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Abstract—As the popularity of Internet services continues to rise,
the need to understand the design of the data center systems hosting
these workloads becomes increasingly important. Unfortunately,
research in this area has been stifled, primarily due to a lack of
tools, workloads, and rigorous evaluation methodology. Traditional
tools, such as architectural simulators, do not directly address data
center-level issues and do not scale to simulate the thousands of
machines needed for data center research.

We introduce, Stochastic Queuing Simulation (SQS), our
methodology for characterization and evaluation of data center sys-
tems. By leveraging techniques from stochastic modeling, queuing
theory and statistical sampling, SQS uses discrete-event simulation
to drive models that scale to tens of thousands of machines.
Whereas detailed architectural simulations can last hours or days,
SOS turnaround time is typically on the order of tens of minutes
to an hour. Furthermore, computation can be distributed across
cores and machines, achieving speedup using commodity clusters.

I. INTRODUCTION

Recently, there has been an explosive growth in Cloud-
based Internet services, greatly influencing both software
and hardware architectures. Small mobile devices connected
to large data centers are becoming increasingly important,
quickly overtaking traditional workstations. The design of data
centers themselves has shifted from smaller collocation centers
to massive Warehouse-Scale Computers (WSC), housing many
thousands of servers.

The lack of scalable simulation tools has limited past WSC
research to either measurement studies of existing deploy-
ments, or analysis via theoretical and statistical models. Mea-
surement studies, though valuable, can explore only existing
architectures and require access to multi-million dollar facili-
ties. Even for the few academic and industrial research teams
with access to such facilities, experimentation is typically
limited to non-intrusive monitoring, since these facilities host
the mission-critical operations of their owners. Analytic ap-
proaches typically require numerous simplifying assumptions
and cannot capture detailed interactions among the compo-
nents of a WSC. Moreover, even well-understood modeling
approaches, for example queuing networks (on which our
methodology is based), rapidly become analytically intractable
as the size and complexity of the model grows.

This study presents our data center-level evaluation method-
ology, Stochastic Queuing Simulation (SQS), targeted specifi-
cally to investigate issues of data center design at scale. At its
core, SQS is a methodology for system characterization and
discrete-event simulation to enable quantitative exploration

of data center-level challenges, such as performance opti-
mization, power provisioning, power management, distributed
data placement, and fault-tolerant design. SQS incorporates
a number of techniques from stochastic modeling, queuing
theory and statistical sampling to provide simulations that are
fast enough to handle multi-thousand server complexity and
provide probabilistic guarantees on its estimates.

Our methodology hinges on the observation that design-
ers must raise the level of abstraction for data center-scale
simulation. Rather than simulate workloads at the granularity
of an instruction, memory, or disk access as in conventional
simulation tools, SQS is built on the theoretical framework
of queuing theory, where the fundamental unit of work is a
task (a.k.a job). Tasks are characterized by a set of statis-
tical properties—random variables that describe their length,
resource requirements, arrival distribution, or other relevant
properties—which are collected through observation of real
systems, similar to [1]. SQS abstracts the data center as an
interrelated network of queues and power/performance models
describing the relevant behaviors of software/hardware compo-
nents. The discrete event simulation uses a variety of statistical
sampling techniques to provide estimates of selected output
variables (e.g., 95th-percentile response time) with quantifiable
measures of confidence, while enabling parallel simulation to
provide strong scaling to reduce turnaround time.

SQS is not a replacement for conventional simulators;
whereas existing simulation tools are still needed to refine
the design for an individual server within a data center, SQS
provides a framework for investigating behaviors that emerge
at scale with rapid turnaround time.

II. STOCHASTIC QUEUING SIMULATION

We demonstrate the utility of SQS by simulating cluster-
level power-capping [2] — using power management to limit
the aggregate power consumption of a collection of machines.
Figure 1 provides an overview of the SQS methodology, which
comprises two parts: characterization and simulation.

Characterization. In the characterization step, we construct
empirical models of workloads and systems that are used
during the simulation step. A workload model comprises,
at a minimum, task interarrival and service distributions.
The workload model may also include distributions for other
critical task parameters (e.g., tasks’ network traffic if modeling
network links). The system model modulates service rates and
relates tasks to output variables of the simulation (e.g., in our
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Fig. 1: Overview of the SQS methodology: A system is a) instrumented to derive workload interarrival and service time distributions
and b) characterized to create a model of system behavior (e.g., power-performance settings). From these inputs, SQS simulations derive

estimates for new system designs and/or configurations.

running example, it captures the power-performance curve for
DVES states).

Characterization involves both an online and offline compo-
nent. We construct empirical models of workloads online, by
instrumenting a live system. Typically, this process involves
instrumenting a binary such that the timing of task arrivals
and their duration are recorded. Later, these traces can be
processed to derive the desired distributions. It is necessary
to capture these workload models online, under live traffic,
because interarrival processes depend greatly on the users of
an internet service.

In the offline component of characterization, real systems
are benchmarked to capture their modes of operation and
construct system models. For our power-capping example, one
would capture a server’s power-performance behavior under
the available DVFS settings. The model records the relative
service rate and power consumption of the system as a function
of frequency setting. Typically, this part of characterization
must be performed offline because it would disrupt production
systems.

Simulation. During simulation, SQS derives estimates for
hypothetical data center configurations. For our DVFS exam-
ple, various frequency transition policies for a rack of servers
could be evaluated such that both latency constraints are met
and rack-level power stays within a budget.

The simulation itself is a discrete-event simulation of the
queuing network representing the data center. Typical events
represent a high-level phenomenon such as a task entering or
exiting a server, a power-performance state changing, and so
on. The core functionality of the SQS discrete event simulator
does not differ substantially from other tools for simulating
queuing networks. SQS augments conventional queuing net-
works with system models, such as the power-performance
model used in our example.

Workload Models. Rather than requiring an executable
binary, as in a traditional simulator, SQS workloads are
defined statistically by empirical interarrival and service time
distributions. This approach allows workloads to be repre-
sented compactly—a typical distribution occupies less than 1
MB, whereas event traces often require multi-gigabyte files.
Furthermore, in contrast to binaries, which industry is often
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Fig. 2: Simulation Time Scaling: Simulation time required for
convergence scales roughly linearly with the number of servers
simulated. Scaling simulation size typically does not increase the
variance of the output variables, so the required sample size does
not increase significantly. Instead, the overhead of maintaining the
discrete-event-simulation state is the main cause of increased runtime.

loathe to disseminate, public dissemination of interarrival and
service distributions is significantly easier, as they do not
require releasing proprietary software.

III. RESULTS

Figure 2 illustrates the how simulation time varies with
the number of simulated servers for four different workloads.
Simulation of tens of servers takes only minutes. Larger
cluster sizes increase simulation time in a near-linear fashion.
Importantly, simulation time of appropriately large systems
(1,000-10,000 clusters) is hours to a day. Such studies would
be prohibitively expensive with existing architectural tools.
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