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Abstract— Most gene clustering algorithms only group simi-
larly co-expressed genes into clusters. In light of gene regulation
network, many transitively co-expressed genes are also likely to
be functionally related. We propose a new clustering approach
that is able to group both similarly co-expressed genes and
transitively co-expressed genes into tight clusters of interest.

I. INTRODUCTION

Two widespread and complementary procedures to estimate
gene co-expression pathways from microarray data are: sim-
ilar co-expression analysis [1] and transitive co-expression
analysis [2]. Similar co-expression analysis uses clustering to
assign each gene into a group based on co-expression profile
similarity. Since it ignores constraints of the underlying gene
regulation network, this can be viewed as a “prior” approach.
It is very simply implemented but has the drawback that many
irrelevant genes to the biological process are falsely classified.
Similar co-expression analysis is also confounded by the fact
that genes in the same signaling pathway do not necessar-
ily have similar expression profiles. Transitive co-expression
analysis was proposed to overcome these shortcomings [2]. By
considering underlying gene regulation network constraints, it
can be viewed as a “posterior” approach. Consequently, it can
frequently discover novel transitive genes in the pathway that
otherwise would be missed by similar co-expression analysis.
However, this approach depends completely on the availability
of terminal genes that are biologically known to be lying in
the same pathway. Moreover, the linear manner of discovery
is not very efficient for discovering interconnected pathway
components.

Directly inspired by the metabolic network decomposition
analysis in Ma et al., 2004 [3], we propose an efficient and
powerful posterior approach that integrates the complementary
features of similar co-expression and transitive co-expression
analyses to cluster genes from co-expression network based
on “shortest-path distance”. We illustrate the approach and
compare with previous similar co-expression and transitive co-
expression analyses on a yeast hextose metabolism dataset [4].

II. SECTION2

We extract a network from microarray data using a FDR
Confidence Interval (FDR-CI) based two-stage algorithm with
controlled False Discovery Rate (FDR) and Minimum Accept-
able Strength (MAS) [5]. This technique improves upon pre-
vious network extraction methods [2] because our constructed
network simultaneously controls error rate and strength of

association. Furthermore, it is able to incorporate both linearly
and non-linearly co-expressed genes by using non-Euclidean
inter-profile distance measures.

The Giant Connected Component (GCC) of an undirected
graph G = (V, E), where V is the set of all vertices and E

is the set of all edges, is a maximal set of vertices U ⊂ V

such that every pair of vertices u and v in U are reachable
from each other. We designed a simple algorithm to extract
the GCC from the undirected graph:

• Calculate marginal degree for each vertex in the graph,
denoted as K.

• Sort K in the decreasing order,i.e.K(1), K(2), . . . , K(n).
• Start from the best connected to least connected vertices,

greedily grow the GCC until the newly formed giant
component is not a GCC.

The vertices of the extracted GCC are ordered by connec-
tivity, which facilitates network based analysis since highly
connected vertices are often of biological interest. To obtain
the same list of vertices but in the original order, the standard
depth first search (DFS) algorithm can be used as described
in [6]. In both cases, the algorithm runs in polynomial time
[6].

Let Γ̂ij be the sample correlation coefficient between gene
i and j, e.g. estimated from a gene microarray sequence by
Pearson or Kendall correlation statistic. Let wij be the weight
of the edge between gene i and gene j. Similar to Zhou et al
[2], the wij is defined as:

wij = (1 − abs(Γ̂ij))
p (1)

The integer p is an exponential factor to enhance the differ-
ences between low and high correlation. We systematically
studied impact of choosing p on the clustering results. The
clustering results do not change with a different p for prior
clustering, but change mildly for posterior clustering (sup-
plemental table). We determine p based on the biological
prior knowledge that known functionally related genes form a
tightest cluster.

We use the standard Floyd-Warshall algorithm to search
among all-pairs for the shortest-paths within GCC. Let d

(k)
ij

be the weight of a shortest-path from vertex i to vertex j

passing through k intermediate vertices. When k = 0, there is
only one edge between vertex i and vertex j, and we define
d
(0)
ij = wij . A recursive definition of d

(k)
ij is given by [6]:



d
(k)
ij =

{

wij , k = 0;

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj ), k ≥ 1.

(2)

The matrix D = (dij) is called the “shortest-path distance
matrix”. It can be used as input to many distance matrix based
clustering software such as: hierarchical clustering and K-
medoids.

III. SECTION3

We sought to compare our posterior clustering approach with
prior clustering approach and shortest-path analysis in dis-
covering the structural module (transporter genes and enzyme
genes) of yeast hextose metabolism pathway. We constructed
a co-expression network using a subset of 997 differentially
expressed genes in the yeast dataset [4] with a FDR constraint
of 5% and a MAS constraint of 0.6. We then extracted a GCC
of 644 genes. The shortest-path distance matrix for GCC was
computed according to equation (1) and equation (2), while the
distance matrix for all the 997 genes was computed according
to equation (1) only.
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Fig. 1. Prior clustering: Dendrogram obtained by agglomerative
hierarchical clustering using all differentially expressed genes.

We use the largest geodesic between genes in the clusters for
hierarchical clustering [7]. The structural module is separated
into three subclusters (A, B1 and B2) in prior clustering
(Fig.1) but is integrated into one tight cluster (A) in posterior
clustering (Fig.2). Furthermore, enzyme genes (A) form a quite
loose cluster in prior clustering (Fig.1, A), e.g. GAL1 and
GAL10 are separated by 6 genes while in fact, they should be
quite close to each other as shown by our posterior clustering
procedure (Fig.2, A).

HXT12
  ,
HXT9
 ,
 HXT5
 ,
 HXT8
 ,
 HXT1
 ,
 HXT2
 ,

HXT10
 ,
 HXT7
 ,
 HXT6
 ,
 FAR1
 ,
 HXT4
 ,
 HXT3
 ,


MAP1
 ,
 YPL066W
 ,
 MLF3
 ,
 PIG2
 ,
 YMR318C
 ,
 FKS1


A


GAL1
 ,
 YOR121C

GAL10
 ,
 GAL7
 ,

GAL2
 ,
 GCY1


Fig. 2. Posterior clustering: Dendrogram obtained by agglomerative
hierarchical clustering from relevance network.

In comparison to the shortest-path analysis, the supervised
transitive co-expression analysis depends on availability of
terminal genes, while our unsupervised method does not. For
example, the hypothetical ORF “YPL066W” does not lie in
any shortest-path and hence no functional prediction can be
made. In contrast, our posterior clustering method strongly
supports its role in the hextose transport (Fig.2). Checking
the literature more carefully, we found that a system deletion
of “YPL066W” exhibits growth defect on a non-fermentable
(respiratory) carbon source [8]. This seems to support our
prediction. Further experimental work will be necessary to
characterize the biological functions of this gene.
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