
Memory Coherence Activity Predict ion in
Commercial Workloads

Stephen Somogyi, Thomas F. Wenisch, Nikolaos Hardavellas,
Jangwoo Kim, Anastassia Ailamaki, Babak Falsafi

Computer Architecture Laboratory (CALCM)
Carnegie Mellon University, Pittsburgh, PA 15213

http://www.ece.cmu.edu/~puma2/

Abstract. Recent research indicates that prediction-based coherence optimi-
zations offer substantial performance improvements for scientific applica-
tions in distributed shared memory multiprocessors. Important commercial
applications also show sensitivity to coherence latency, which will become
more acute in the future as technology scales. Therefore it is important to in-
vestigate prediction of memory coherence activity in the context of commer-
cial workloads.

This paper studies a trace-based Downgrade Predictor (DGP) for predicting
last stores to shared cache blocks, and a pattern-based Consumer Set Predic-
tor (CSP) for predicting subsequent readers. We evaluate this class of predic-
tors for the first time on commercial applications and demonstrate that our
DGP correctly predicts 47%-76% of last stores. Memory sharing patterns in
commercial workloads are inherently non-repetitive; hence CSP cannot at-
tain high coverage. We perform an opportunity study of a DGP enhanced
through competitive underlying predictors, and in commercial and scientific
applications, demonstrate potential to increase coverage up to 14%.

1 Introduction
Modern distributed shared memory (DSM) machines face an ever-growing

disparity between processor cycle times and interconnect latencies. Semiconductor
fabrication advances and circuit innovations have led to dramatic increases in oper-
ating frequencies, and recent architectural developments—such as chip
multiprocessors and simultaneous multithreading—place an even greater load on
memory subsystems. DSMs face all the challenges associated with uniprocessor
designs, as well as coherence requirements that tax the interconnect.

Distributed shared memory is an attractive multiprocessor architecture, capable of
scaling to a large number of nodes. Unlike a cluster of independent machines, DSM
maintains the familiar programming model of uniprocessors and symmetric multipro-
cessors, which allows applications to run on a DSM without modification. However,
DSM requires mechanisms to ensure memory coherence and consistency, which create
interconnect traffic and add latency to critical operations.

Bandwidth limitations in DSM can be overcome by additional communication
channels (feasible but costly). Unfortunately, interconnect latency cannot be so easily
reduced. Although microarchitectural and memory coherence optimizations such as
out-of-order execution and relaxed memory models can hide some of the latency asso-

ciated with coherence traffic [1], they cannot completely overlap the shared read miss
latency.

This paper studies two prediction mechanisms that are used to reduce coherence
latency in DSM. We derive these predictors from prior work [10,11] in which they
were evaluated using scientific workloads. The 2-level Trace-based DownGrade
Predictor (2-TDGP) identifies the final store to a cache block prior to a subsequent
read by another node and self-downgrades the block, thus eliminating one network hop
from coherent read requests by other nodes. The 2-level Pattern-based Consumer Set
Predictor (2-PCSP) predicts which nodes will subsequently read (consume) a value
that has been written (produced) by another node. Although outside the scope of this
paper, such a prediction could be used to forward blocks to consumers, thus obviating
the need for a coherent read request at all and reducing effective latency by several
orders of magnitude.

Evaluation of architectural proposals continually becomes more sophisticated.
Recently, commercial applications have become very important to the research
community [2]. Coherence latency has been shown to be a first-order determinant of
database performance in multiprocessor systems, and coherence traffic is increasing
with the aggregate caching in the memory hierarchy [3]. Thus, we expect commercial
applications, in particular online transaction processing (OLTP), to benefit greatly
from techniques that optimize coherence activity. It is essential to evaluate the utility
of new and existing proposals on this class of application.

Using instruction traces from full-system simulation [15] of shared-memory
multiprocessors running scientific and commercial workloads on stock operating
systems, we demonstrate:
• 2-TDGP on Commercial Workloads: We evaluate a 2-level trace-based down-

grade predictor for the first time on commercial workloads. We show that, despite
long and complex execution paths, 2-TDGP correctly identifies 47%-76% of pro-
ductions with 13%-22% mispredictions.

• 2-PCSP on Commercial Workloads: We evaluate a 2-level pattern-based con-
sumer set predictor for the first time on commercial workloads, and show that it can-
not predict a significant fraction of consumers. Due to data- and timing-dependent
behavior, the sharing patterns in commercial applications are inherently non-repeti-
tive and therefore unpredictable.

• Competitive Predictor Opportunity: We observe that 2-TDGP is sensitive to the
inclusion of address information in prediction signatures, and the optimum design
point varies within and across commercial and scientific applications. We present an
opportunity study for a competitive predictor that dynamically varies signature
encoding, exposing up to 14% additional opportunity for 2-TDGP.

The rest of this paper is organized as follows. In Section 2 we review related work
in the field. Section 3 presents the design of 2-TDGP and 2-PCSP. Section 4 describes
our experimental infrastructure and procedures. Section 5 presents the results. We
conclude the paper in Section 6.

2 Related Work
Speculative release of shared data from processor caches in a multiprocessor

system was first proposed by Lebeck and Wood [13]. Their technique, Dynamic Self-
Invalidation, triggered invalidation of shared data blocks, identified via coherence
protocol hints, at annotated critical section boundaries. Last Touch Prediction (LTP),
proposed in [11], instead associates invalidation events with the sequence of instruc-
tions accessing a cache block prior to its invalidation. By storing PC traces which
repetitively lead to invalidation, LTP can trigger self-invalidation immediately upon
the last access without the aid of program annotation. Our 2-TDGP is a derivation
from LTP that only predicts the release of dirty shared data (downgrades rather than
invalidations). Techniques that relax memory order have been shown to effectively
hide coherent write latency [1], obviating the need to predict invalidations. However,
these techniques cannot fully overlap coherent read latency; therefore, the retrieval
(via a downgrade operation) of a value modified by another node remains on the
processor’s critical path. [11] evaluated LTP using scientific workloads. This paper
presents the first evaluation of this class of predictor for commercial applications. In
the context of a uniprocessor system, Hu et al. [7] investigated timekeeping
approaches for predicting memory system events. These are straightforward to adapt
for coherence prediction in DSM, and in this paper we compare 2-TDGP against a
dead-time-based predictor.

Predicting the subsequent sharers of a newly produced value, which we generi-
cally call consumer set prediction (CSP), was first attempted by Mukherjee and Hill in
[16]. Their scheme adapted two-level branch prediction [21] to predict coherence
messages based on the history of previously received messages. Memory Sharing
Prediction (MSP) [10] improves upon this approach by eliminating prediction of
acknowledgement messages. Further, MSP summarizes the set of consumers for a
value without regard to the order each consumer requests the value, enabling the
predictor to tolerate reordering of read requests. Our 2-PCSP further optimizes MSP to
predict only read requests. As with 2-TDGP, coherent write latency can be addressed
with memory ordering optimizations and write messages need not be predicted.
Kaxiras presents a taxonomy for the design space of consumer set prediction [8], and
classifies CSPs based on their access and prediction functions. In the Kaxiras
taxonomy, 2-PCSP is best categorized as address-based access with two-level predic-
tion. However, 2-PCSP differs in that it uses per-node saturating confidence counters
in the second-level table to reduce mispredictions. All previous work on consumer set
prediction has evaluated predictors using scientific applications; this paper presents the
effectiveness of 2-PCSP for commercial workloads.

3 Design
In this section we present the details of our predictors. Section 3.1 presents 2-

TDGP, its derivation from previous predictors, and an example of its operation.
Section 3.2 does the same for 2-PCSP. Section 3.3 proposes a competitive design that
chooses among underlying predictors and describes an opportunity study of this
approach.

3.1 Downgrade Predictor
We propose the 2-level Trace-based DownGrade Predictor (2-TDGP), derived

from the Last Touch Predictor (LTP) [11], to predict shared block downgrades. 2-
TDGP predicts the last store to a cache block prior to its downgrade as a result of a
read by another processor. 2-TDGP maintains a trace of all store instructions from the
start of a write miss (either to an invalid or read-only cache block) until a subsequent
downgrade request. Traces are used to predict the last store prior to future downgrades.

Figure 1 (left) depicts the anatomy of 2-TDGP. For each shared cache block resi-
dent in the processor’s caches, the history table records a fixed-size trace, encoded
using truncated addition [11] of the program counter (PC) of every store to that cache
block. 2-TDGP implements the history table as a duplicate copy of the cache tag arrays
to ensure 2-TDGP operations do not impact the cache’s critical path.

A second table maintains signatures that are used to predict downgrades. Unlike
LTP, which uses per-address signature tables, 2-TDGP organizes the signature table as
a global set-associative structure. Signatures are generated by hashing bits of the block
address into the history trace via an xor operation, which distributes signatures over
sets in the table and improves prediction accuracy. 2-TDGP achieves much of the
benefit that has been demonstrated for per-address signatures [11] with reduced
storage requirements.

When an explicit downgrade message is received, 2-TDGP records the current
signature for the corresponding cache block in the signature table. Each time a store
instruction touches a cache block, the cache block’s updated signature is looked up in
the signature table. If present, 2-TDGP initiates a self-downgrade, releasing write
permission and updating main memory. Each signature table entry uses a 2-bit confi-
dence counter to add hysteresis to the training process. In the event of a misprediction,
the directory detects that a self-downgrade was followed by a write by the same node,
and notifies the 2-TDGP, lowering confidence of the associated signature table entry.

Figure 1 (left) depicts an example prediction. Previously, between a shared miss
and downgrade, the instructions with program counters {PC1,PC2,PC3} stored to the
block at address X. The history table entry indicates that {PC1,PC2} is the current

X,A1.,PCk

=?

<rd,P1,P2><wr,P5>

P5: downgrade X

X

...

X, <rd,P1,P2><wr,P5> <rd,P4,P6>

<read, P4,P6>

=?

store X @ PC3

history table

X
X

⊗
 {P

C1
,P

C2
,P

C3
}

Downgrade X

X,.....,PC3PC1,PC2

...

downgrade signature table consumer set signature table

X
⊗

 {<
rd

, P
1,

P2
><

wr
, P

5>
}

history table

Figure 1. The 2-TDGP (left) and 2-PCSP (right) Designs

encode

trace of stores to the block. The next store (PC3) updates the history table entry, which
causes 2-TDGP to generate a signature, and look it up in the signature table. Because
the table indicates a match and the 2-bit counter for the entry has saturated (not
shown), 2-TDGP triggers a self-downgrade.

Much like LTP, 2-TDGP relies on repetitive program behavior to predict timely
downgrades. Trace-based predictors require history table accesses to be in program
order [12], because out-of-order updates to the history table disrupt the repetitive
nature of signatures. 2-TDGP only records store references, thus exploiting the in-
order placement of stores in the store buffer. In contrast, LTP needs auxiliary reor-
dering mechanisms. By not recording load references, 2-TDGP minimizes the number
of signatures generated and reduces predictor storage requirements compared to LTP.

A correct DGP prediction reduces the coherent read latency for the first consumer
of a particular block, by the traversal time of the network. Updated data already resides
in main memory; thus no downgrade is required, saving one network hop. A DGP
misprediction requires the node to re-obtain write permission for the block. 2-TDGP
exploits a relaxed memory system to hide the latency of these extra upgrades [1], and
can therefore tolerate higher misprediction rates than LTP, for which mispredictions
may result in read misses that lie on the critical path of the processor.

3.2 Pattern-Based Consumer Set Predictor
We propose the 2-level Pattern-Based Consumer Set Predictor (2-PCSP) to predict

subsequent consumers of cache blocks that have been modified. 2-PCSP is derived
from the Memory Sharing Predictor (MSP) [10]. Figure 1 (right) illustrates the
anatomy of 2-PCSP. As in MSP, a history table maintains a history of read/write
sequences for each cache block. 2-PCSP encodes history entries to be either a read or a
write. Write entries contain a processor ID and read entries contain a bit vector that
indicates the consumers of the previous write. The vector encoding of reads helps
eliminate mispredictions due to reordering of read requests in the system [10]. We
embed the history table in the directory as a register per cache block. A signature table
maintains the predicted consumer set for each history pattern, using a 2-bit confidence
counter per node. Each time a history pattern recurs and a particular node consumes
the block, its confidence counter is increased. If the consumer does not request the
block, its confidence counter is decreased.

The predictor is trained each time a write request is received by the directory. 2-
PCSP encodes the current sharers of the block (i.e., immediately prior to the write
being serviced by the directory) into a read entry. This read entry, and an entry for the
incoming write, are appended to the current history for the block. The updated history
can be looked up in the signature table and used to make a prediction. However, a
prediction at this point in time is pointless, because the writing processor has not
finished updating the block.

2-PCSP is best used in conjunction with a downgrade predictor. When a DGP-
initiated downgrade arrives at the directory, 2-PCSP is consulted to predict subsequent
sharers, using the current history. This prediction can then be used to forward the block
to consumers. Although details of forwarding mechanisms are beyond the scope of this
work, generalizations may be made about the effect of CSP predictions. Correctly

predicted consumers will find the block in their local memory hierarchy, thus
converting a coherent read miss requiring at least one network round trip (hundreds or
thousands of cycles) into a local hit (tens of cycles or less). Mispredicted consumers
increase utilization of the network, both to erroneously forward the block and to inval-
idate it upon the next write. However, little additional latency is incurred, because
invalidations of mispredicted sharers occur in parallel with invalidations of actual
sharers (predicted or not).

Similar to 2-TDGP, and unlike MSP, 2-PCSP organizes the signature table as a
set-associative cache, and generates signatures through an xor operation of address bits
with the current history. Including address information in 2-PCSP signatures has been
shown to improve prediction accuracy on scientific applications [8]. 2-PCSP’s ability
to capture sharing patterns also depends on the number of history entries encoded in
signatures. The history depth can be arbitrarily increased to improve prediction accu-
racy at the cost of higher learning time and increased storage for history information.

Figure 1 (right) depicts an example prediction for a consumer set, given a history
depth of two requests. For the block at address X, if a write from processor P5 is
preceded by reads from P1 and P2, 2-PCSP predicts that nodes P4 and P6 will
consume the produced value, as their confidence counters (not shown) have saturated.

As with 2-TDGP, our 2-PCSP design assumes that a relaxed memory system is
used to tolerate write miss latency, obviating the need to predict writers. This reduces
2-PCSP prediction storage requirements by at least a factor of two over MSP. A
relaxed memory system also hides the latency of invalidating incorrectly forwarded
blocks, strengthening the argument given above that CSP mispredictions do not impact
the critical path of the system. In contrast, incorrectly forwarding writable blocks using
MSP may prematurely take readable copies away from current sharers, incurring
orders of magnitude higher misprediction penalties.

3.3 Opportunity for Competitive Predictors
Our results (shown in Section 5.1 and Section 5.2 for commercial applications)

demonstrate empirically that there is no optimal configuration for the number of
address bits the predictors use to generate signatures. Instead, the best-performing
configuration varies across target applications and operating systems. This variability
in performance suggests that a more complex competitive predictor might be able to
adapt to the varying application demands, and perhaps even outperform the best fixed-
bit predictor configuration.

Many advanced predictors are composed of distinct base predictors with different
configurations; each is better at predicting a different subset of events in the system.
An algorithm or another predictor is used to choose among the available options at
each prediction opportunity. The tournament branch predictor [9] used in Alpha 21264
is likely the most well known predictor employing this design. In the context of multi-
processors, R-NUMA [5] proposed a competitive algorithm for choosing between
coherence mechanisms.

We present a study to determine the opportunity available to improve coverage
with a competitive predictor that can use different address-bit encodings across signa-
tures. The potential coverage of a competitive predictor is limited by the aggregate

coverage achieved by all underlying predictors. We evaluate this opportunity assuming
an oracle mechanism to select among the available address-bit sizes. We predict using
four address-bit sizes in parallel, and after the outcome of each prediction is known,
we choose the best. Results of the study are presented in Section 5.4.

4 Experimental Methodology
This study, for the first time, presents results of these prediction mechanisms on

commercial applications. We compare results to previously studied scientific applica-
tions [8,10,11]. We analyze full-system memory traces created using SimFlex [6] on
Virtutech Simics [15]. Simics is a full system simulator that allows functional simula-
tion of unmodified commercial applications and operating systems. The simulation
models all memory accesses that occur in a real system, including all OS references.
We evaluate commercial workloads on Solaris 8 on SPARC and Red Hat Linux 7.3 on
x86. We use two platforms because OS code has a significant impact on the perfor-
mance of commercial workloads [3]. In particular, database management systems use
different low-level libraries for locking and synchronization on each platform, causing
distinct memory sharing behavior. We simulate a 16-node SPARC system and an 8-
node x86 system (Simics uses a BIOS that does not support more than eight processors
for x86), both with 1GB of memory. For the scientific applications, we configure
Simics to simulate a 16-node multiprocessor system running Solaris 8.

Table 1 lists the applications studied and their inputs. We select a representative
group of pointer-intensive and array-based scientific applications from previous
studies to act as a baseline for comparison with our commercial workloads. We choose
scientific applications: (1) that are scalable to large data sets, and (2) maintain a high
sensitivity to memory system performance when scaled. These include barnes [20] a

Table 1: Applications and configurations

Scientific applications

barnes 64K particles., 2.0 subdiv. tol., 10.0 fleaves

em3d 400K nodes, 15% remote, degree 2, span 5

moldyn 19652 molecules, max interactions 2560000

ocean 514x514 grid, 9600 sec

water 4913 molecules, spatial, 6.2128Å cutoff

Commercial applications

DB2 Solaris TPC-C, 100 warehouses (10 GB), 96 clients, 360 MB buffer pool

DB2 Linux TPC-C, 100 warehouses (10 GB), 96 clients, 450 MB buffer pool

JBB Linux SPECjbb2000, 8 warehouses (200MB), 768MB Java heap

JBB Solaris SPECjbb2000, 16 warehouses (400MB), 1GB Java heap

Web Linux SPECweb99, Apache 2.0.48

Web Solaris SPECweb99, Apache 1.3.27

hierarchical N-body simulation, em3d [4] an electromagnetic force simulation, moldyn
[17] a CHARMM-like molecular dynamics simulation, ocean [20] current simulation,
and water [20] an N-body molecular simulation using a 3D spatial grid.

We model the selection and design of our commercial workloads on [2]. We run
version 7.2 of IBM DB2 with the TPC-C workload [14], an online transaction
processing workload. We use a highly optimized toolkit, provided by IBM, to build the
TPC-C database and run the benchmark. This toolkit provides a tuned implementation
of the TPC-C specification for optimal transaction execution on DB2. Prior to
measurement, we warm the database until the transaction completion rate in Simics
reaches steady state. We analyze traces of at least 5,000 transactions.

SPECjbb2000 [19] is a Java-based OLTP benchmark that models typical business
use of a Java server application: the middle-tier of a 3-tier electronic commerce appli-
cation, with a memory-resident database backend similar in design to the TPC-C
database. There is a one-to-one correspondence between clients and warehouses in
SPECjbb.

SPECweb99 [18] evaluates the performance of WWW servers, including both
dynamic and static content. We run the SPECweb99 workload on recent versions of the
Apache web server on each platform. We use a default installation of Apache.

5 Results
In Section 5.1 we evaluate 2-TDGP on commercial workloads, and do the same

for 2-PCSP in Section 5.2. Section 5.3 compares 2-TDGP against a timer-based DGP
design, and 2-PCSP against other address-based consumer predictors. We present an
opportunity study in Section 5.4 that investigates the potential for competitive predic-
tors to improve upon the base predictor designs.

5.1 Evaluation of 2-TDGP on Commercial Workloads
Figure 2 presents the coverage and mispredictions of 2-TDGP for commercial

workloads, as well as an average of the scientific benchmarks studied. The perfor-

Figure 2. 2-TDGP Results for Commercial Applications. The number of data
address bits used to disambiguate PC traces is indicated below each bar

0%
20%
40%
60%
80%

100%
120%

0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all

Scientific
Av erage

DB2 Linux DB2
Solaris

JBB Linux JBB
Solaris

Web
Linux

Web
Solaris

Pr
od

uc
tio

ns

Coverage Training Mispredictions

mance of 2-TDGP is measured with respect to productions (i.e., the last store a node
makes to a shared cache block prior to consumption by another node). Because we
normalize results to productions, these results are independent of cache size or config-
uration—productions and consumptions always incur coherence misses in a system
without predictors. Coverage is the fraction of all productions that 2-TDGP predicts
correctly. Mispredictions are placed above the 100% mark because they do not corre-
spond to production events in a system without a DGP. Rather, they are erroneously
triggered self-downgrade events. Unpredicted downgrades are labelled as Training
because the predictor uses these to generate new signatures that can be subsequently
used to predict.

We evaluate 2-TDGP with unbounded signature table storage, in order to elimi-
nate any sensitivity to dataset size when comparing across applications. We have
empirically determined that a practical finite implementation of 2-TDGP (64k entries,
16-way associativity) attains almost the same performance. We use the full PC of each
store instruction in generating the PC trace (the precise number of bits varies across
architectures). We vary the number of data address bits from 0 (no disambiguation) to
the maximum available (26 bits for the systems studied).

Ideally, program behavior itself should be sufficient to predict memory access
patterns. 2-TDGP captures this behavior through its PC history trace. However, the PC
trace may not be sufficient to exactly determine program context. In particular, data
address bits in 2-TDGP signatures enable the predictor to disambiguate subtrace
aliases [8,11]. For example, suppose the cache blocks in a large array are each stored to
five times prior to downgrade. If the array is not aligned on a cache block boundary,
the first and last cache blocks may be stored only twice. The trace containing only two
stores is a subtrace of the five store general case. Without additional information, the
predictor cannot determine whether to predict a downgrade when this two-store
subtrace is encountered. Including data address bits in the signatures distinguishes
such corner cases, enabling 2-TDGP to predict correctly in each case.

Including more address bits increases 2-TDGP learning time, because particular
signatures occur less frequently. Scientific applications generally have repetitious
memory access patterns, so many address bits do not inhibit 2-TDGP’s ability to train.
Computation typically proceeds in iterations, warming 2-TDGP by the end of the
second iteration (because of the 2-bit confidence counters). Subsequent iterations
require no training, thus yielding very high coverage, and mispredictions are low
because of subtrace disambiguation.

Commercial workloads do not exhibit the same degree of repetitiveness in their
memory access patterns, because of complex datasets that continually change
throughout execution. A number of programming practices common in commercial
applications cause the evolution of the dataset over time, including dynamic memory
allocation and garbage collection. If data address bits are included, these programming
practices prevent 2-TDGP from applying signatures learned in one program context to
the next. Therefore, adding address bits reduces the number of predictions made,
resulting in lower coverage.

5.2 Evaluation of 2-PCSP on Commercial Workloads
Figure 3 explores 2-PCSP in a similar manner. Its performance is measured with

respect to consumptions (i.e., the first read by each node of a newly produced value).
Coverage is the fraction of all subsequent readers that were predicted correctly.
Mispredictions are nodes that were predicted to consume a value, but did not. Training
is the gap between coverage and mispredictions, containing unpredicted patterns from
which 2-PCSP learns. As with 2-TDGP, we evaluate using an infinite signature table.
We have determined that a practical finite implementation of 2-PCSP (64k entries, 16-
way associativity) attains similar performance. We present results for a history depth
of four. In these experiments, we supply 2-PCSP with oracle knowledge of each
production (i.e., as if a perfect DGP were used).

Unlike most scientific applications, commercial workloads do not exhibit regular
sharing patterns. The commercial applications studied are synchronized using locks.
Thus, the consumer of a particular data item depends on which CPU next acquires the
lock for a critical section, which is often timing or data dependent. Data migration
patterns are therefore irregular and unpredictable. CSP techniques in general,
including 2-PCSP, perform well on scientific applications, as the sharing patterns,
though sometimes complex, are highly repetitive [10,8].

2-PCSP achieves nearly 50% coverage for DB2 on Linux, in stark contrast to its
behavior on the other commercial workloads. This is caused by 2-PCSP’s ability to
accurately predict sharing of highly contended spin locks in the Linux kernel. When
several nodes are spinning on a lock, 2-PCSP identifies the nodes and correctly
predicts their consumption of the lock variable. The contention on such a lock gener-
ates considerable coherence traffic. Together, these two factors lead to unusually high
coverage. For DB2 on Linux, the increased 2-PCSP coverage is caused almost entirely
by the kernel lock io_request_lock. This is due to heavy I/O activity in online transac-
tion processing, both to retrieve database pages and to write log entries for each
transaction.

Figure 3. 2-PCSP Results for Commercial Applications. The number of data
address bits used to disambiguate history signatures is indicated below each bar

0%
20%
40%
60%
80%

100%
120%
140%

0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all 0 8 16 all

Scientific
Av erage

DB2 Linux DB2
Solaris

JBB Linux JBB
Solaris

Web
Linux

Web
Solaris

C
on

su
m

pt
io

ns

Coverage Training Mispredictions

For scientific applications, adding address bits to disambiguate 2-PCSP signature
aliases uniformly improves both coverage and mispredictions. As with 2-TDGP,
adding address or other information can eliminate trace aliases [8]. However, this is
not the case for commercial workloads. All commercial workloads show the highest
coverage with no address disambiguation. Removing address bits allows the predictor
to reuse sharing patterns learned for one address on another, increasing the number of
predictions that can be made. However, lack of disambiguation causes many of the
additional predictions to be incorrect, leading to increased mispredictions. The
inherent non-repetitiveness of sharing patterns in commercial workloads is the root
cause of this phenomenon.

5.3 Comparisons with Other Techniques
We compare 2-TDGP against a simple timer-based DGP, similar to the dead-time

predictor found in [7]. Every cache block possesses a timer, which is reset on each
store to the block. Timers are decremented on every access to the cache, and on timer
expiration, we predict the corresponding block should be self-downgraded. For each
workload, we evaluate performance for a wide range of timer values, and present two
results: one that matches 2-TDGP’s coverage (labelled Cov) and one that matches 2-
TDGP’s misprediction rate (labelled Misp). Figure 4 presents the results. TDGP repre-
sents a realistic configuration, with 64k signature entries and 16-way associativity.

The nature of the timer-based DGP allows it to attain any coverage (at the expense
of mispredictions) or misprediction rate (at the expense of coverage). The workloads
studied exhibit a range of timer values for which coverage and mispredictions are both
reasonable. Outside this range, mispredictions jump to hundreds of percent or
coverage drops below 10%, depending on whether the timer value is decreased or
increased. In matching with 2-TDGP, there is evidence of all three scenarios.

Figure 4. Comparison of DGP Techniques

0%

25%

50%

75%

100%

125%

150%

175%

200%
Co

v
Mi

sp
TD

GP Co
v

Mi
sp

TD
GP Co

v
Mi

sp
TD

GP Co
v

Mi
sp

TD
GP Co

v
Mi

sp
TD

GP Co
v

Mi
sp

TD
GP Co

v
Mi

sp
TD

GP Co
v

Mi
sp

TD
GP Co

v
Mi

sp
TD

GP Co
v

Mi
sp

TD
GP Co

v
Mi

sp
TD

GP

barnes em3d moldy n ocean w ater DB2
Linux

DB2
Solaris

JBB
Linux

JBB
Solaris

Web
Linux

Web
Solaris

Pr
od

uc
tio

ns

Mispredictions
Training
Coverage

782% 277% 695% 832% 276%

There are no workloads for which the timer-based DGP performs better than 2-
TDGP. A timer cannot learn sufficiently complex behavior to exhibit high coverage
and low mispredictions simultaneously. Indeed, the large variability in performance of
the timer-based DGP suggests its base design be re-evaluated.

Figure 5 presents a comparison of 2-PCSP with two other consumer set prediction
mechanisms. Inter records the previous two consumer sets for a cache block, and
predicts the intersection of the two [8]. 2Bit keeps a 2-bit saturating counter for all
nodes for every cache block (i.e., the same storage overhead as Inter). When a block
transitions from shared state, the counter is incremented for all sharers of the cache
block, and decremented for non-sharers. PCSP represents a realistic 2-PCSP configu-
ration with 64k signature entries and 16-way associativity. Additionally, we have
investigated using the single most recent consumer set for prediction, but do not
include results because of its unacceptable misprediction rate (> 60%).

2Bit outperforms Inter because its hysteresis smooths over temporary perturba-
tions in a sharing pattern. Nevertheless, neither of the simple sharing predictors can
capture complex sharing patterns. For example, in moldyn, data is shared according to
different patterns during distinct phases of each iteration. 2-PCSP’s history-based
approach is able to record this complex pattern in its signature table, correctly
predicting each subsequent set of sharers from recent sharing history across phases.
The 2Bit and Inter results further demonstrate the unpredictability of sharing patterns
in commercial applications.

5.4 Competitive Predictor Opportunity
Section 5.1 and Section 5.2 demonstrated that 2-TDGP and 2-PCSP are sensitive

to their address bit configuration. In this section, we present the opportunity for a
competitive design, which dynamically chooses the amount of address information to
utilize, to outperform any of the fixed address bit designs. We evaluate a competitive
predictor composed of a set of underlying fixed address bit predictors that are accessed
and updated in parallel. At each prediction opportunity, the competitive predictor

Figure 5. Comparison of CSP Techniques

0%
20%
40%
60%
80%

100%
120%

Int
er

2B
it

PC
SP Int

er
2B

it
PC

SP Int
er

2B
it

PC
SP Int

er
2B

it
PC

SP Int
er

2B
it

PC
SP Int

er
2B

it
PC

SP Int
er

2B
it

PC
SP Int

er
2B

it
PC

SP Int
er

2B
it

PC
SP Int

er
2B

it
PC

SP Int
er

2B
it

PC
SP

barnes em3d moldy n ocean w ater DB2
Linux

DB2
Solaris

JBB
Linux

JBB
Solaris

Web
Linux

Web
Solaris

C
on

su
m

pt
io

ns

Coverage Training Mispredictions

chooses from the available predictors. Competitive algorithms have been shown to
meet the accuracy of the underlying prediction algorithms, and can even outperform
the best underlying design in some cases [5]. In this paper, we present an opportunity
analysis for such a hybrid, and do not consider the design of the mechanism which
selects among the predictors. The results presented assume an oracle selection mecha-
nism that chooses the predictor that will result in the highest coverage at each
prediction opportunity. Because misprediction rates are highly sensitive to the selec-
tion mechanism and our oracle avoids nearly all mispredictions, we present only
coverage results. We compare the best fixed design with a competitive predictor
composed of the four address bit configurations presented in Section 5.1 and Section
5.2. All predictor configurations use unlimited storage.

Figure 6 presents the opportunity for the oracle competitive predictor to better 2-
TDGP. The scientific applications have little room for improvement, yet the competi-
tive predictor shows coverage gains up to 4%. Multiple predictors alleviate the effects
of aliasing that are seen with a single predictor. The commercial workloads achieve up
to 14% higher coverage. Those running on Solaris show a much larger increase in
coverage than their Linux counterparts; this is likely due to common OS elements
utilized by all applications.

Due to space constraints, we do not present a graph of the opportunity results for
2-PCSP. The improvements are minor, with no workload achieving more than 6%
higher coverage. For commercial applications, even a competitive PCSP is not able to
attain reasonable coverage. Given the non-repetitiveness of memory sharing patterns,
this matches our expectations—regardless of the complexity of a predictor, high
coverage cannot be obtained.

A competitive prediction approach has substantial opportunity to improve
coverage over 2-TDGP. It is worthwhile to investigate further in this direction, to
design and explore a realistic implementation. Such a design may even reduce
predictor storage requirements, as it will generate fewer signatures than a base 2-
TDGP design that uses many data address bits. Depending on the performance of such
a predictor, it may be beneficial to also study methods for minimizing mispredictions.

Figure 6. Competitive TDGP Opportunity. Fixed reproduces the best fixed-address
bit result from Figure 2. Competetive represents an oracle competitive predictor

0%

20%

40%

60%

80%

100%

barnes em3d moldyn ocean water DB2
Linux

DB2
Solaris

JBB
Linux

JBB
Solaris

Web
Linux

Web
Solaris

P
ro

du
ct

io
ns

Fixed Competitive

6 Conclusion
In this paper, we studied two predictors for memory coherence activity in distrib-

uted shared memory architectures. 2-TDGP predicts the last store to a cache block
prior to consumption by another node, and 2-PCSP predicts the consumers of updated
cache blocks. We evaluated this class of predictors for the first time on commercial
workloads and determined that 2-TDGP correctly predicts 47%-76% of productions,
while 2-PCSP is largely ineffective due to the inherent non-repetitiveness of memory
access patterns in these applications. We studied an oracle competitive predictor
design, and found opportunity to increase 2-TDGP coverage up to 14%.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE Computer,

29(12):66–76, Dec. 1996.
[2] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. K. Martin, D. J. Sorin, M. D. Hill, and D. A.

Wood. Evaluating non-deterministic multi-threaded commercial workloads. In Proceedings of the
Workshop on Computer Architecture Evaluation Using Commercial Workloads, Feb. 2002.

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system characterization of commercial
workloads. In Proceedings of the 25th Annual International Symposium on Computer Architecture,
pages 3–14, June 1998.

[4] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and
K. Yelick. Parallel programming in Split-C. In Proceedings of Supercomputing ’93, pages 262–273,
Nov. 1993.

[5] B. Falsafi and D. A. Wood. Reactive NUMA: A design for unifying S-COMA and CC-NUMA. In
Proceedings of the 24th Annual International Symposium on Computer Architecture, pages 229–240,
June 1997.

[6] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen, J. Kim, B. Falsafi, J. C. Hoe,
and A. G. Nowatzyk. Simflex: A fast, accurate, flexible full-system simulation framework for perfor-
mance evaluation of server architecture. SIGMETRICS Performance Evaluation Review, May 2004.

[7] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system: predicting and optimizing
memory behavior. In Proceedings of the 29th Annual International Symposium on Computer Architec-
ture, May 2002.

[8] S. Kaxiras and C. Young. Coherence communication prediction in shared memory multiprocessors. In
Proceedings of the Sixth IEEE Symposium on High-Performance Computer Architecture, Jan. 2000.

[9] R. E. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, Mar. 1999.
[10] A.-C. Lai and B. Falsafi. Memory sharing predictor: The key to a speculative coherent DSM. In

Proceedings of the 26th Annual International Symposium on Computer Architecture, May 1999.
[11] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-invalidation using last-touch prediction.

In Proceedings of the 27th Annual International Symposium on Computer Architecture, June 2000.
[12] A.-C. Lai and B. Falsafi. Dead-block prediction & dead-block correlating prefetchers. In Proceedings

of the 28th Annual International Symposium on Computer Architecture, July 2001.
[13] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation: Reducing coherence overhead in shared-

memory multiprocessors. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture, pages 48–59, June 1995.

[14] C. Levine. TPC-C: The OLTP benchmark. In TPC Technical Report Article at www.tpc.org.
[15] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H. amd Johan Hogberg, F. Larsson,

A. Moestedt, and B. Werner. Simics: A full system simulation platform. IEEE Computer, 35(2):50–58,
Feb. 2002.

[16] S. S. Mukherjee and M. D. Hill. Using prediction to accelerate coherence protocols. In Proceedings of
the 25th Annual International Symposium on Computer Architecture, June 1998.

[17] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus, A. Rogers, and J. Saltz. Efficient support for
irregular applications on distributed-memory machines. In Fifth ACM SIGPLAN Symposium on Princi-
ples & Practice of Parallel Programming (PPOPP), pages 68–79, July 1995.

[18] Standard Performance Evaluation Corporation. SPECweb99. http://www.spec.org/web99/, 1999.
[19] Standard Performance Evaluation Corporation. SPECjbb2000. http://www.spec.org/jbb2000/, 2000.
[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Characterization

and methodological considerations. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 24–36, July 1995.

[21] T.-Y. Yeh and Y. N. Patt. Two-level adaptive branch prediction. In Proceedings of the 24th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 24), pages 51–61, December
1991.

	Memory Coherence Activity Prediction in Commercial Workloads
	1 Introduction
	2 Related Work
	3 Design
	3.1 Downgrade Predictor
	3.2 Pattern-Based Consumer Set Predictor
	3.3 Opportunity for Competitive Predictors

	4 Experimental Methodology
	5 Results
	5.1 Evaluation of 2-TDGP on Commercial Workloads
	5.2 Evaluation of 2-PCSP on Commercial Workloads
	5.3 Comparisons with Other Techniques
	5.4 Competitive Predictor Opportunity

	6 Conclusion

