations (due to SC memory ordering), but do not order
corresponding persist operations. Hence, persist operations
correctly synchronized under SC by volatile locks may nev-
ertheless result in astonishing persist ordering. A simple (yet
conservative) way to avoid persist-epoch races is to place per-
sist barriers before and after all lock acquires and releases, and

to only place locks in the volatile address space. The persist
behavior of strict persistency can be achieved by preceding
and following all persists with a persist barrier.

Persist-epoch races may be intentionally introduced to in-
crease persist concurrency; we discuss such an optimization
in Section 6. Enforcing persist order between threads with
volatile locks requires that the persists be synchronized outside
of the epochs in which the persists occur. However, synchro-
nization through persistent memory is possible. Since persists
to the same address must observe strong persist atomicity,
even if they occur in epochs that race, the outcome of persist
synchronization is well defined. Hence, atomic read-modify-
write operations to persistent memory addresses provide the
expected behavior.

Epoch persistency is inspired by BPFS. However, we intro-
duce several subtle differences that we believe make epoch
persistency a more intuitive model. Our definition consid-
ers all memory accesses when determining persist ordering
among threads, whereas BPFS orders persists only when con-
flicts occur to the persistent address space (i.e., persistent
memory order contains only accesses to the persistent address
space). Whereas the BPFS file system implementation avoids
persist-epoch races, it is not clear that the burden falls to the
programmer to avoid such accesses or what persist behavior
results when such races occur. Furthermore, BPFS detects
conflicts to the persistent address space by recording the last
thread and epoch to persist to each cache line; the next thread
to access that line will detect the conflict. Such an implemen-
tation, however, cannot detect conflicts where the first access
is a load and the second a store. As a result, BPFS detects
conflicts to persistent memory according to TSO rather than
SC ordering [27].

Implementation. BPFS outlines cache extensions that pro-
vide a persistency model similar to epoch persistency. Mod-
ifications must be made to detect load-before-store conflicts
(and thus enforce SC rather than TSO ordering) and to track
conflicts to volatile memory addresses as well as persistent
memory addresses. Instead of delaying execution to enforce
persist ordering among threads, optimized implementations
avoid stalling execution by buffering persists while recording
and subsequently enforcing dependences among them, allow-
ing persists to occur asynchronously despite access conflicts.

5.3. Strand Persistency

Motivation. Epoch persistency relaxes persist dependences
within and across threads. However, only consecutive persists
within a thread may be labelled as concurrent. Likewise, per-
sists from different threads are only concurrent if their epochs
race or if they are not synchronized. Many persists within and
across threads may still correctly be made concurrent even if
they do not fit these patterns. We introduce strand persistency,
a new model to minimally constrain persist dependences.

Definition. A strand is an interval of memory execution
from a single thread. Strands are separated by strand barrier
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instructions; each strand barrier begins a new strand. The
strand barrier clears all previously observed persist depen-
dences from the executing thread—each strand appears in
persist order as a separate thread. Persist barriers continue to
order persists: memory accesses on the same strand separated
by a persist barrier assume the order observed from volatile
memory order. Strand persistency guarantees strong persist
atomicity and eight-byte atomic persists. Accesses from differ-
ent strands, even from the same thread, are concurrent unless
ordered by strong persist atomicity.

Discussion. There are no implicit persist ordering con-
straints across strands for persists to different addresses on
the same thread of execution. Ordering constraints arise only
for persists to the same address as implied by strong persist
atomicity. Hence, persists on a new strand may occur as early
as possible and overlap with all preceding persists. Strand
persistency allows programmers to indicate that logical tasks
on the same thread are independent from the perspective of
persistency. To enforce necessary ordering, a persist strand
begins by reading persisted memory locations after which new
persists must be ordered. These reads introduce ordering de-
pendences through strong persist atomicity, which can then be
enforced with a subsequent persist barrier. Strand persistency
removes all unintended ordering constraints, maximizing per-
sist concurrency. Additionally, this programming interface
allows ordering constraints to be specified at the granularity of
individual addresses; the minimal set of persist dependences
is achieved by placing each persist in its own strand, loading
all addresses the persist must depend on, inserting a persist
barrier, and then executing the persist.

Implementation. Strand persistency builds on the hard-
ware requirements to track persist dependencies in epoch
persistency, but separates dependence tracking for different
strands. In addition to tracking the last thread to access each
address, the strand within the thread must also be tracked. Un-
ordered persists on different strands traverse separate queues
(e.g., on separate virtual channels) throughout the memory
system. Strand persistency gives enormous implementation
latitude and designing efficient hardware to track and observe
only the minimal ordering requirements remains an open re-
search challenge. In this work, we focus on demonstrating the
potential performance that the model allows.

5.4. Summary

Relaxed persistency offers new tools to enforce recovery cor-
rectness while minimizing delays due to persists. We consider
three persistency models to successively relax persist ordering
constraints and improve persist concurrency. Our models are
built on top of SC, but may be easily modified to interact with
relaxed consistency models. The next section uses these per-
sistency models to outline the software design of a persistent
queue.

Data:

Head:

Required Constraints:
Unnecessary Constraints:

B

A A

Figure 2: Queue Persist Dependences. Persist ordering de-
pendences for Copy While Locked and Two-Lock Concurrent.
Constraints necessary for proper recovery shown as solid ar-
rows; unnecessary constraints incurred by strict persistency
under SC appear as dashed arrows and are labelled as A (re-
moved with epoch persistency) and B (further removed by
strand persistency).

6. Persistent Queue

To understand and evaluate persistency models we introduce a
motivating microbenchmark: a thread-safe persistent queue.
Several workloads require high-performance persistent queues,
such as write ahead logs (WAL) in databases and journaled
file systems. Fundamentally, a persistent queue inserts and
removes entries while maintaining their order. The queue must
recover after failure, preserving proper entry values and order.

The goal in designing a persistent queue is to improve the
persist concurrency of insert operations both through improved
thread concurrency and relaxed persistency. Both our designs
are concurrent (thread-safe) but allow varying degrees of per-
sist concurrency. Additionally, our designs are fashioned as
circular buffers, containing a data segment in addition to head
and tail pointers. Psuedo-code for the designs is shown in
Algorithm 1. We outline their execution, recovery, and the
minimal necessary persist dependences.

The first design, Copy While Locked (CWL), serializes
insert operations with a lock, first persisting each entry’s length
and data to the data segment, then persisting the new head
pointer. As a result, persists from subsequent insert operations,
even if they occur on separate threads, are ordered by lock
accesses. If the system fails before the persist to the head
pointer in line 9, the entry is ignored and the insert has failed.

We improve persist concurrency in the second design, Two-
Lock Concurrent (2LC), by using two different locks to reserve
data segment space and persist to the head pointer, respec-
tively. Neither lock is held while entry data persists to the data
segment, allowing concurrent persists from different threads.
Additionally, a volatile insert list is maintained to detect when
insert operations complete out of order and prevent holes in
the queue. Two-Lock Concurrent employs the same recovery
as Copy While Locked—an entry is not valid and recoverable
until the head pointer encompasses the associated portion of
the data segment.

Both queue designs use the persistency model to prevent
persists to the head pointer from occurring before persists to
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Algorithm 1 Psuedo-code for queue insert operations.
We include the annotations required by our relaxed per-
sistency models, discussed in Section 5. PersistBarrier
applies to epoch persistency and strand persistency,
NewStrand applies only to strand persistency.
Require: head is a persistent pointer, data a persistent array.

1: sl← SIZEOF(length)
2: function INSERTCWL(length, entry)
3: PERSISTBARRIER
4: LOCK(queueLock)
5: PERSISTBARRIER . removing allows race
6: NEWSTRAND
7: COPY(data[head], (length, entry), length+ sl)
8: PERSISTBARRIER
9: head← head + length+ sl

10: . strong persist atomicity serializes
11: PERSISTBARRIER . removing allows race
12: UNLOCK(queueLock)
13: PERSISTBARRIER
14: end function
15:
16: function INSERT2LC(length, entry)
17: LOCK(reserveLock)
18: start← headV ; headV ← headV + length+ sl
19: node← insertList.APPEND(headV )
20: UNLOCK(reserveLock)
21: NEWSTRAND
22: COPY(data[start], (length, entry), length+ sl)
23: LOCK(updateLock)
24: (oldest, newHead)← insertList.REMOVE(node)
25: . double-checked lock may acquire reserveLock
26: if oldest then
27: PERSISTBARRIER
28: head← newHead
29: . strong persist atomicity serializes
30: end if
31: UNLOCK(updateLock)
32: end function

the data segment. Algorithm 1 includes barriers for the per-
sistency models described in Section 5. Additionally, persist
dependences (and unnecessary constraints introduced by strict
persistency models) are shown in Figure 2. Recovery requires
that persists to the head pointer are ordered after persists to the
data segment from the same insert operation, and that persists
to the head pointer occur in insert-order to prevent holes in the
queue (persists to the head pointer may coalesce so long as
no ordering constraint is violated). All other persists within
the same insert operation and between operations occur con-
currently without compromising recovery correctness. While
not necessary for correct recovery, these persist dependences
are difficult to describe minimally; ordering mechanisms often
introduce unnecessary persist constraints (dashed lines in the
Figure).

Strict persistency under SC serializes persists to the data
segment (“A" in the Figure) and serializes persists between all
insert operations (“B" in the Figure). Epoch persistency allows
concurrent persists to the data segment (removes “A") but still
serializes persists between insert operations. Intentionally
allowing persist-epoch races, instead synchronizing inserts
by relying on strong persist atomicity to serialize persists to
the head pointer, allows concurrent persists from inserts on
different threads (“B" occurs only between inserts on the same
thread). Finally, strand persistency removes all unnecessary
dependences (“B" is removed entirely).

Our queues are similar to the design proposed by Fang [11].
Two-Lock Concurrent provides an equivalent mechanism to al-
low threads to concurrently copy entries into the data segment.
As in Copy While Locked, Fang’s queue contains persists or-
dered by a critical section, and consequently achieves similar
persist throughput under our models.

7. Methodology
We evaluate our persistent queue designs and persistency mod-
els to measure the opportunity for relaxed persistency mod-
els to improve persist performance. To this end we measure
instruction execution rate on a real server and persist concur-
rency via memory traces. This section outlines our methodol-
ogy for these experiments.

All experiments run the queue benchmarks optimized for
volatile performance. Memory padding is inserted to objects
and queue inserts to provide 64-byte alignment to prevent
false sharing (conflicting cache accesses to disjoint memory
locations). Critical sections are implemented using MCS locks
[20], a high-throughput queue based lock. Experiments insert
100-byte queue entries. Instruction execution rate is mea-
sured as inserts per second while inserting 100,000,000 en-
tries between all threads using an Intel Xeon E5645 processor
(2.4GHz). The remainder of this section describes how we
measure persist concurrency for the queue benchmarks.

Persist Ordering Constraint Critical Path. Instead of
proposing specific hardware designs and using architectural
simulation, we instead measure, via memory traces, persist
ordering constraint critical path. Our evaluation assumes a
memory system with infinite bandwidth and memory banks
(so bank conflicts never occur), but with finite persist latency.
Thus, persist throughput is limited by the longest chain (critical
path) of persist ordering constraints observed by execution
under different memory persistency models. Whereas real
memory systems must necessarily delay elsewhere due to
limited bandwidth, bank conflicts, and other memory-related
delays incurred in the processor, measuring persist ordering
constraint critical path offers a best case, implementation-
independent measure of persist concurrency.

We measure persist critical path under the following assump-
tions. Every persist to the persistent address space occurs in
place (there is no hardware support for logging or indirection
to allow concurrent persists). We track persist dependences at
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variable granularity (e.g., eight-byte words or 64-byte cache
lines). Coarse-grained persist tracking is susceptible to false
sharing—persists to nearby but disjoint addresses may be or-
dered unnecessarily. We similarly vary persist granularity.
Every persist attempts to coalesce with the last persist to that
address. A persist successfully coalesces if the persist fits
within an atomically persistable memory block and coalescing
with the previous persist to the same block does not violate
any persist order constraints. A persist that cannot coalesce is
ordered after the previous persist to the same address.

Memory Trace Generation. We use PIN to instrument the
queue benchmarks and generate memory access traces [19].
Tracing multi-threaded applications requires additional work
to ensure analysis-atomicity—application instructions and cor-
responding instrumentation instructions must occur atomically,
otherwise the traced memory order will not accurately reflect
execution’s memory order. We provide analysis-atomicity
by creating a bank of locks and assigning every memory ad-
dress (or block of addresses) to a lock. Each instruction holds
all locks corresponding to its memory operands while being
traced. In addition to tracing memory accesses, we instrument
the queue benchmarks with persist barriers and persistent mal-
loc/free to distinguish volatile and persistent address spaces.
As only one instruction from any thread can access each ad-
dress at once, and instructions on each thread occur in program
order, our trace observes SC. Our tracing framework is avail-
able online [22].

Performance Validation. It is important that tracing not
unduly influence thread interleaving, which would affect per-
sist concurrency. We measure the distance of insert operations
between successive inserts from the same thread (i.e., how
many insert operations occurred since the last time this thread
inserted). We observe that the distribution of insert distance is
the same when running each queue natively and with instru-
mentation enabled, suggesting that thread interleaving is not
significantly affected.

Persist Timing Simulation. Persist times are tracked per
address (both persistent and volatile) as well as per thread
according to the persistency model. For example, under strict
persistency each persist occurs after or coalesces with the most
recent persists observed through (1) each load operand, (2) the
last store to the address being overwritten, and (3) any persists
observed by previous instructions on the same thread. Persists’
ability to coalesce is similarly propagated through memory
and thread state to determine when coalescing will violate
persist ordering constraints. The persistency models differ
as to the events that propagate persist ordering constraints
through memory and threads.

We use this methodology to establish a need for relaxed
persistency models, as well as measure their opportunity to
accelerate recoverable systems.

8. Evaluation

We use the previously described methodology to demonstrate
that persist ordering constraints present a performance bottle-
neck under strict persistency. Relaxed persistency improves
persist concurrency, removing stalls caused by persists. We
also show that relaxed persistency models are resilient to large
persist latency, allowing maximum throughput as persist la-
tency increases. Finally, we consider the effects of persist
granularity and dependence tracking granularity.

8.1. Relaxed Persistency Performance

NVRAM persists are only a concern if they slow down ex-
ecution relative to non-recoverable systems. If few enough
persists occur, or those persists are sufficiently concurrent,
performance remains bounded by the rate that instructions
execute with few delays caused by persists. To determine sys-
tem performance, we assume that only one of the instruction
execution rate and persist rate is the bottleneck: either the
system executes at its instruction execution rate (measured
on current hardware), or throughput is limited solely by per-
sist rate (while observing persist dependencies and retaining
recovery correctness).

Table 1 shows the achievable throughput for our queue
microbenchmarks and persistency models for both one and
eight threads assuming 500ns persists. Rates are normalized
to instruction execution—normalized rates above one (bold)
admit sufficient persist concurrency to achieve the instruction
execution rate while normalized rates below one are limited by
persists. Instruction execution rates vary between log version
and number of threads (not shown).

Strict persistency, our most conservative model, falls well
below instruction execution rate, suggesting that memory
systems with such restrictive models will be persist-bound.
Copy While Locked with one thread suffers nearly a 30× slow-
down; over-constraining persist order greatly limits workload
throughput.

Relaxing persistency improves throughput for persist-bound
configurations. We consider epoch persistency both with and
without persist-epoch races. "Epoch" (similar to BPFS) pre-
vents persist-epoch races by surrounding lock accesses with
persist barriers; persists are always ordered across critical
sections. "Racing Epochs" removes this constraint, allowing
persist-epoch races and enforcing persist order via strong per-
sist atomicity. There is no distinction between the two when
using a single thread (races cannot occur within one thread)
and for Two-Lock Concurrent (concurrent persists are already
provided by the software design).

Epoch persistency improves persist concurrency by allow-
ing entire queue entries to persist concurrently and removes
a number of unnecessary persist constraints via intentional
persist-epoch races. Both queue designs see a substantial in-
crease in throughput, with the eight-thread Two-Lock Concur-
rent achieving instruction execution rate. Other configurations
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Threads Copy While Locked Two-Lock Concurrent
Strict Epoch Racing Epochs Strand Strict Epoch Racing Epochs Strand

1 0.034 0.17 0.17 12 0.080 0.56 0.56 29
8 0.058 0.40 3.2 21 0.43 3.4 3.4 22

Table 1: Relaxed Persistency Performance. Persist-bound insert rate normalized to instruction execution rate assuming 500ns
persist latency. Throughput is limited by the lower of persist and instruction rates—at greater than 1 (bold) instruction rate limits
throughput; at lower than 1 execution is limited by the rate of persists. While strict persistency limits throughput, relaxed models
achieve instruction execution rate.

remain persist-bound; their throughput suffers relative to a
nonrecoverable system. Epoch persistency is insufficient to
maximize system performance without relying on multithread-
ing to provide concurrent persists. Nevertheless, Copy While
Locked with one thread is now only 5.9× slower than the
instruction execution rate. On the other hand, racing epochs
improve persist concurrency for 8-thread configurations, al-
lowing persist throughput to surpass instruction execution rate.

While execution for all queue designs with many threads
is already compute bound and does not benefit from further
relaxing persistency, the single thread configurations require
additional persist concurrency to improve performance. Strand
persistency allows concurrent persists from the same thread
while still ensuring correct recovery. This model enables in-
credibly high persist concurrency such that all log versions are
compute-bound even for a single thread. Sufficiently relaxed
persistency models allow data structures and systems that re-
cover from failure while retaining the throughput of existing
main-memory data structures.

Persist Latency. The previous results argue for relaxed per-
sistency models under large persist latency. However, for fast
enough NVRAM technologies, additional persist concurrency
is unnecessary to achieve instruction execution rate. Figure 3
shows the achievable execution rate (limited either by persist
rate or instruction execution rate) for Copy While Locked with
one thread. The x-axis shows persist latency on a logarithmic
scale, ranging from 10ns to 100µs.

At low persist latency, all persistency models achieve in-
struction execution rate (horizontal line formed at the top).
However, as persist latency increases each model eventu-
ally becomes persist-bound and throughput quickly degrades.
Strict persistency becomes persist-bound at only 17ns. Epoch
persistency improves persist concurrency—instruction execu-
tion rate and persist rate break even at 119ns. While this is
a great improvement, we expect most NVRAM technologies
to exhibit higher persist latency. Finally, strand persistency
offers sufficient persist concurrency to become persist-bound
only above 6us.

In all cases, throughput quickly decreases once execution is
persist-bound as persist latency continues to increase. Persists
limit the most conservative persistency models even at DRAM-
like write latencies. However, relaxed persistency models
are resilient to large persist latencies and achieve instruction
execution rate.

8.2. Atomic Persist and Tracking Granularity

The previous experiments consider performance for queue
designs and persistency models assuming that persist ordering
constraints propagate through memory at eight-byte granular-
ity (i.e., a race to addresses in the same eight-byte, aligned
memory block introduces a persist ordering constraint accord-
ing to the persistency model). Additionally, we assume that
persists occur atomically to eight-byte, aligned memory blocks.
Both of these may vary in real implementations; we measure
their effect on persist ordering constraint critical path for Copy
While Locked using a single thread.

Atomic Persist Granularity. Atomic persist granularity is
an important factor for persist concurrency and performance.
As in [10], we assume NVRAM persists atomically to at least
eight-byte (pointer-sized) blocks of memory (a persist to an
eight-byte, aligned memory block will always have occurred
or not after failure; there is no possibility of a partial persist).
However, increasing persist granularity creates opportunities
for additional persist coalescing. Nearby or adjacent persists
may occur atomically and coalesce so long as no persist de-
pendences are violated. If the originally enforced ordering
between two persist operations appeared on the persist de-
pendence critical path, coalescing due to increased atomic
persist granularity may decrease the critical path and reduce
the likelihood of delay due to persists.

Figure 4 displays average persist ordering critical path per
insert for Copy While Locked for both strict persistency and
epoch persistency as atomic persist size increases from eight
to 256 bytes. At eight-byte persists, there is a large separation
between strict persistency and epoch persistency. As atomic
persist size increases, the persist critical path of strict per-
sistency steadily decreases while the critical path of epoch
persistency remains unchanged. At 256-byte atomic persists
(right of the Figure) strict persistency matches epoch persis-
tency. For our queue microbenchmarks, larger atomic persists
provide the same improvement to persist critical path as re-
laxed persistency, but offer no improvement to relaxed models.
Increasing atomic persist granularity offers an alternative to
relaxed persistency models.

Persist False Sharing. Just as in existing memory systems,
persists suffer from false sharing, degrading performance.
False sharing traditionally occurs under contention to the same
cache line even though threads access disjoint addresses in
that cache line. Similarly, persistent false sharing occurs when

10



10-2 10-1 100 101 102

Persist Latency (us)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ill

io
n 

In
se

rt
s/

s

Persistency Model
Strict
Epoch

Strand

Figure 3: Persist Latency. Copy While
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Figure 4: Atomic Persist Size. 1 Thread.
Large atomic persists allow coalescing,
increasing persist concurrency. While
effective for strict persistency, large
atomic persists do not improve persist
concurrency for relaxed models.
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Figure 5: Persistent False Sharing. 1
Thread. False sharing negligibly affects
strict persistency (persists already seri-
alized); relaxed models reintroduce con-
straints.

a persist ordering constraint is unnecessarily introduced due
to the coarseness at which conflicts are observed. Persistent
false sharing occurs in conflicts to both persistent and volatile
memory, as conflicts to both address spaces establish persist
ordering constraints.

Figure 5 shows average persist critical path per insert for
Copy While Locked for both strict persistency and epoch persis-
tency as the granularity at which persist ordering constraints
propagate increases. For fine-grained tracking, epoch per-
sistency provides a far lower persist critical path than strict
persistency. As tracking granularity increases, strict persis-
tency performance remains the same while epoch persistency
decreases (critical path increases). At 256-byte tracking gran-
ularity, strict persistency and epoch persistency provide com-
parable persist critical paths; many of the persist constraints
removed by relaxing consistency are reintroduced through
false sharing.

9. Related Work
Durable storage has long been used to recover data after fail-
ures. All systems that use durable storage must specify and
honor dependencies between the operations that update that
storage. For example, file systems must constrain the order of
disk operations to metadata to preserve a consistent file system
image [12, 7], and databases must obey the order of durable
storage updates specified in write-ahead logging [21].

Specifying and honoring these dependencies becomes
harder when the interface to durable storage are loads and
stores to a persistent address space. Store instructions to an
address space are more frequent and fine grained than up-
date operations when using a block-based interface to durable
storage (such as a file system). In addition, CPU caches in-
terpose on store instructions, which leads to the interaction of
persistency and cache consistency discussed in this paper.

Recent developments in nonvolatile memory technologies
have spurred research on how to use these new technologies.
Some research projects keep the traditional block-based in-
terface to durable storage and devise ways to accelerate this
interface [3]. Other projects provide a memory-based interface
to durable storage [9]. Our paper follows the path of provid-
ing a memory-based interface to durable storage, because we
feel that the high speed and byte addressability of new non-
volatile memories provides a natural fit with native memory
instructions.

Combining a memory interface to durable storage with mul-
tiprocessors adds concurrency control issues to those of dura-
bility. Transactions are a common and powerful paradigm for
handling both concurrency control and durability, so many au-
thors have proposed layering transactions on top of nonvolatile
memory [18, 9, 28, 8]. Similarly, a recent paper proposes to
couple concurrency control with recovery management by
committing execution to durable storage at the granularity of
the outermost critical section [6]. Additionally, researchers
recently proposed Kiln, work concurrent to ours that outlines
a memory and cache system that provide persistent transac-
tions [30]. Kiln importantly introduces the ability to separately
enforce multithreaded and persist synchronization (transac-
tions are atomically persistent, but provide no guarantee of
isolation between threads), a feature central to relaxed persis-
tency.

While transactions and critical sections are powerful mech-
anisms for concurrency control, many programs use other
mechanisms besides these, such as conditional waits. Because
of this diversity of concurrency control, we believe it is useful
to treat the issues of consistency and persistency separately.
Just as much work has been done to create a framework of
memory consistency models [1], we seek to begin a framework
on memory persistency models.
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The techniques most closely related to those proposed in this
paper are the primitives for describing persist dependencies
in the Byte-Addressable Persistent File System (BPFS) [10].
We assume similar mechanisms in this paper. We view BPFS
as a single point in the memory persistency design space.
While similar to our persist epochs design, there are subtle, yet
important differences, described in Section 5.2. We investigate
the more-general design space of memory persistency and its
interactions with memory consistency, including consideration
of persist-epoch races.

10. Conclusion
Future NVRAM technologies offer the performance of DRAM
with the durability of disk. However, existing memory in-
terfaces are incapable of leveraging this performance while
simultaneously enforcing proper data recovery. In this paper
we introduced memory persistency, an extension of memory
consistency that allows programmers to describe persist order
constraints. We outline the design space of possible memory
persistency models. In addition, we detail three persistency
models and their use in implementing a persistent queue. Us-
ing memory tracing and simulation we demonstrate that strict
persistency models suffer a 30× slowdown relative to instruc-
tion execution rate, and that relaxed persistency effectively
regains this performance.
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