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Abstract

The confluence of 3D stacking, emerging dense memory
technologies, and low-voltage throughput-oriented many-
core processors has sparked interest in single-chip servers
as building blocks for scalable data-centric system design.
These chips encapsulate an entire memory hierarchy within
a 3D-stacked multi-die package. Stacking alters key assump-
tions of conventional hierarchy design, drastically increas-
ing cross-layer bandwidth and reducing the latency ratio
between successive layers. Hence, prior work, specifically
PicoServer, suggests flattening the hierarchy, eliding inter-
mediate caches that otherwise lengthen the critical path be-
tween L1 and stacked memory.

Although PicoServer argues for a flattened memory hier-
archy for web serving workloads, it remains unclear if its
conclusions hold more generally—particularly when con-
sidering metrics besides access latency—and more recent
studies have often included intermediate caches. In this pa-
per, we investigate the bandwidth, latency, and energy filter-
ing afforded by an L2 cache. For data-centric scientific and
server applications, we conclude: (1) 3D stacking provides
copious bandwidth, hence L2 bandwidth filtering is moot;
(2) although a flat hierarchy is optimal for access patterns
with poor temporal locality, some workloads benefit from ac-
cess latency reduction afforded by L2, an effect magnified by
latency-intolerant in-order cores and for memory technolo-
gies with asymmetric read and write latencies; and (3) inter-
mediate caches are rarely desirable from an energy perspec-
tive, and only if the cache is optimized for low leakage.

1. Introduction

The confluence of 3D stacking of logic and memory, emerg-
ing dense memory technologies, and low-voltage throughput-
oriented many-core processors has sparked interest in single-
chip servers as building blocks for scalable data-centric
system design [23]. These single-chip servers encapsulate
an entire memory hierarchy within a 3D-stacked multi-die
package. However, 3D stacking alters key assumptions of
conventional memory hierarchy design. For example, cross-
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layer bandwidth is drastically increased, and the latency ratio
between successive layers is reduced [16]. In light of these
inflections, prior work has suggested flattening the mem-
ory hierarchy, eliding intermediate caches that otherwise
lengthen the critical path between L1 and stacked memory.
For example, PicoServer proposes removing the L2 and re-
allocating the area to additional cores on the chip [10].

Although the PicoServer study demonstrates both perfor-
mance and energy advantages of a flattened memory hier-
archy for web serving workloads, many recent studies of
3D stacked systems nevertheless have included intermediate
cache levels between L1 and a stacked memory [5, 20, 27]
or stacked last-level-cache [16, 17]. The lack of clarity re-
garding the utility of intermediate caches stems partially
from uncertainty about the ultimate performance and energy
characteristics of 3D stacked devices. For example, Loh de-
scribes how the physical design of DRAM can substantially
alter its performance [16]. Liu and co-authors describe alter-
native 3D stacked DRAM-based design configurations that
have up to a 2x difference in performance [15]. Similar un-
certainty exists with other potential memory technologies; a
survey by Lee and co-authors indicates that published phase-
change memory (PCM) performance estimates vary by up to
1.45x [13]. As another example of this uncertainty, the la-
tency values cited by Li and co-authors [14] and Venkatara-
man and co-authors [26] vary by up to 2.5x for PCM.

In this paper, we revisit the conclusions of the PicoServer
study to identify the inflection points where an intermediate
cache level becomes profitable. Whereas PicoServer focuses
primarily on the latency impact of intermediate caches ver-
sus a flat hierarchy, it has also been observed that caches can
act as bandwidth filters [7], and, more recently, as energy
filters [12,25] for lower hierarchy levels. Hence, we con-
sider the utility of an intermediate cache from all three per-
spectives, bandwidth, latency, and energy filtering. In addi-
tion, we investigate design tradeoffs when memory read and
write latencies are asymmetric, as is common for emerging
memory technologies. We find memory parameter inflection
points for a suite of eight applications, four from the SPEC



CPU2006 suite (two each with good and poor relative tem-
poral locality), and four from emerging data-centric work-
loads that motivate single-chip server design [23].

We make the following contributions:

e We characterize the bandwidth requirements of our work-
load suite, both with and without an L2 cache, and
demonstrate that bandwidth filtering is moot given the
large bandwidth provided by 3D-stacked memories. For
these benchmarks, the highest bandwidth requirement
without an L2 is approximately 29 GB/s with eight high-
end cores, a requirement easily fulfilled by two DDR3
channels, and at least 5x below the projected bandwidth
capability of 3D stacked memory.

We show that although a flat hierarchy is optimal for ac-
cess patterns with poor temporal locality, some scientific
and data-centric workloads benefit from access latency
reduction provided by intermediate cache levels, an effect
that is magnified by latency-intolerant in-order cores. We
show that half the data-centric workloads do not require
an L2 unless the stacked memory access latency is well
over 12x the L2 access latency.

We find that an L2 cache is rarely desirable from an en-
ergy perspective for data-centric workloads, even when
the ratio of main memory to L2 dynamic access energy
is high. Importantly, we find that it is critical for the L2
to have low leakage power for it to provide any energy
gain, as L2 leakage can rapidly offset any energy savings
achieved from conserving dynamic power.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work, and Section 3 describes our
experimental methodology. We consider the bandwidth, la-
tency, and energy filtering impact of intermediate caches in
Section 4, Section 5, and Section 6 respectively. In Section 7,
we conclude.

2. Related Work

Our study is inspired by the disparity between the recom-
mendation of PicoServer [10] to flatten the memory hier-
archy and other more recent studies of 3D stacked mem-
ory hierarchies [5, 16, 17,20, 27] which retain intermediate
caches. PicoServer proposes an architecture where multiple
simple, throughput-optimized, in-order processing cores are
3D-stacked with multiple DRAM dies that comprise main
memory. PicoServer flattens the memory hierarchy by re-
moving the L2 and re-allocating the area for additional cores.
For the web-tier applications studied, the L2 provides lit-
tle benefit, and the throughput advantage of re-allocating the
area for additional cores is greater.

The PicoServer study focuses primarily on the latency im-
pact of an L2 cache, observing that it slows the critical ac-
cess path to the main memory. Bandwidth and energy fil-
tering have been suggested as further motivations beyond

latency hiding for intermediate cache levels. These effects
were not a focus of the PicoServer study. In this study, we
consider whether these concerns might change the answer
on whether or not to flatten the hierarcy. We consider data-
centric and scientific workloads with larger memory foot-
prints than the more network-centric benchmarks for which
PicoServer was designed (the higher percentage of DMA
and I/O accesses in web serving reduces L2 effectiveness).
Additionally, we consider the impact of asymmetric read and
write latencies, a characteristic of many non-volaltile mem-
ories like PCM [21,22] and STT-RAM [24].

Our intent is to provide guidance on memory hierarchy de-
sign for single-chip servers, such as the Nanostores [23] pro-
posal by HP Labs. Nanostores are single-chip servers with
3D (or 2.5D) stacked logic and dense non-volatile memory.
Nanostores are further distinguished by their use of low-
voltage throughput-oriented many-core processors. Overall,
Nanostores have been proposed as viable building blocks for
scalable data-centric systems.

Since the advent of 3D stacking with through-silicon vias
(TSVs), there have been a number of studies to examine 3D
stacked memory system design. Loh [16] describes a 3D
memory organization that increases “memory level paral-
lelism through a streamlined arrangement of L2 cache banks,
MSHRs, memory controllers and the memory arrays them-
selves”. His work improves page-level parallelism by in-
creasing row buffer cache capacity, thereby allowing for a
larger set of open memory pages. Loh also uses a data struc-
ture called the Vector Bloom Filter to reduce the number of
probings required to determine hits and misses in the L2.
Loh and Hill [17] explore efficient on-chip DRAM-based
caching using conventional cacheline sizes. Their technique
schedules tag and data accesses as compound accesses such
that the data accesses are always row buffer hits, thereby
making hits faster than just storing tags in the DRAM. Their
technique also makes misses faster by using MissMaps to
reduce stacked-DRAM accesses on misses. Woo et al. [27]
propose SMART-3D, a new 3D-stacked memory architec-
ture with a vertical L2 fetch and writeback network using a
large array of TSVs. SMART-3D leverages TSV bandwidth
to hide latency behind very large data transfers. All of these
designs include an intermediate cache level between the L1
and stacked memory hierarchy level, and do not explore flat-
tening the memory hierarchy in the 3D-stacked context.

Several groups have created prototypes of 3D stacked mem-
ory systems [6,11,28]. Most academic prototypes have omit-
ted intermediate caches, largely due to area constraints rather
than specific design optimization objectives.

Recent work on single-chip servers draws inspiration from
earlier work on the RAMpage memory hierarchy proposed
by Machanick and Salverda [19]. The RAMpage memory
hierarchy uses DRAM as a paging device, and moves main
memory up one level to the lowest level of SRAM. The main



motivation for the RAMpage hierarchy is to reduce the cost
of DRAM references. While RAMpage does not eliminate
the L2, it realizes a memory hierarchy that provides similar
trade-offs to that proposed in PicoServer.

3. Methodology

We follow a trace-based methodology to evaluate the pro-
filtability of eliminating intermediate cache levels; this
methodology allows us to rapidly study workloads with large
footprints. We collect memory traces with PIN [18] on a
server system with eight 1.9 GHz Intel Xeon cores, 32 kB
private L1 caches, an § MB 16-way set-associative shared
L2 cache, and 16 GB of main memory. The traces contain
information on the address, program counter, size, and type
(read or write) of each memory access, and the number of
non-memory instructions between consecutive memory ac-
cesses. We leverage performance counters to measure the
peak L2 and memory bandwidth requirements of each work-
load on this server system using the Linux Perf performance
analysis tool for use in our bandwidth filtering study.

To assess the impact of various memory subsystem designs,
we replay L1 access traces through the gem5 architectural
simulator [4]. The trace replay emulates 1 GHz single-issue
in-order cores. We replay one billion memory accesses per
core. We collect statistics for the number of accesses to the
L2 and stacked main memory; these statistics allow us to cal-
culate the average L1 miss latency and L2/memory energies
under various assumptions. When the L2 is enabled, we sim-
ulate an 8 MB 16-way associative shared L2 (i.e., the same
L2 cache organization as in our actual x86 server).

As our goal is to identify technology inflection points, we
do not select specific latency or static/dynamic energy-per-
access values to represent particular memory technologies.
Rather, we fix L2 accesses at 10 cycles and 1 nJ per access
(which are in the typical range for current technology), and
then vary the ratio of stacked memory read latency, write
latency, and dynamic energy relative to these values. We also
explore a wide range of L2 leakage assumptions.

We focus our study on a suite of four scientific and data-
centric server applications. We include Canneal and Flu-
idanimate from the PARSEC Benchmark Suite [3] (using the
native inputs), Integer Sort (IntSort) from the NAS Parallel
Benchmark Suite, and Graph500. For comparison, we also
study four SPEC CPU2006 benchmarks with differing (but
known) locality characteristics. From SPEC, we include:
h264 and sjeng, which have comparitively small working
sets, and milc and soplex, which have large working sets [1].
The SPEC applications are single-threaded and hence are
recorded and replayed using only one core.

4. Bandwidth Filtering

Nearly three decades ago, Goodman first pointed out that
caches can be used as bandwidth filters [7]. We first consider

whether application bandwidth needs create a requirement
for an intermediate cache between L1 and stacked mem-
ory. Using Perf, we assess the L2 and memory bandwidth
requirements of each of our applications on an 8-core x86
server at one-second granularity. The L2 bandwidth con-
sumption measured on our test system would correspond to
the load offered to a stacked main memory if the L2 were
elided.

Figure 1 and Figure 2 show the bandwidth utilization be-
tween the L2 cache and main memory, and between the L1
and L2 caches for the non-SPEC and SPEC benchmarks re-
spectively. The SPEC results reflect the demands of a sin-
gle Xeon-class core, while the non-SPEC results show the
aggregate bandwidth demand of eight cores. As shown in
the figures, the bandwidth between the L2 and main mem-
ory in the presence of an L2 is under 2,600 MB/s for all
benchmarks. Without an L2 cache, the bandwidth required
for all benchmarks aside from IntSort is under the peak
bandwidth of 17 GB/s that one channel of DDR3 can pro-
vide [2]. IntSort requires a peak bandwidth of approximately
29 GB/s, which can be satisfied by two DDR3 channels.
More importantly, this bandwidth requirement is several fac-
tors below the projected 192 GB/s available with 3D-stacked
memory as projected by Woo et al. [27].

The Xeon cores used in our experiment are much more ag-
gressive than those envisioned for Nanostores. Nevertheless,
even for aggressive cores, it is clear that 3D-stacked memory
provides ample bandwidth, and bandwidth filtering is moot
for performance. Hence, we find that PicoServer’s recom-
mendation to flatten the hierarchy is viable from a bandwidth
perspective. Note however, that bandwidth filtering may be
valuable when stacking non-DRAM memory technologies
like PCM that may suffer from limited endurance [13,22].
As seen from Figure 1, eliding the L2 can increase traffic to
the stacked memory by up to 20x.

5. Latency

We next consider the latency impact of intermediate caches.
We evaluate two scenarios. In the first scenario, we assume
that the memory read and write latencies are equal, repre-
senting stacked DRAM. In the second scenario, we consider
the impact of scaling write latency relative to read latency,
as slower writes are common in emerging memory technolo-
gies. In each scenario, we contrast systems with and without
an L2. When enabled, we fix the L2 latency at 10 cycles and
assume that L.2 and memory are accessed in series. We vary
the ratio of stacked memory to L2 access latency. We use
average L1 miss latency as our evaluation metric.

5.1 Symmetric Read and Write Latencies

Figure 3 and Figure 4 show the average L1 miss latency for
non-SPEC and SPEC benchmarks, respectively. The x-axes
on the graphs represent the memory access latency normal-
ized to the L2 access latency. The solid black line on each
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Figure 1: (a) Bandwidth between the L2 and main memory for the non-SPEC benchmarks: The highest bandwidth requirement
is under 2,500 MB/s. (b) Bandwidth between the L1 and L2 caches for the non-SPEC benchmarks: This is the bandwidth
between the L1 and main memory in the absence of an L2. The highest bandwidth requirement is about 29,000 MB/s.
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Figure 2: (a) Bandwidth between the L2 and main memory for the SPEC benchmarks: The highest bandwidth requirement is
under 2,600 MB/s. (b) Bandwidth between the L1 and L2 caches for the SPEC benchmarks: This is the bandwidth between
the L1 and main memory in the absence of an L2. The highest bandwidth requirement is about 9,500 MB/s.

graph with a slope of one displays the average L1 miss la-
tency in the absence of an L2, in which case all L1 misses
incur a main memory access (note that latency is therefore
the same for all benchmarks). The remaining lines show the
L1 miss latency for each benchmark; their origin and slope
depends on the hit rate achieved by the 8MB L2. The dotted
vertical line indicates the latency ratio assumed in the Pi-
coServer study. Of particular interest is the point where each
workload’s line intersects the “No L2” line; this latency ratio
represents the inflection point where an L2 becomes prof-
itable. That is, for stacked memory latencies greater than
this inflection point, the time saved on L2 hits outweighs
the time lost on misses. This inflection point can be calcu-
lated directly given an L2 miss rate using the well-known
average memory access latency formulas described by Hen-
nessey and Patterson [8].

Among the non-SPEC benchmarks, only IntSort has a suf-
ficient L2 hit rate to warrant an intermediate SMB L2 for
the likely range of stacked DRAM access latency ratios (in
the vicinity of the PicoServer assumption of 1.6x). It breaks
even at a ratio of 1.4x. Fluidanimate might derive some ben-
efit if the stacked DRAM is quite distant from the L2, for
example, if it is implemented with a slower memory technol-
ogy. Canneal and Graph500 have exceedingly poor tempo-
ral locality in the L2, and hardly benefit even when stacked
memory has an access latency similar to off-chip DRAM.
Our conclusion is that the PicoServer recommendation to
flatten the hierarchy will typically hold for this application
class.

We notice a different behavior with the SPEC applications.
As the majority of SPEC applications have much smaller



12

e IntSort w/ L2
4 & Fluidanimate w/ L2
10f| ¢ ¢ Canneal w/ L2
== Graph500 w/ L2
= No L2
PicoServer(Mem/L2 Lat=1.6)

4 6 8 10 12
Memory Access Latency (Normalized to L2 Access Latency)

L1 Miss Latency (Normalized to L2 Access Latency)

(a) Average L1 Miss Latency

5.01

e IntSort w/ L2

4.5/ 4 4 Fluidanimate w/ L2
¢ ¢ Canneal w/ L2
a.0-| == Graph500 w/ L2

>

v

c

]

-

©

-

n

7]

]

v

4

~ = No L2 o*”
- : .
o 3.5 """ PicoServer(Mem/L2 Lat=1.6) .
7 5 e

3 : PRt

N 3.0} H g

© H Le®” . P

£ EPS o a

5 2.50 o” s

H a

< - ) a

g2.05-" .

S A H o ° «
- = ° ° e

5 15; 7 . e

1] ° H

2 H

= 1. L= . . .
- 1 E.O 1.5 2.0 2.5 3.0
-

Memory Access Latency (Normalized to.L2 Access La.tency)

(b) Average L1 Miss Latency

Figure 3: Average L1 miss latency for the non-SPEC benchmarks given symmetric memory read and write latencies. Memory
latency is normalized to L2 access latency. As memory latency increases, IntSort and Fluidanimate benefit from an L2 for
relatively memory low latencies. Performance of both Canneal and Graph500 is similar with and without an L2 (a) IntSort
and Fluidanimate benefit from having an L2 beyond a memory latency of 1.4x and 3.1x respectively. Canneal and Graph500
only show improvement beyond a memory latency of 12.7x and 13.4x respectively. (b) Zoomed in graph to show detail.
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latency is normalized to L2 access latency. sjeng, h264, and soplex benefit from an L2. (a) sjeng and soplex benefit from
having an L2 beyond a memory latency of 1.3x and 1.8x respectively. h264 always benefits from an L2. milc does not benefit

from an L2. (b) Zoomed in graph to show detail.

footprints and working sets than our data-centric workloads,
they tend to benefit from a stacked L2 even at relatively
low memory latency ratios. Three of our four selected apps
(h264, sjeng, and soplex) likely benefit from an L2, only milc
is better off without. Note that we selected soplex because it
has one of the largest working sets among the SPEC appli-
cations, yet it still rarely spills out of the L2 compared to the
data-centric workloads. Because they are designed to stress
CPU rather than memory system performance, SPEC appli-
cations do not place significant pressure on the caches. A
memory system optimized to run SPEC may perform poorly
for scientific and data-centric applications.

5.2 Asymmetric Read and Write Latencies

Figure 5 and Figure 6 show the percent change in average
L1 miss latency when adding an L2 for the eight bench-
marks assuming asymmetric memory read and write laten-
cies (we only consider cases where the write latency is equal
to or higher than the read latency). We normalize the mem-
ory read and write latencies to the L2 access latency. This
experiment models the read-write latency asymmetry that is
anticipated in emerging memory technologies, and examines
the performance impact of coalescing L1 write-back traf-
fic within the L2. The figures also indicate the approximate
write-to-read latency ratio for a few emerging memory tech-
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Figure 5: Percent change in average L1 miss latency for the non-SPEC benchmarks under conditions of asymmetric memory
read and write latencies: Memory read and write latency are normalized to L2 the access latency. Points below the dotted line
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except for IntSort. Fluidanimate finds an L2 beneficial only when read and write latencies are over 4x the L2 access latency.

nologies [9, 21, 24]. Points above the dotted horizontal line
(y=0) on each graph indicate a reduction in average L1 miss
latency when eliminating the L2, while points below the dot-
ted line indicate a reduction in average L1 miss latency with
the inclusion of an L2. In other words, points above the dot-
ted horizontal line favor exclusion of an L2, while points
below the line favor inclusion of an L2.

In all but one case of the SPEC workloads, slower writes
degrade performance when the L2 is elided (milc sees no
difference because the L2 is ineffective for this workload).
However, among the non-SPEC applications, with the ex-
ception of IntSort, the performance gap is small. Hence, we
conclude that for data-centric workloads, an intermediate
cache is not warranted even if stacked memory writes are
substantially slower than reads. Again, we see a markedly
different behavior in SPEC apps, which have substantial L1
writeback traffic, and benefit from write coalescing in L2.

Table 1: Memory Access Latency Inflection Points

Benchmark | Latency

IntSort 1.4x
Fluidanimate 3.1x
Canneal 12.7x
Graph500 13.4x
sjeng 1.3x
h264 1.0x

milc 178.5x
soplex 1.8x

6. Energy Filtering

Finally, we consider the impact of an intermediate cache
as an energy filter. To simplify our analysis, we select the
stacked memory access latency on a per workload basis. The
memory latency value is normalized to the L2 access latency
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Figure 6: Percent change in average L1 miss latency for the SPEC benchmarks for asymmetric memory read and write latencies:
Points below the dotted line (y=0) favor inclusion of an L2, while points above the dotted line favor exclusion of the L2.
When memory writes are significantly slower than memory reads, an L2 improves performance for all benchmarks except milc.

such that the application runtime is equal with and without
an L2. At this point, due to the equal runtimes, the leakage
energy of the stacked memory is the same with and without
an L2. Hence, we can neglect the stacked memory leakage
in our analysis. Table 1 lists the memory latency values used
for each workload.

We hold the L2 dynamic energy fixed at 1 nJ per access (a
typical value for an 8MB L2 in current technology), and vary
the stacked memory energy-per-access relative to this fixed
value. The ratio of main memory to L2 dynamic energy is
reflected on the x-axis in Figure 7 and Figure 8. We also
vary the L2 static energy over a wide range, from 1 mW (1x
leakage) to 1W (1000x leakage). We sweep leakage power
over this large range because L2 leakage can vary by or-
ders of magnitude due to two effects. First, leakage can vary
relative to dynamic energy by a factor of ten based on the
activity factor of the L2 cache. Second, leakage can vary by
nearly 100x based on the particular circuit implementation

selected for the cache (e.g., low-operating-power vs. high
performance cells).

Figure 7 and Figure 8 show the percent energy change when
adding an L2 for the non-SPEC and SPEC benchmarks, re-
spectively. Points above the dotted horizontal line (y=0) on
each graph indicate energy savings when eliminating the L2,
while points below the dotted line indicate lower energy with
inclusion of an L2.

Because DRAM accesses require relatively little dynamic
energy, it is likely that the memory-to-L2 access energy ra-
tio will be quite low (below 1.5) for stacked DRAM (stacked
DRAM accesses are projected to require 1 to 1.5 nJ, similar
to the dynamic energy of an access to an SMB SRAM). At
this ratio, none of the applications benefit from an L2 from
an energy filtering perspective. Even if stacked memory dy-
namic energy-per-access turns out to be substantially worse
than expected (e.g., greater than 4x the L2 dynamic energy-
per-access), L2 will still only be profitable if L.2 leakage en-
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(b) Energy: Fluidanimate
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(c) Energy: Canneal
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(d) Energy: Graph500

Figure 7: Percent energy change when adding an L2 for the non-SPEC benchmarks: Memory access energy is normalized to
L2 access energy. L2 leakage is swept from a baseline of 1x (1 mW) up to 1000x (1W). Points below the dotted line (y=0)
favor inclusion of an L2, while points above the dotted line favor exclusion of the L2. (a) IntSort benefits from having an L2
beyond a memory access latency of 4x over the baseline, regardless of leakage. (b) Fluidanimate benefits from having an L2
beyond a memory access latency of 12x over the baseline, regardless of leakage. For lower memory access energy, and higher
leakage, Fluidanimate does not require an L2. (c) and (d) Canneal and Graph500 do not require an L2 in general.

ergy is low. For example, for the data centric applications,
L2 leakage must be below 100 mW to provide a substantial
energy benefit for any application except IntSort. Hence, we
conclude that, from an energy perspective, an intermediate
cache is unlikely to provide an energy advantage; the inter-
mediate cache conserves energy only if (1) the L2 hit rate
is high, (2) the stacked memory requires at least 4x the en-
ergy per access of the L2, and (3) the L2 leakage energy is
low (well below 100mW). Given the good energy character-
istics projected for stacked DRAM, we find it unlikely that
all three of these conditions will typically hold.

7. Conclusion

Recent years have witnessed the emergence of 3D die stack-
ing which has made single-chip server designs feasible.

Moreover, memory technology is poised to undergo a trans-
formation with the advent of non-volatile memories. 3D
stacking alters key assumptions of conventional memory
hierarchy design by drastically increasing cross-layer band-
width and reducing the latency ratio between successive lay-
ers. In light of these technology trends, the PicoServer study
has suggested flattening the memory hierarchy and eliminat-
ing caches that lengthen the critical path between the L1 and
stacked memory.

In this paper, we revisit the conclusions made by PicoServer.
By considering various design factors like the latency and
energy ratios between the L2 and main memory, along with
various L2 leakage values, we identify inflection points
where an L2 becomes profitable. We guide our investigation
by analyzing intermediate caches from three perspectives:
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Figure 8: Percent energy change when adding an L2 for the SPEC benchmarks: Memory access energy is normalized to L2
access energy. L2 leakage is swept from a baseline of 1x (1 mW) up to 1000x (1W). Points below the dotted line (y=0) favor
inclusion of an L2, while points above the dotted line favor exclusion of the L2. (a) and (b) sjeng and h264 benefit from
having an L2 beyond a memory access latency of 3x over the baseline, regardless of leakage. (c) milc never benefits from the
inclusion of an L2. (d) soplex benefits from having an L2 when the memory access latency exceeds the baseline by over 5x.

bandwidth, latency, and energy filtering. We focus our study
on data-centric and scientific workloads and draw contrasts
with the SPEC applications that are frequently used in com-
puter architecture studies.

We conclude that bandwidth filtering is moot given the plen-
tiful bandwidth provided by 3D stacking. From a perfor-
mance (latency) perspective, although a flat hierarchy is op-
timal for access patterns with poor temporal locality, some
workloads benefit from the access latency reduction afforded
by an L2. This effect is more prominent when memory write
and read latencies are asymmetric, a characteristic of mem-
ory technologies like PCM and STT-RAM. Finally, from
an energy perspective, we find that for scientific and data-
centric workloads with large footprints, an L2 cache is un-
likely to be beneficial from an energy perspective. In par-
ticular, we find that low L2 leakage power is critical. SPEC

applications tend to have good hit rates in an 8MB cache
and hence favor inclusion of an L2; we conclude that these
benchmarks should be used with caution when designing
memory hierarchies for data-centric applications.

In summary, we find that the conclusions drawn in the Pi-
coServer study hold true for the data-centric and scientific
workloads. For these benchmarks, having an L2 is only prof-
itable under the following situations: (1) when the L2 leak-
age is small, (2) when main memory is relatively distant
compared to the L2, and (3) for write-intensive workloads
when memory write latency exceeds memory read latency.
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