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Abstract

Prior research indicates that there is much spatial variation in applications' memory access
patterns. Modern memory systems, however, use small fixed-size cache blocks and as such cannot
exploit this variation. Increasing the block size would not only prohibitively increase pin and
interconnect bandwidth demands, but also increase the likelihood of false sharing in shared-
memory multiprocessors. We show that memory accesses often exhibit repetitive layouts that span
large memory regions (e.g., several kB), and these accesses recur in patterns that are predictable
through code-based correlation. We describe Spatial Memory Streaming, a practical on-chip
hardware technique that identifies code-correlated spatial access patterns and streams predicted
blocks to the primary cache ahead of demand misses.

1. Introduction

As processor clock frequencies have increased drastically during the past decades, memory access
latency has improved only marginally, resulting in a performance gap known as the memory wall.
Although power constraints have recently limited further growth in the memory wall, technology
trends do not forecast the gap to shrink in the future. Instead, memory latency will remain on the
order of hundreds of processor clock cycles, causing significant performance loss as processors
stall, waiting for memory instead of making forward progress.
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Many techniques have been proposed to reduce the performance impact of memory latency.
Traditionally, architects used caches to keep recently used data on chip and avoid costly memory
accesses. However, caches show diminishing improvements to miss rates as their sizes scale
beyond multiple megabytes [14], and with chip multiprocessors (CMPs), the silicon area for larger
caches might be better utilized for additional cores. Moreover, caches cannot reduce off-chip
coherence misses in multiprocessor systems, nor can they reduce compulsory misses in applica-
tions that scan large datasets.

Prefetching is a promising approach for reducing memory stalls. A prefetcher predicts what
data the processor will request in the near future and fetches this data into the caches, thus effec-
tively hiding the memory latency. Stride prefetchers [2,21] have been implemented in commercial
processors (e.g., [16,29]), predicting regularly strided accesses to accelerate applications domi-
nated by these simple access patterns. However, in many applications such accesses only account
for a fraction of total memory behavior, leading researchers to investigate more sophisticated
prefetching techniques.

Commercial workloads exhibit more complex and varied memory behaviors [3,25] than
desktop, engineering, or scientific workloads, because of their data dependent behavior, large
instruction footprint, and interactions with the operating system and I/O devices. Commercial
workloads are multi-threaded, with sophisticated fine-grain locking protocols that maximize
concurrency, leading to non-determinism and contention in the memory system. Therefore,
memory access patterns are complex and irregular, resulting in low prefetch coverage (i.e., few
misses predicted correctly) and accuracy (i.e., many incorrect predictions for each correct one).

Nevertheless, commercial workloads compute over massive datasets and have been highly
tuned for performance. To achieve this goal, their data is organized in a very structured (if
complex) manner, leading to data structures with repetitive layouts and access patterns. As the
applications traverse their datasets, recurring patterns emerge in the relative offsets of accessed
data. These accesses are frequently non-contiguous and do not follow a constant stride (e.g., binary
search in a B-tree). Because sparse patterns may span large regions (e.g., an operating system
page), the term spatial correlation rather than spatial locality is used to describe the relationship
among accesses. 

Past research on uniprocessor systems has shown that spatial correlation can be predicted in
hardware by correlating patterns with the code and/or data address that initiates the pattern [7,23].
While spatial correlation prefetching is effective for desktop/engineering applications [7], the only
practical implementation prior to our study achieved less than 20% miss-rate reduction on server
workloads [23]. In this work, using a combination of trace-based and cycle-accurate full-system
simulation of multiprocessor commercial and scientific applications, we demonstrate: 

• Effective spatial correlation and prediction. Contrary to previous findings [23], address-
based correlation is not needed to predict the access stream of commercial workloads. Instead,
we show a strong correlation between code and access patterns, which Spatial Memory
Streaming (SMS) exploits to predict patterns even for previously-unvisited addresses.

• Accurate tracking of spatial correlation. We show that the cache-coupled structures used in
previous work ([7,23]) are suboptimal for observing spatial correlation. Accesses to multiple
independent patterns are frequently interleaved, inducing conflict behavior in prior detection
structures. Instead, we propose a decoupled detection structure that identifies fewer and denser
patterns, halving predictor storage requirements and increasing coverage by up to 20%.
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• SMS prediction coverage and performance enhancement. For commercial workloads, we
show that SMS predicts on average 55% and at best 78% of cache read misses, providing a
mean speedup of 22% and at best 48% over a system without SMS.

• Spatial correlation of write misses. We show that off-chip write misses are spatially corre-
lated and predictable with SMS. For commercial workloads, SMS predicts on average 62% of
write misses with only 9% overpredictions.

• Stable spatial repetition through hysteresis. Over different occurrences of a spatial pattern,
some blocks toggle between being accessed and not. By using a 2-bit saturating counter per
block for spatial history, SMS overpredicts on average only 8% of cache read misses, com-
pared with 15% when using simple bit vectors.

• Rotation indexing to reduce redundant storage of spatial patterns. Because SMS encodes
patterns as bit vectors, where each bit maps trivially within a spatial region, it must record dif-
ferent versions of a pattern for each initial offset. With rotation indexing, SMS observes and
predicts patterns relative to their initial access, reducing history storage by half for commercial
workloads.

2. Overview

Spatial Memory Streaming (SMS) improves the performance of scientific and commercial server
applications by exploiting spatial relationships among data beyond a single cache block. Architects
have long relied on spatial relationships among memory accesses to improve computer system
performance. Spatial locality states that items whose addresses are near one another tend to be
referenced close together in time [17]. System designers take advantage of spatial locality by
moving data at a block granularity—typically 32, 64, or 128 bytes—instead of at word granularity
(four or eight bytes). This approach mitigates the overhead of each transfer (e.g., bus acquisition),
leading to efficient memory hierarchies that are capable of nearly saturating their peak theoretical
bandwidth.

The principle of spatial locality holds true especially for smaller block sizes, with caches in
modern systems drastically reducing off-chip memory accesses. However, spatial locality exhibits
characteristics that limit its potential effectiveness. Many workloads are not amenable to capturing
additional spatial locality by increasing the cache block size, for example, to the order of an oper-
ating system page. Commercial workloads in particular exhibit low memory access density: only a
small fraction of the data in a multi-kilobyte region is accessed over a reasonable window in time.
Using large cache blocks to exploit these spatially related accesses is impractical, leading to band-
width inefficiency and reducing effective cache capacity.

In choosing a cache block size, system designers are forced to balance the competing concerns
of spatial locality, transfer latency, cache storage utilization, memory/processor pin bandwidth
utilization, and false sharing. Typically, the optimal cache block size sacrifices opportunity to
exploit spatial locality for dense data structures to avoid excessive bandwidth overheads for sparse
data structures.

Commercial applications exhibit complex access patterns that are not amenable to simple
prefetching or streaming schemes. Nevertheless, data structures in these applications frequently
exhibit spatial relationships among cache blocks. For example, in databases, pages in the buffer
pool share common structural elements, such as a log serial number in the page header and a slot
index that indicates tuple offsets in the page footer, that are always accessed prior to scanning/



SOMOGYI, WENISCH, FERDMAN & FALSAFI

4

modifying the page. In web servers, packet headers and trailers have arbitrarily complex but fixed
structure. Further examples appear in Figure 1 (left). Although accesses within these structures
may be non-contiguous, they nonetheless exhibit recurring patterns in relative addresses. We call
the relationship between these accesses spatial correlation.

SMS extracts spatially-correlated access patterns at run-time and predicts future accesses using
these patterns. SMS then streams the predicted cache blocks into the processor’s primary cache as
rapidly as allowed by available resources and bandwidth, thereby increasing memory level paral-
lelism and hiding lower-level cache and off-chip access latencies.

3. Spatial Patterns and Generations

We formalize our notion of spatial correlation similar to prior studies of spatial footprints [7,23].
We define a spatial region as a fixed-size portion of the system’s address space, consisting of
multiple consecutive cache blocks. A spatial region generation is the time interval over which
SMS records accesses within a spatial region. We call the first access in a spatial region generation
the trigger access. A spatial pattern is a bit vector representing the set of blocks in a region
accessed during a spatial region generation. Thus, a spatial pattern captures the layout of cache
blocks accessed near one another in time. Upon a trigger access, SMS predicts the spatial pattern
that will be accessed over the course of the spatial region generation.

The precise interval over which a spatial region generation is defined can significantly impact
the accuracy and coverage of spatial patterns [23]. A generation must be defined to ensure that,
when SMS streams blocks into the cache upon a future trigger access, no predicted block will be
evicted or invalidated prior to its use. Therefore, we choose the interval from the trigger access
until any block accessed during the generation is removed from the processor’s primary cache by
replacement or invalidation. A subsequent access to any block in the region is the trigger access for
a new generation. This definition ensures that the set of blocks accessed during a generation were
simultaneously present in the cache. Figure 1 (right) shows an example of three spatial region
generations and their corresponding patterns.

Access      
Access      
Access      
Evict          
Access      
Access      
Access      
Invalidate  
Access      
Invalidate  

Event sequence Generations & patternsExamples of spatially-correlated elements in DBMSs

Buffer pool page

Page header

B-Tree key-pointer pairs

Fixed-size tuples

Tuple slot index
0 0 1 1

Generation B:1

1 1 0 0

Generation A:2

1 1 1 0

Generation A:1
A+0
A+1
A+2
A+1
A+0
A+1
B+3
A+1
B+2
B+3

Figure 1: Examples of spatial correlation and spatial region generations. The left figure 
shows example sources of spatial correlation in databases. The right figure illustrates 
an event sequence and the corresponding spatial region generations and patterns.
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3.1. Identifying Recurring Spatial Patterns

Upon a trigger access, SMS predicts the subset of blocks within the region that are spatially corre-
lated and therefore likely to be accessed. Thus, a key problem in SMS is finding a prediction index
that is strongly correlated to recurring spatial patterns.

Spatial correlation arises because of repetition and regularity in the layout and access patterns
of data structures. For instance, spatial correlation can arise because several variables or fields of
an aggregate are frequently accessed together. In this case, the spatial pattern correlates to the
address of the trigger access, because the address identifies the data structure. Spatial correlation
can also arise because a data structure traversal recurs or has a regular structure. In this case, the
spatial pattern will correlate to the code (program counter values) executing the traversal.

A variety of prediction indices have been investigated in the literature. All prior studies found
that combining both the address and program counter to construct an index consistently provides
the most accurate predictions when correlation table storage is unbounded [7,23]. By combining
both quantities, which we call PC+address indexing, a predictor generates distinct patterns when
multiple code sequences lead to different traversals of the same data structure. However, this
prediction index requires predictor storage that scales with data set size, and predictor coverage
drops precipitously with realistic storage constraints.

PC+address indexing can be approximated by combining the PC with a spatial region offset
[7,23]. The spatial region offset of a data address is the distance of the address from the start of the
spatial region. The spatial region offset allows the predictor to distinguish repetitive patterns
generated by the same code fragment that only differ in their alignment relative to spatial region
boundaries. PC+offset indexing considerably reduces prediction table storage requirements
because applications have far fewer distinct miss PCs than miss addresses. Additionally, when a
code sequence repeats the same access pattern over a large data set, the PC-correlated spatial
patterns learned at the start of the access sequence will provide accurate predictions for data that
have never previously been visited. Database scan and join operations, which dominate the execu-
tion of decision support queries [28], contain long repetitive access patterns that visit data only
once. In these applications, PC+offset indexing substantially outperforms address-indexed
schemes.

4. Hardware Design

SMS comprises two hardware structures. The active generation table records spatial patterns as
the processor accesses spatial regions. The pattern history table stores previously-observed spatial
patterns, and is accessed at the start of each spatial region generation to predict the pattern of future
accesses.

4.1. Observing Spatial Patterns

SMS learns spatial patterns by recording which blocks are accessed over the course of a spatial
region generation in the active generation table (AGT). When a spatial region generation begins,
SMS allocates an entry in the AGT. As cache blocks are accessed, SMS updates the recorded
pattern in the AGT. At the end of a generation (eviction/invalidation of any block accessed during
the generation), the AGT transfers the spatial pattern to the history table and the AGT entry is
freed.
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Although the AGT is logically a single table, we implement it as two content-addressable
memories, the accumulation table and the filter table, to reduce the size of the associative search
within each memory and the overall size of the structure. Because the AGT processes each L1 data
access, it is necessary that both tables be able to match the L1 data access bandwidth. The AGT is
not on the L1 data access critical path, and thus does not impact cache access latency.

Spatial patterns are recorded in the accumulation table. Entries in the accumulation table are
tagged by the spatial region tag, the high order bits of the region base address. Each entry stores
the PC and spatial region offset of the trigger access, and a spatial pattern bit vector indicating
blocks that have been accessed during the generation.

New spatial region generations are initially allocated in the filter table. The filter table records
the spatial region tag with the PC and spatial region offset of the trigger access. A significant
minority of spatial region generations never have a second block accessed; there is no benefit to
predicting these generations because the only access is the trigger access. By restricting such
generations to the filter table, SMS reduces pressure on the accumulation table.

The detailed operation of the AGT is depicted in Figure 2. Each L1 access first searches the
accumulation table. If a matching entry is found, the spatial pattern bit corresponding to the
accessed block is set. Otherwise, the access searches for its tag in the filter table. If no match is
found, this access is the trigger access for a new spatial region generation and a new entry is allo-
cated in the filter table (step 1 in Figure 2). If an access matches in the filter table, its spatial region
offset is compared to the recorded offset. If the offsets differ, then this block is the second distinct
cache block accessed within the generation, and the entry in the filter table is transferred to the
accumulation table (step 2). Additional accesses to the region set corresponding bits in the pattern
(step 3).

Spatial region generations end with an eviction or invalidation (step 4). Upon these events,
both the filter table and accumulation table are searched for the corresponding spatial region tag.
(Note that this search requires reading the tags of replaced cache blocks even if the replaced block
is clean). A matching entry in the filter table is discarded because it represents a generation with
only a trigger access. A matching entry in the accumulation table is transferred to the pattern
history table. If either table is full when a new entry must be allocated, a victim entry is selected
and the corresponding generation is terminated (i.e., the entry is dropped from the filter table or

Accumulation Table Filter Table

Tag     PC/offset     Pattern  Tag     PC/offset

Access A+3     A
trigger access misses in accumulation 
table, allocates in filter table

Access A+2   second access transfers generation
from filter to accumulation table

PC / 3

PC / 3 0011

Access A+0   additional accesses set pattern bits 
in accumulation table

PC / 3 1011

Evict A+2   eviction ends generation and sends
pattern to Pattern History Table A PC / 3 1011

To Pattern History Table









Figure 2: Active Generation Table. The AGT consists of an accumulation table and a filter 
table. The figure illustrates the actions taken over the course of one spatial region 
generation.
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transferred from the accumulation table to the pattern history table). In Section 5.5, we observe
that small (e.g., 32- or 64-entry) accumulation and filter tables make this occurrence rare.

4.2. Predicting Spatial Patterns

SMS uses a pattern history table (PHT) for long-term storage of spatial patterns and to predict the
pattern of blocks that will be accessed during each spatial region generation. The implementation
of the PHT and the address stream prediction process is depicted in Figure 3. The PHT is organized
as a set-associative structure similar to a cache. The PHT is accessed using a prediction index
constructed from the PC and spatial region offset of the trigger access for a generation. Each entry
in the PHT stores the spatial pattern that was accumulated in the AGT.

Upon a trigger access, SMS consults the PHT to predict which blocks will be accessed during
the generation. If an entry in the PHT is found, the spatial region’s base address and the spatial
pattern are copied to one of several prediction registers. As SMS streams each block predicted by
the pattern into the primary cache, it clears the corresponding bit in the prediction register. The
register is freed when its entire pattern has been cleared. If multiple prediction registers are active,
SMS requests blocks from each prediction register in a round-robin fashion. SMS stream requests
behave like read requests in the cache coherence protocol.

4.3. Predicting Reads and Writes

The primary target for SMS is read stalls because modern out-of-order processors are able to hide
and tolerate latency of write operations. Nevertheless, the spatial patterns used by SMS consist of
both reads and writes—a consequence of the fact that identifying spatial accesses as reads or writes
requires additional bookkeeping.

Over the course of a spatial generation, each block that comprises the resulting pattern under-
goes a (possibly unique) progression of reads and writes. Some blocks will only be read, others
only written, and still others encounter both reads and writes. With respect to prediction, we are
interested in the type of the initial access to a block. The type of any subsequent access is less
important because the block has already been fetched and resides in the processor’s primary data
cache. Thus, the naive approach whereby the predictor sets a bit in the pattern on reads and on
writes will misclassify read-write blocks. For example, if we target reads, and the first access to a
block is a write, the corresponding bit should not be set. However, any subsequent read will cause
the bit to be set.

Trigger Access

PC           Address

Pattern History Table

Tag        Spatial Pattern

110100001010

001100101000

111111011111

... ...

prediction tag  index

Prediction Register

Spatial Pattern      Region Base Address

001100101000

 base + 3

 base + 2

Address Stream

...

region base    offset

Figure 3: Pattern History Table and prediction process. Upon a trigger access that matches 
in the PHT, the region base address and spatial pattern are transferred to a prediction 
register, beginning the streaming process.
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To reduce blocks extraneously recorded as part of spatial patterns, SMS must track the read/
write nature of each spatial access. As shown in Figure 4, this operation requires an additional bit
vector in the active generation table. To isolate reads or writes, on an access, SMS must first check
the access spatial pattern: if the block has already been accessed this generation, no action is
necessary; if this is the initial access for the block, then its bit in the read vector is set accordingly.
At the end of a generation, the access vector represents all accesses, the read vector represents
spatial reads, and the write vector can be constructed through the difference of the access and read
vectors.

4.4. Expanding Spatial History

Spatial correlation—while effective—is imperfect: access patterns that change over time (e.g.,
because of varying control flow) can lead to overpredictions, which cause bandwidth overhead and
pollution. In the basic SMS design, spatial history entries (i.e., stored in the PHT) correspond
directly to observed spatial patterns. As subsequent patterns occur with the same prediction index,
the old pattern is replaced with the newer one. To reduce overheads due to overprediction, we
explore more sophisticated variations of spatial history. Much like branch predictors can improve
their accuracy by incorporating history of more branch outcomes [37], we improve the accuracy of
spatial prediction by incorporating additional spatial history.

We consider three approaches that all share the same storage cost. Under the first two
approaches, we modify the PHT to maintain the two most recently observed patterns for each
prediction index, instead of the single most recent. SMS performs one of two set operations on
these patterns to determine a predicted pattern for prefetching: union, which seeks to maximize
coverage at the expense of accuracy; and intersection, which minimizes overpredictions but is also
likely to reduce coverage.

The third approach is more sophisticated. Instead of maintaining bit vectors where each bit
corresponds to a block in a spatial region, PHT entries contain a vector of 2-bit saturating counters,
each counter corresponding to a particular spatial region block. When SMS creates a new history
entry (i.e., for a prediction index that does not exist in the PHT), per-block counters are initialized
to 2 for blocks that were part of the observed pattern and 1 for blocks that were not. To update

00100000read A+2
access vector

00100000

read vector

Active Generation Table entry

intial read; sets bit in both vectors

00100001write A+7 00100000 intial write; only sets access bit

00100001write A+2 00100000 subsequent write; bits already set

00100001read A+7 00100000 subsequent read; does not set read bit

Figure 4: Capturing spatial reads and writes. The access and read vectors illustrate their 
maintenance over a short sequence of reads and writes.
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spatial history (i.e., when the prediction index of a completed pattern matches an existing PHT
entry), SMS increments counter values for blocks that were accessed, and decrements the other
counters. During prediction, SMS prefetches all blocks for which the corresponding counter has
value 2 or 3.

4.5. Rotated Patterns

SMS employs PC+offset indexing to achieve good coverage with relatively low mispredictions
(Section 5.2). SMS trains quickly and prefetches compulsory misses because its prediction index is
PC-based. The offset portion of the index accounts for different alignments of spatial layouts rela-
tive to the fixed region boundaries imposed by SMS, ensuring that a prediction index maps
accurately to a spatial pattern.

For every trigger PC, SMS learns a different pattern for each initial offset. However, these
patterns are unlikely to be truly unique—rather, each consists of a similar pattern of offsets relative
to its trigger. Conceptually, PHT entries are wasted for patterns that recur for different spatial
offsets. Practically, these wasted entries are necessary because the bits in a spatial pattern directly
correspond to blocks in a spatial region. A PC-only index (i.e., without the spatial offset) cannot
distinguish between different instances of a pattern, and essentially prefetches random blocks if the
offset of a generation being predicted does not match the offset of the generation when it was
recorded.

We propose rotation indexing to eliminate redundant patterns caused by different offsets of the
same trigger PC. The training process (observed patterns in the AGT) proceeds as before.
However, prior to storing a pattern in the PHT, it is rotated so that the trigger offset is always the
first bit. We illustrate the rotation process in Figure 5. SMS places the rotated pattern in the PHT
according to a PC-only prediction index. When predicting a spatial generation, SMS looks up a
pattern in the PHT according to the trigger PC and rotates it according to the offset of the trigger
access in its spatial region.

PCX / 2


PC / offset






access A+2, PCX

access A+4, PCY

access A+1, PCZ

evict A+4

access B+4, PCX

prefetch B+6
prefetch B+3

ti
m

e

A

region

01101000

pattern

AGT entry

PCX

index

10100001

pattern

PHT entry

PCX / 4

PC / offset

B

region

00011010

prediction

prediction example


Figure 5: Rotated spatial patterns. The figure walks through an example: (1) operations 

belonging to one spatial generation, (2) corresponding AGT entry at generation end, 
(3) rotated pattern stored in PHT, (4) trigger access of new generation, (5) information 
required for prediction, and (6) prefetches issued.
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5. Evaluation

We evaluate SMS using a combination of trace-driven and cycle-accurate full-system simulation
of a shared-memory multiprocessor using FLEXUS [15]. FLEXUS can execute unmodified commer-
cial applications and operating systems. FLEXUS extends the Virtutech Simics functional simulator
with cycle-accurate models of an out-of-order processor core, cache hierarchy, protocol controllers
and interconnect. We simulate a 16-processor directory-based shared-memory multiprocessor
system running Solaris 8. We employ a wait-free implementation of the total store order memory
consistency model [1,11]. We perform speculative load and store prefetching [10], and specula-
tively relax memory ordering constraints at memory barrier and atomic read-modify-write memory
operations [11]. We list other relevant parameters of our system model in Table 1 (left).

We evaluate three classes of commercial workloads [3,14]. Online transaction processing
(OLTP) executes many short database queries, each on a single processor. Its memory behavior is
dominated by migratory sharing and chains of dependent misses. Decision support systems (DSS)
consist of individual, long running queries that the database parallelizes across all processors. Its
memory accesses are predominantly compulsory misses. Web servers handle many tiny requests,
and much like OLTP, parallelism emerges across requests. The most common memory behavior in
web serving is sharing of common OS structures. We also consider several multi-threaded scien-
tific applications, which exhibit extremely repetitive memory behavior and mainly serve as a point
of comparison against the commercial workloads.

We evaluate a distributed shared memory (DSM) machine consisting of 16 nodes with one
processor core per node. Obviously, chip multiprocessors (CMPs) have recently become main-
stream. Compared with DSMs, CMP-only systems exhibit different memory behaviors because
coherence traffic is confined on chip and capacity pressure tends to increase. However, even with
CMPs, servers in our target market segment will continue to use multiple chips, thus producing
off-chip memory behavior similar to a pure DSM (i.e., with one core per chip). In this study, we
focus on a pure DSM model because it directly exposes off-chip memory access patterns, enabling

Processing Nodes UltraSPARC III ISA
4 GHz 8-stage pipeline; out-of-order
8-wide dispatch / retirement
256-entry ROB, LSQ; 64-entry store buffer

L1 Caches Split I/D, 64KB 2-way, 2-cycle load-to-use
4 ports, 32 MSHRs, 16 SMS requests

L2 Cache Unified, 8MB 8-way, 25-cycle hit latency
1 port, 32 MSHRs

Main Memory 3 GB total memory
60 ns access latency
64 banks per node
64-byte coherence unit

Protocol Controller 1 GHz microcoded controller
64 transaction contexts

Interconnect 4x4 2D torus
25 ns latency per hop
128 GB/s peak bisection bandwidth

Online Transaction Processing (TPC-C)

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA

DB2  100 warehouses, 64 clients, 2.0 GB buffer pool

Decision Support (TPC-H on DB2)

Qry 1 Scan-dominated, 2.0 GB buffer pool

Qry 2 Join-dominated, 2.0 GB buffer pool

Qry 16 Join-dominated, 2.0 GB buffer pool 

Qry 17 Balanced scan-join, 2.0 GB buffer pool

Web Server

Apache 16K connections, FastCGI, worker threading model

Zeus 16K connections, FastCGI

Scientific

em3d 3M nodes, degree 2, span 5, 15% remote

ocean 1026x1026 grid, 9600s relaxs., 20K res., err tol 1e-07

sparse 4096x4096 matrix

Table 1: System and application parameters for SMS.
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us to better understand spatial and temporal correlation than through a hybrid multi-chip, multi-
core architecture.

Table 1 (right) enumerates our commercial and scientific application suite. We include the
TPC-C v3.0 OLTP workload on two commercial database management systems, IBM DB2 v8
ESE, and Oracle 10g Enterprise Database Server. We select four queries from the TPC-H DSS
workload based on the categorization in [28]: one scan-dominated query, two join-dominated
queries, and one query exhibiting mixed behavior. All four DSS queries are run on DB2. We eval-
uate web server performance with the SPECweb99 benchmark on Apache HTTP Server v2.0 and
Zeus Web Server v4.3. We drive the web servers using a separate client system and a high-band-
width link tuned to ensure that the server system is fully saturated (client activity is not included in
trace or timing results). Finally, we include three scientific applications to provide a frame of refer-
ence for our commercial application results.

Our trace-based analyses use memory access traces collected from FLEXUS with in-order
execution, no memory system stalls, and a fixed IPC of 1.0. For OLTP and web workloads, we
warm main memory with functional simulation for at least 5000 transactions (or web requests)
prior to starting traces, and then trace at least 1000 transactions. For DSS queries, we analyze
traces of over three billion total instructions taken from the query execution at steady-state. We
have experimentally verified that varying trace start location has minimal impact on simulation
results. For scientific applications, we analyze traces of five to ten iterations. We use half of each
trace for warm-up prior to collecting experimental results. All results prior to Section 5.10 use this
trace-based methodology.

For cycle-accurate simulations, we use a sampling approach developed in accordance with
SMARTS [36]. Our samples are drawn over an interval of 10 to 30 seconds of simulated time (as
observed by the operating system in functional simulation) for OLTP and web applications, over
the complete query execution for DSS, and over a single iteration for scientific applications. We
show 95% confidence intervals that target ±5% error on change in performance, using paired-
measurement sampling [35]. We launch measurements from checkpoints with warmed caches,
branch predictors, and predictor table state, then run for 100,000 cycles to warm queue and inter-
connect state prior to collecting measurements of 50,000 cycles. We use the aggregate number of
user instructions committed per cycle (i.e., committed user instructions summed over the 16
processors divided by total elapsed cycles) as our performance metric, which is proportional to
overall system throughput [34].

5.1. Spatial Characterization

We begin by quantifying the spatial characteristics of our application suite and identifying the
maximum opportunity to reduce miss rates with SMS. We show that there is substantial spatial
correlation over regions as large as the operating system page size (8KB). However, an increased
cache block size cannot exploit this correlation because of increased conflict misses, false sharing,
and inefficient bandwidth utilization. No single cache block size can capture spatial correlation
efficiently because access density varies within and across applications. SMS does not suffer these
inefficiencies because it tracks spatial correlation at fine granularity.

We quantify the opportunity for SMS to exploit spatial correlation across a range of region
sizes, and compare against the effectiveness of increasing cache block size in Figure 6. To assess
opportunity, at each region size, we consider an oracle predictor that incurs only one miss per
spatial region generation (labelled “opportunity”). We also show the miss rate achieved by a cache
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with block size equal to the region size. (We hold cache capacity fixed across all region/block
sizes). For block sizes larger than 64B, we separate misses caused by false sharing (labelled “false
sharing beyond 64B”) from all other misses (labelled “other misses”). We report results in terms of
misses per instruction, normalized to a cache with 64B blocks and no predictor.

Our oracle study demonstrates substantial opportunity for SMS to eliminate read misses.
Across applications and cache hierarchy levels, SMS opportunity increases as spatial regions are
extended to the OS page size.

Increased cache block size leads to drastic increases in L1 miss rates because of conflict
behavior. The commercial workloads use only a subset of the data in large regions and interleave
accesses across regions. Thus, as the cache block size increases, conflicts increase, and the effec-
tive capacity of the L1 cache is reduced, leading to a sharp increase in miss rate with block sizes
beyond 512B. The data sets of the scientific applications are more tightly packed, but nevertheless
suffer from similar conflict behavior.

The larger L2 capacity reduces the prevalence of conflict effects as compared to the L1 cache.
However, commercial workloads instead incur misses from false sharing, which accounts for
26%–42% of L2 misses at the 8KB block size.

The inefficient bandwidth utilization of larger blocks makes it unclear if even block sizes of
512B, despite lower miss rates, can improve performance over 64B blocks at any hierarchy level.
Unless data is densely packed, as in the scientific applications, larger block sizes lead to the
transfer of more unused data. In the commercial applications, bandwidth efficiency drops expo-
nentially as block size increases above 512B.

Huh et al. demonstrate that the latency penalty of false sharing can be eliminated through
coherence decoupling—speculative use of incoherent data [18]. However, even if false sharing is
eliminated, true sharing and replacement misses nonetheless result in nearly double the L2 miss
rate of the oracle opportunity at 8KB blocks. Furthermore, coherence decoupling does not elimi-
nate bandwidth wasted by false sharing, and therefore cannot scale to the same region sizes as
SMS.

Figure 6: L1 and L2 (off-chip) miss rates versus block/region size. Opportunity represents 
an oracle spatial predictor that incurs one miss per spatial region generation.
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The root cause of the inefficiency of large cache blocks is the variability of memory access
density within and across applications. We quantify memory access density as the fraction of cache
misses occurring in spatial region generations that contain a particular number of misses. Figure 7
presents a breakdown of memory access density for each application for a 2KB region size (we
establish 2KB as the best choice for region size in Section 5.4). For example, in OLTP-DB2, 22%
of L1 misses come from spatial generations in which between four and seven blocks are missed
upon during the generation. With the exception of ocean and sparse, all applications exhibit wide
variations in their memory access density at both the L1 and L2 caches. Thus, no single block size
can simultaneously exploit the available spatial correlation while using bandwidth and storage
efficiently.

Because SMS learns and predicts spatial patterns over large regions at fine granularity, SMS
can approach the miss rates indicated by our opportunity study without the inefficiencies of large
blocks. SMS fetches only the 64B blocks within a region that are likely to be used, and therefore
does not incur the conflict, false sharing, or bandwidth overhead of larger blocks. Our opportunity
results for L1 indicate that accurate spatial pattern prediction allows SMS to deliver blocks directly
into the L1 cache, despite its small capacity.

5.2. Indexing

Prior studies of spatial predictors [7,23] advocate predictor indices that include address informa-
tion. In this section, we show that PC+offset indexing yields the same or significantly higher
coverage than address-based indices, as well as lower storage requirements.

We compare the Address, PC+address, PC, and PC+offset indexing schemes in Figure 8, using
an infinite PHT to assess the true opportunity without regard to storage limitations. Coverage
represents the fraction of L1 read misses that are eliminated by SMS. Overpredictions represent
blocks that are fetched but not used prior to eviction or invalidation, and thus waste bandwidth.

Figure 7: Memory access density. Each segment represents the percentage of L1 or L2 
misses from generations of the indicated density (i.e., the number of blocks in the 
2KB spatial region that incur misses during the generation).
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Overpredictions can also cause cache pollution; this effect is implicitly taken into account because
the additional misses are categorized as uncovered.

In OLTP and web applications, a majority of spatially-correlated accesses arise from heavily-
visited code sequences and data structures. Hence, both data addresses and PCs correlate to similar
spatial patterns, and the Address, PC+address, and PC+offset indexing schemes perform similarly.
PC indexing (without any address information) is less accurate because it cannot distinguish
among distinct access patterns to different data structures by the same code (e.g., accesses to data-
base tuples of different sizes). PC+offset indexing can distinguish patterns based on the spatial
region offset, which is sufficient to capture the common cases. Our result contradicts a prior study
of uniprocessor OLTP and web traces [23], which indicated that PC+address provides superior
coverage.

Indices that correlate primarily based on program context (PC, PC+offset) are fundamentally
more powerful than alternatives that include complete addresses (Address, PC+address) because
they can predict accesses to data blocks that have not been used previously—a crucial advantage
for DSS. The scan and join operations that dominate DSS access many data only once. Address-
based indices cannot predict previously-unvisited addresses and thus fail to predict many spatially-
correlated accesses. Both the PC and PC+offset schemes can predict unvisited addresses, but, as
with OLTP and web applications, the ability of PC+offset to distinguish among traversals allows it
to achieve the highest coverage.

For scientific applications, we corroborate the conclusions of prior work [4] that indicate
PC+offset indexing generally approaches the peak coverage achieved by the PC+address indexing
scheme.

A second advantage of PC+offset indexing over alternatives that include complete addresses is
that its storage requirements are proportional to code size rather than data set size. Figure 9
compares PC+offset and PC+address at practical PHT sizes. PC+offset attains peak coverage with
16k entries—roughly the same hardware cost as a 64KB L1 cache data array. For PC+address, in
all workloads except OLTP, 16k entries is far too small to capture a meaningful fraction of program

Figure 8: Index comparison.  The index type is given below each bar. PHT size is unbounded. 
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footprint and provide significant coverage. In OLTP, where most coverage arises from frequent
accesses to relatively few structures, PC+address achieves 75% of peak coverage with a 16k-entry
PHT.

5.3. Decoupled Training

The training structure (e.g., the AGT) is a key component in any spatial-correlation predictor
because structural limitations can prematurely terminate spatial region generations—particularly
when accesses to different regions are interleaved—and thus reduce predictor coverage and/or
fragment prediction entries, consequently polluting the PHT.

Past predictors [7,23] couple the predictor training structure to a sectored (i.e., sub-blocked)
cache tag array. In a sectored cache, the valid bits in the tag array for each sector implicitly record
a spatial pattern, thus requiring only minimal hardware changes to train a predictor (e.g., to track
PC/address of the trigger access). However, sectored caches are less flexible than traditional
caches and experience worse conflict behavior. To mitigate this disadvantage, the spatial footprint
predictor [23] employes a decoupled sectored cache [27], whereas the spatial pattern predictor [7]
provides a logical sectored-cache tag array alongside a traditional cache. The logical sectored-
cache tag array calculates cache contents as if the cache was sectored, but does not affect actual
cache replacements. Nevertheless, both these organizations incur more address conflicts than a
traditional cache, and thus cannot accurately track available spatial correlation.

We compare the AGT to both of these organizations in Figure 10. We measure coverage by
comparing the miss rate of each implementation against a baseline traditional cache. We model an
infinite PHT to factor out predictor storage limitations from this analysis.

In commercial workloads, the additional constraints that the decoupled sectored cache (DS)
places on cache contents lead to considerably more misses than in both other approaches. The
conflict effects are magnified in applications where few generations are dense (OLTP and web, as

Figure 9: PHT storage sensitivity for PC+address and PC+offset indexing. The finite PHTs 
are 16-way set-associative.
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we demonstrated in Figure 7). In the scientific applications, blocks in the same sector tend to be
replaced together, and thus the decoupled and logical sectored tags behave identically.

Although the logical sectored scheme achieves similar coverage to AGT, when accesses across
regions are interleaved, logical tag conflicts still fragment generations and create more history
patterns. Figure 11 compares the two approaches in terms of PHT storage requirements. In general,
for any coverage that the logical sectored design can achieve, it requires twice the PHT storage of
AGT. The gap is largest for OLTP, which exhibits the most interleaving.

Figure 10: Comparison of training structures. DS=Decoupled Sectored. LS=Logical Sectored. 
AGT=Active Generation Table. PHT size is unbounded.
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5.4. Spatial Region Size

Our oracle study (Figure 6) indicates that there is increasing opportunity as spatial region size
increases to 8KB. For SMS to exploit this opportunity, accesses in a region must be repetitive and
correlate to the trigger access. However, larger regions are more likely to span unrelated data struc-
tures, and therefore some accesses may not be repetitive with respect to the trigger access. We
explore SMS sensitivity to region size in Figure 12, using AGT training and unlimited PHT
storage. We vary region size from 128B (two blocks) to the OS page size of 8KB (128 blocks).

In the database workloads, spatial regions do not span data structures, because the structures
are aligned to database pages. Thus, in OLTP, coverage increases with region size. In DSS, most
patterns are dense, so the benefit to merging adjacent spatial regions (i.e., eliminating the trigger
misses of additional regions) is negligible.

In scientific applications, at region sizes above 2KB, we observe the negative effect of span-
ning data structures. Using PC+address (rather than PC+offset) indexing can mitigate this effect by
learning specific patterns for each boundary between data structures, at the cost of drastically
increased PHT storage requirements.

Choosing a spatial region size involves a tradeoff between coverage and storage requirements.
Storage is dominated by PHT size, which scales linearly with the size of spatial regions. All appli-
cations except OLTP exhibit peak coverage with 2KB regions. The 2% coverage increase for
OLTP when increasing region size to 4KB does not justify the doubled PHT size. Unless otherwise
specified, we use 2KB spatial regions.

5.5. Active Generation Table

The AGT is responsible for recording all blocks accessed during a spatial region generation. If the
AGT is too small, generations will be terminated prematurely by replacement, leading to reduced

Figure 12: Spatial region size. SMS with PC+offset indexing and AGT training. PHT size is 
unbounded.
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pattern density and increased PHT storage requirements. Fortunately, SMS is able to attain the
same coverage with a practical AGT as with an infinite AGT—across all applications, a 32-entry
filter table and a 64-entry accumulation table are sufficient. OLTP-Oracle places the largest
demand on the accumulation table; it is the only application to require more than 32 accumulation
table entries.

5.6. Differentiating Reads from Writes

Poor prediction accuracy is the downside of using general access patterns (as opposed to read
patterns or write patterns) to predict only read misses or only writes misses. Targeting only reads,
predictor accuracy can be improved. Although the primary goal of differentiating reads from
writes is to reduce mispredictions for read misses, we explore the effectiveness of spatial correla-
tion at predicting write misses. Predicting writes can be useful for in-order, sequentially consistent
machines that cannot overlap write latency, or for predicting write sets and acquiring early write
permission in advanced memory speculation techniques [6,33].

Results for read and write isolation are shown in Figure 13. The left-most bar for each applica-
tion, all-reads, corresponds to the base SMS design. Observing read patterns and storing these in
the PHT for later prediction (reads only), SMS achieves identical coverage as the base design.
However, by eliminating the noise that writes cause for read prediction, we reduce overpredictions
by 24% on average.
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The right-most two bars present the corresponding results for writes. With all-writes, SMS
maintains and predicts patterns of all accesses, but we evaluate its predictions against off-chip
write misses. As above, by isolating write vectors, SMS reduces overpredictions without
impacting coverage. The difference in overpredictions is more pronounced with writes than with
reads—writes are less frequent than reads, so the noise that reads add to write vectors is more
significant than the noise caused by inserting writes into read vectors. Results for the scientific
applications are noteworthy: in em3d, there are no write misses at all; in ocean and sparse, write
misses are few and perfectly repetitive.

5.7. Expanding Spatial History

Figure 14 presents prediction results for SMS with expanded spatial history. We evaluate the effec-
tiveness of SMS at predicting off-chip read misses and include the read-prediction optimization
from Section 4.4. We arrange the results in order of decreasing overpredictions, from left to right:
union, last pattern (i.e., the base SMS design), 2bit saturating counters, and inter(section).

Spatial history has a direct influence on overpredictions. On average, each successively more
conservative approach reduces overpredictions by 36%, 47%, and 43%, respectively. Union
predicts everything; its overpredictions are highest. Conversely, intersection yields the lowest
overpredictions. 2bit falls between simple last pattern and intersection because the hysteresis effect
of the saturating counters prevents spurious blocks from being prefetched, but is not as restrictive
as intersection.

The 2bit strategy captures stable spatial correlation, attaining essentially the same coverage as
the single most recent pattern, but without mispredicting blocks that toggle into and out of patterns.

Figure 14: Improving spatial history. last uses the most recently observed pattern for spatial 
history, as in basic SMS. union and inter each maintain the two most recent patterns, 
and predict using union or intersection, respectively. 2bit uses a 2-bit saturating 
counter per block, updated as patterns are observed.
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Furthermore, by reducing mispredictions compared with last pattern prediction, 2bit minimizes the
effects of pollution, achieving a slight increase in coverage for some applications.

5.8. Rotated Patterns

The objective of rotation indexing is to reduce the size of the PHT without lowering coverage. We
evaluate rotation indexing with the read-prediction optimization from Section 4.3 and 2-bit spatial
history from Section 4.4. We show predictor coverage in Figure 15 as a function of PHT size,
which ranges from 256 entries to infinite. We summarize the results by workload category,
comparing PC+offset against PC-rotation indexing. For clarity, we omit overpredictions from the
graph; across all applications, overpredictions scale with coverage and there is no difference
between the two indexing methods.

With an infinite PHT, prediction coverage is similar for PC+offset and PC-rotation indexing.
This result verifies that different patterns with the same trigger PC tend to be rotated versions of
each other. If the patterns were unrelated, then coverage would drop (and overpredictions
increase). em3d is solely responsible for the apparent increase in coverage of the scientific applica-
tions—its pseudo-random spatial patterns are more predictable with rotation than through static
offsets.

Analyzing the entire range of PHT sizes, PC-rotation indexing requires roughly half the
number of PHT entries as PC+offset indexing to achieve the same coverage. This trend holds for
all the commercial workloads, although DSS exhibits no sensitivity above 2k entries. To attain
peak coverage, SMS requires 16k PHT entries with PC+offset indexing, but just 8k entries using
PC-only indexing with rotation.

Figure 15: PHT storage with rotated patterns. off represents PC+offset indexing. rot 
represents PC indexing with rotation.
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5.9. Comparison to State-of-the-Art Prefetchers

Although many prefetching and streaming techniques have been proposed, they do not target
general memory access patterns for commercial workloads. We compare SMS against the Global
History Buffer (GHB) [26], whose PC/DC (program counter / delta correlation) variant was shown
to be the most effective prefetching technique for desktop/engineering applications [13]. Like
SMS, GHB-PC/DC exploits spatial relationships between addresses. However, GHB seeks to
predict the sequence of offsets across consecutive memory accesses by the same instruction.

We consider GHB with two history buffer sizes: 256 entries (sufficient for SPEC CPU applica-
tions [13,26]) and 16k entries (to roughly match the capacity of the SMS PHT). The GHB lookup
mechanism requires multiple buffer accesses upon each prefetch; as such, GHB was proposed for
and is only applicable to L2 caches. Thus, we compare the off-chip miss coverage of GHB and
SMS in Figure 16.

SMS outperforms GHB in OLTP and web applications. These applications interleave accesses
to multiple spatial regions. SMS captures these accesses because the trigger access in each region
independently predicts a pattern for the region. With GHB, however, when multiple access
sequences are interleaved, the offset sequences are disrupted. Therefore, GHB can only predict
interleaved sequences if the interleaving itself is repetitive.

The DSS workloads access fewer regions in parallel; hence, interleaving is less frequent.
Furthermore, DSS access sequences are highly structured—scans and joins, instead of the searches
common in OLTP—which allow GHB to nearly match SMS coverage. As expected, in the scien-
tific applications, both predictors capture the repetitive access sequences.

5.10. Performance Results

We evaluate the performance impact of SMS on scientific and commercial applications with
respect to a baseline system without SMS. Figure 17 shows the performance improvement for each
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application with 95% confidence intervals given by our sampling methodology. Figure 18 presents
execution time breakdowns for both systems. The two bars for each application are normalized to
represent the same amount of completed work. Thus, the relative height of the bars indicates
speedup, while the size of each component indicates the time per unit of forward progress spent on
the corresponding activity. User busy and system busy time indicate cycles in which at least one
instruction is committed. The three depicted stall categories represent stalls waiting for load data
from off-chip, from an on-chip cache (e.g., L2), and store-buffer-full stalls. Finally, the remaining
category accumulates all other stall sources (e.g., branch mispredictions, instruction cache misses).

In all workloads, SMS improves performance by reducing off-chip read stalls. We observe
performance improvements of over 20% in the web, scientific, and DSS (except Qry1) workloads.

In OLTP workloads, many of the misses that SMS predicts coincide with misses that the out-
of-order core is able to overlap. Even though overall MLP is low [8], misses that the core can issue
in parallel also tend to be spatially correlated (e.g., accesses to multiple fields in a structure).
Therefore, the impact of correctly predicting these misses is reduced and speedup is lower than our
coverage results suggest.

In the scan-dominated Qry1, SMS has no statistically significant effect, despite high prediction
coverage. In this query, a large amount of data is copied to a temporary database table, which
rapidly fills the store buffer with requests that miss in the cache hierarchy. Hence, store-buffer-full
stalls limit performance improvement. In this situation, load streaming by SMS is counterproduc-
tive, because the read-only blocks fetched by SMS must all be upgraded (i.e., write permission
obtained via the coherence protocol), delaying the critical path of draining the store buffer.

One surprising effect we see is an apparent reduction in system busy time with SMS for web
and DSS workloads. However, the absolute fraction of system busy time (i.e., not normalized to
forward progress) is identical between the base and SMS systems. We infer that the OS activity
during these system-busy intervals is not on behalf of the application, but instead OS work that is
proportional to time—for example, servicing traffic from a saturated I/O subsystem.
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Figure 17: Speedup with 95% confidence intervals. Geometric mean speedup is 1.37.
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In em3d, MLP is high (>4.5) and SMS coverage (63%) is insufficient to predict all misses in a
burst, leaving much of the latency for each burst exposed. In sparse, because prediction coverage is
high (92%), SMS eliminates nearly all off-chip miss time, improving performance by 307%.

6. Related Work

Several prior proposals use offline analysis to exploit variations in spatial locality. Vleet et al. [31]
propose offline profiling to select fetch size upon a miss. Guided region prefetching [32] uses
compiler hints to direct both spatial and non-spatial (e.g., pointer-chasing) prefetches. However,
the complex access patterns and rapid changes in datasets common in commercial applications
present a challenge for static and profile-based approaches. Moreover, these approaches require
application changes or recompilation, whereas SMS is software transparent and adapts at runtime
to changing application behavior.

A variety of hardware approaches exploit variations in spatial locality at runtime, including the
dual data cache [12], the spatial locality detection table [20], and caches that dynamically adjust
block size [9,30]. All of these techniques exploit spatial locality variation at coarse granularity,
thus sacrificing either bandwidth efficiency or prefetch opportunity. SMS does not modify the
fetch/block size, and instead predicts, at fine granularity, precisely which blocks to fetch from a
larger region.

Other proposals directly target spatial correlation. We discuss spatial footprints [23] and the
spatial pattern predictor [7] in Section 3. Compared with SMS, these techniques utilize different
training mechanisms that are not as proficient as the AGT at identifying repetitive spatial layouts.
Neighborhood prefetching [22] captures spatial correlation, but predicts with PC-only indexing,
which results in low accuracy. Density vectors (a.k.a., spatial patterns) are used in [24] to reject
prefetches that are likely to be mispredictions. The authors start with an aggressive, inaccurate
prefetcher and employ spatial correlation to minimize the impact of its inaccuracy. We suggest that

Figure 18: Time breakdown comparison. The base and SMS bars for each application are 
normalized to represent the same amount of completed work.
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spatial correlation is better utilized on its own, instead of in a tandem approach where spatial
prediction does not directly yield coverage. Adaptive stream detection [19] dynamically adjusts
prefetch aggressiveness to improve timeliness for regions with less dense spatial patterns.

Stealth prefetching [5] exploits coherence tracking at the spatial region granularity to fetch
entire regions, if a region is not shared by other processors. This brute force approach is the antith-
esis of SMS and other intelligent spatial-correlating prefetchers in that it makes no attempt to
predict access patterns within spatial regions. Predictor virtualization [4] proposes mechanisms to
store predictor metadata in existing on-chip caches. The authors used the SMS prefetcher in their
evaluation and found that predictor virtualization nearly obviates the need for dedicated pattern
history storage (i.e., the PHT).

7. Conclusions

We have shown that memory accesses in commercial workloads are spatially correlated over large
memory regions (e.g., several KB) and that this correlation is repetitive and predictable. We estab-
lished that code-based correlation is fundamentally superior to address-based correlation because it
can predict previously-unvisited addresses. We demonstrated that decoupled tracking of spatial
generations is superior to implementations that couple spatial observation to cache structures.

We proposed Spatial Memory Streaming, a practical on-chip hardware technique that identi-
fies code-correlated spatial patterns and streams predicted blocks to the primary cache ahead of
demand misses. Even with 64KB of pattern storage per processor, SMS can be effectively imple-
mented entirely on chip. Moreover, predictor virtualization [4] can reduce the dedicated storage to
less than 1KB per processor by maintaining pattern history in the traditional memory hierarchy.
Using cycle-accurate full-system multiprocessor simulation running commercial and scientific
applications, we demonstrated that SMS can on average predict 58% of L1 and 65% of off-chip
misses, for an average speedup of 37% and at best 307%.
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