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Preface

EECS 452 is the EECS Departments Systems Laboratory’s Major Design Experi-

ence course. The primary focus is on providing students with hands-on experi-

ence of defining, planning and executing a project.

Because the System Laboratory is responsible for EECS 452, the projects are

expected to involve some aspect (but not necessarily all at once) communica-

tions, control, and/or signal processing. In the past there have also been projects

that were oriented to bio-engineering and (electro) mechanical engineering appli-

cations. Projects in these areas remain a possibility.

Underlining all of the above mentioned ares is the use of digital logic to per-

form numerical calculations. An area referred to as Digital Signal Processing

(DSP). Because is fundamental and an enabling technology it is a focus of much

of the material covered in lecture and in the structured lab exercises.

EECS 452 is nominally divided into two parts. The first part consists of a set

of seven structured laboratory exercises intended to introduce the students to

the operation and use of a DSP processor and a FPGA development system. The

DSP processor is the TI TMS320VC5510 a 200 MHz 16-bit processor device. The

FPGA hardware consists of the Digilent Xilinx Spartan-3 Starter Board.

The second part of the course, nominally the latter half of the semester, is

mostly devoted to the creation of a possibly/hopefully commercially viable prod-

uct. At least to the proof of concept or feasibility stage. There are no structured

lab exercises during the second half of the semester. Lectures will continue

pretty much to the end of the semester and are meant to cover material that

hopefully be help to at least some of the projects.

This is the draft of a text for EECS 452. It is a work in progress with the

process having started mid summer 2007. It is intended to augment the lecture

material, provide descriptions of the function and use of various aspects of the

DSP/FPGA equipment in the lab and to serve as a basis for the structured labo-

ratory exercises. It is also intended to serve as a source of DSP C modules and

FPGA VHDL modules for use in the projects.

As a text it is expected to be on the large side. It will include more listings

of C-code functions and VHDL entities than normally included in a text. It ex-

ists only as a PDF document and uses hyperlinks to facilitate navigation using

Adobe’s Acrobat Reader. Electronic reproduction costs are minimal especially

compared to a printed version. The electronic form facilitates adding material

and making corrections and allows ready updating each semester.
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As noted, this is the first semester that we have tried this approach. It should

be an interesting semester.

There is a companion CD.
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1 : Introduction

Digital signal processing is a reasonably mature field. The basic concepts have

been established and are not likely to change significantly in the near future.

In contrast, the devices and equipment used to do digital signal processing

are being driven by Moore’s Law have been changing at a furious pace and con-

tinue to do so with little let-up in sight.

EECS 452 is a mixture of theory and practice, of stability and change, of

structure and amorphism. Hopefully it is a course where the concepts that you

learned in past courses synergetically come together.

High end DSP processor, the C5510 and mid level FPGA the Spartan-3. One is

highly structured and the other moderately amorphous.

Fixed point arithmetic is used almost exclusively. Fixed word sizes are use

in the C5510 and bit-serial arithmetic is used in the FPGA. FPGA arithmetic can

also be implemented using varying word sizes however a choice was made to

use bit-serial methods in order to provide a contrast.

One of Edgar Guest’s most famous poems (Home) starts with the line “It takes

a heap o’ livin’ in a house t’ make it home,” These notes provide intellectual

wood, bricks and mortar. Your efforts in understanding, assimilating and work-

ing with it in the labs will make it into something more.

1.1 Overview of the chapters

The text is hyperlinked. It is easily navigated using Adobe’s Acrobat. Links are

present in the text and Acrobat Reader’s Bookmarks tab and the Pages tab are

supported. This of courtesy of the LaTeX hyperref package.

1.1.1 Chapter 1

This chapter. It gives an overview of what is to come. The intent is to inform

and excite (or is it incite, or inflame, or . . . ?).
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1.1.2 Chapter 2

A bit of review. Perhaps a unique perspective. One can get a lot of milage out of

a few basic concepts.

1.1.3 Chapter 3

The TI C5510 is introduced in Chapter 3. The laboratory exercise consists of

running the very well designed TI C5510 tutorial.

1.1.4 Chapter 7

VHDL and the Spartan-3 starter board are dealt with in Chapter 7. The basic

structure of VHDL is presented. Xilinx’s WebPACK ISE is used to convert the

VHDL to bit files. Digilent’s Export program is used to load the bit files into

the Spartan-3 FPGA. Xilinx’s Impact can be used for this function as well as to

convert bit files into programming files that can be downloaded into the S3SB

boot ROM.

1.1.5 Chapter 9

The addition and the multiplication of numbers are key to implementing DSP

algorithms. Their inverses, subtraction and division being inverse processes, in-

verses being what they are, are more difficult to implement. Subtraction not too

more complicated and division much more so. Push come to shove, multiplica-

tion uses repeated additions and division uses repeated subtractions.

If one were to do a series of hand calculations using pencil and paper, values

would be written using decimal notation and the arithmetic would be digit serial.

Using a modern computer for the same task one would normally use binary

numbers and “bit-parallel” add/multiplication instructions. Hardware for doing

these bit-parallel operations are optimized configurations of bit-serial units.

1.1.6 Chapter 12

Bit serial communication between a process and devices such as A/D and D/A

converters and between separate devices is treated in Chapter 12.

1.1.7 Chapter 13

Where do waveforms come from? Direct digital waveform synthesis is dealt with

in Chapter 13.
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1.1.8 Chapter 15

An annoying problem in past semesters was the lack of a stand alone device

that would allow ready display of results generated in the lab exercises. Work

was started on a possible solution the summer of 2006 and was brought to the

current state the summer of 2007. Use of this display system in the lab exercises

started the Fall 2007 semester. The design is also available for use in the student

projects.

This chapter documents the design and implementation the EECS 452 FPGA

based display controller. The displays are 1024 by 768 pixels. The pixels are

two bits. The pixel clock is 75 MHz and the refresh rate is 70 Hz. It is interfaced

to the C5510 DSK via a McBSP channel. In includes a line drawing and character

generation capability. The line drawing uses Bresenham’s algorithm and the

character set glyphs are based on a X11 dot matrix character set. Seven character

sizes are supported. The XVGA FPGA terminal support is not discussed in class.

It is however a useful device and is illustrative of a large project. Sometimes one

needs to build a table before sitting down to write. What? A chair is needed too?

The chapter also serves as a user’s “manual”.

1.1.9 Chapter 16

Many DSP applications involve the movement of information from one portion

of the spectrum to another. The first application of the concepts covered in this

chapter is for implementing a device for making transfer function measurements

(magnitude and phase as a function of frequency).

1.1.10 Chapter 17

Modern signal processing makes extensive use of complex valued waveforms. A

common task is determining the magnitude and phase of a complex number.

1.1.11 Chapter 18

Simplest filter is the moving average. Add up the last N samples. The next step in

complexity is to weight the samples being added. The mathematics are simple,

it’s implementing the data management (movement) where most of the work is.

FIR filters only have zero’s in their transfer functions.

1.1.12 Chapter 21

Often one can use fewer resources than otherwise if one uses past filter out-

puts along with past filter inputs when implementing a filter to meet a given
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specification requirement.

IIR filters have both zero’s and poles in their transfer functions.

IIR filters are feedback systems. Because the values being fed back are limited

in the number of bits that can be used, they are nonlinear feedback systems.

1.1.13 Chapter 23

The work horse of DSP. The publication in 1965 of an efficient algorithm for com-

puting the DSP pretty much coincided with the start of the running of Moore’s

law. What a ride the DSP field has had! This paper led to thousands more papers

and unknown numbers of implementations. It is late in the journey but we still

get to get on and ride.

1.1.14 Chapter 25

It is not unreasonable to feel that this chapter is what the preceding chapters

have been building toward. OFDM (orthogonal frequency division multiplexing)

is probably the most DSP intensive communication’s technique that exists. It

seems to have everything. Filters, inverse FFTs, FFTs, modulation, demodulation,

etc. In a sense it sits ontop of the DSP food chain.

1.2 Where to find information?

Where ever you can! It must be sought out. It can fall into your lap. It can

be deviously hidden and it can being jumping up and down and waving in your

face. Having some suggestions as to where one might look is often helpful. The

sources listed below are felt to be particularly good. Non inclusion of a particular

book or source is not a negative indication of its quality.

Cruise the magazine racks on the second floor of the Media Center. Lots of

neat journals and magazines are available.

Browse the book stacks located in the Media Center basement. The books

are ordered using the Library of Congress scheme. Most DSP books are located

in the TK area. Numerical and computer books are typically in the QA section.

There is a lot to browse. To reduce the search zone use Myrlin to locate the call

numbers for a book or two of interest and then use these as starting points.

1.2.1 DSP resources

• Digital Signal Processing (4th Edition), Proakis and Manolakis. Contains over

1100 pages! If you are building a personal library this is a must!
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• Understanding Digital Signal Processing (2nd Edition), Lyons. Noted for its

clear exposition of complex concepts.

• Multirate Signal Processing for Communication Systems, harris. Written that

has consulted on the incorporation of DSP into chip and system designs.

The author has much practical experience to share.

• Multirate Digital Signal Processing, Crochiere and Rabiner. The classic.

Originally published in 1983 still available in facsimile form. Not at a Dover

book price though.

• Multirate Systems And Filter Banks, Vaidyanathan. Another classic.

The IEEE Signal Processing Magazine regularly carries a column titled, DSP

Tips and Tricks.

Consider joining the IEEE Signal Processing Society. You do belong to the

IEEE, don’t you?

The Texas Instruments web site, their DSP manuals, the store, their University

Program.

Buy your own evaluation board. Typically come with full software support.

Don’t forget to USE IT!

1.2.2 VHLD resources

• Circuit Design with VHDL, Pedoroni. An EECS 452 recommended buy. Low

cost, price recently dropped on Amazon to below $30. There must be a

2nd edition coming out. This is the book to use in order to start learning

VHDL.

• The Designer’s Guide to VHDL (2nd Edition), Ashenden. Considered by many

as the standard reference for the working engineer.

• Digital Signal Processing with Field Programmable Gate Arrays, Meyer-Baese.

Uses FPGAs do implement DSP. If we were to teach a FPGA only DSP course

this would be the text.

Buy your own evaluation board. EECS 452 (and EECS 373) use boards man-

ufactured by Digilent (http://www.digilentinc.com/). These use the Xilinx

(http://www.xilinx.com/) Spartan-3 FPGAs. There are other manufacturers of

FPGAs and boards. The Altera (http://www.altera.com/) DE2 board is used in

EECS 270 represent excellent value both as a learning tool and as a useful entity

in its own right. As above, buy one and USE IT!

Chapter 1 5 October 16, 2007
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1.2.3 Various technical resources

• Dedicated Digital Processors: Methods in Hardware/Software Co-Design,

Mayer-Lindenberg. Strap yourself in before starting to read this. It is rocket

propelled. The author hits the key points and doesn’t mince words. He uses

his words economically with great precision and accuracy. A must read!

• Digital Integrated Circuits (2nd Edition), Rabaey and Chandrakasan. Want

to know how FPGAs work? This is a place to find out. Goes from below

the gate level to the operating FPGA/ASIC. Used by two courses in the EECS

department.

1.3 Resources used to generate this document

• The MiKTeX distribution for Windows (http://www.miktex.org).

• The WinEDT text editor (http://www.winedt.com).

• SmartDraw (http://www.smartdraw.com).

• The Lucida Bright font set. One copy from TUG and one from PCTeX.

• Adobe Acrobat (http://www.adobe.com)

Used Guide to LaTeX (4th) by Kopka and Daly and The LaTeX Companion

(2nd) by Goossens, et al.

Other miscellaneous conversion routines.
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2 : Some DSP basics

Perhaps a review of some concepts learned in EECS 451, or maybe not.

Start with the basic paradigm figure.

2.1 Filters

What a filter is. Transfer functions. MATLAB’s FDAtool.

Finite impulse response. Infinite impulse response.

2.2 Sampling

Aliasing. Caused by sampling. Can we tell where in frequency a spectrum came

from?

2.3 Reconstruction

Imaging. Caused by D/A conversion.

2.4 Amplitude quantization

Quantization error.

2.5 Simple view of statistics

Assume samples are identically independently distributed.

2.6 Quantization noise level

For use in determining performance limits.
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2.7 Overview of transforms

Moving between the time domain and the frequency domain.

The Fourier shifting theorem.

Parseval’s theorem.
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3 : Introduction to TI TMS320C5510

DSP and its DSK

3.1 Overview of the chapter

In this chapter, we introduce the Texas Instrument TMS320VC5510 DSP proces-

sor and the TMS320VC5510 digital signal processing starter kit (DSK) manufac-

tured by Spectrum Digital. In the following sections, we will learn the C5510 DSP

processor including the architecture of the processor, functional blocks, mem-

ory, address space and addressing modes, etc. The C5510 DSP is built into the

DSK with peripherals connected to it. So next we will look into the DSK and

learn the functionalities and usage of these peripherals. The next key concept is

the programming language and compiling tool we use to work with the DSK. We

will use mixed C/assembly programming to work with C5510. The software tool

for building up the project and compiling the programs is TI’s Code Composer

Studio (CCS). There will be an exercise on the CCS tutorial. Once you are familiar

with CCS, we will do more exercises on the basic operations of C5510 DSK.

Suggested reading

The C5510 manuals are good resources for detail information. However, there

are huge amount of pages and it is not recommended to study them. However,

for some sections you might want to read them instead of glancing through for

better concepts about the DSP processor. There are also books listed here as

references. They are available on reserve in the library.

The key C5510 manuals for this chapter are

• CPU Reference Guide,

• TMS320VC5510 Fixed-Point Digital Signal Processor Data Manual,

• DSP Mnemonic Instruction Set Reference Guide,

• Optimizing C/C++ Compiler User’s Guide,

• TMS320C55xx DSP Programmer’s Guide,

• TMS320VC5510 DSK Technical Reference,

• TMS320VC5501/5502/5509/5510 DSP Multichannel Buffered Serial Port

(McBSP) Reference Guide.
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Reference for C5510 DSP

• Real-Time Digital Signal Processing: Implementations, Applications, and Ex-

periments with the TMS320C55X, S. M. Kuo and B. H. Lee, Wiley 2001.

Reference for programming

• The C Programming Language 2nd Ed., B. W. Kernighan and D. M. Ritchie,

Prentice Hall 1988.

3.2 The C5510 DSP processor and the DSK

In this section we will introduce the C5510 DSK and the essential part of the DSK

– the C5510 DSP processor. We start with the C5510 DSP processor by looking

at its architecture, memory space, addressing modes, registers, memory models,

and how to access the memory. Then we look at the DSK and learn about the

peripherals on the DSK.

3.2.1 C5510 architecture

The C5510 DSP block diagram is shown in Figure 3.1.

3.2.2 C5510 memory spaces

The C5510 supports three address spaces: program, data and I/O.

Program space is accessed in terms of 8-bit bytes using 24-bit addresses. Data

space is (normally) accessed in terms of 16-bit words using 23-bit addresses. I/O

space is accessed in terms of words using 16-bit addresses.

The C55x uses what TI refers to as a unified memory map. The program and

data spaces share the same physical memory. This physical memory may be off-

chip as well as on. The I/O address space is physically separate and is confined

to being on-chip.

The addressing capability of the C5510 is

• 8M 8-bit bytes of program space,

• 4M 16-bit words of data space,

• 64K 16-bit words of peripheral registers.

A program called the linker is used to collect together individual program

modules and link them together to form an executable program. In order to
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EMIF

CE[3:0]
BE[3:0]
HOLD
HOLDA

A[21:0]
D[31:0]

ARE
AOE
AWE
ARDY

SSADS
SSOE
SSWE

CLKMEM

SDRAS
SDCAS
SDWE
SDA10

HBE[1:0]
HDS[2:1]
HCS

HAS

HINT

HR/W

RESET
NMI

INT[5:0]

EMU1/OFF

TRST

Figure 3.1: C5510 block diagram. (From TMS320C5510 Fixed-Point Digital Signal

Processor Data Manual (SPRS076E) .)
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place modules in memory the linker needs to be provided a description of the

memory the target system possesses. For the text linker this is done using a

linker command file (having extension .cmd).

The memory definitions provided in the .cmd file (addresses and block sizes)

are required to be in terms of 8-bit bytes regardless of the memory type.

I/O address space is used to access the registers used to configure and con-

trol the on-chip peripherals. In order to access the registers located in I/O ad-

dress space a special operand modifier is used at the assembly language level

and a keyword type modifier is used at the C/C++ level.

3.2.2.1 Program address space

The program address space is used by the CPU to contain executable instruc-

tions. Programs rarely need to access this address space beyond defining labels

as targets to be jumped to. It is very seriously frowned upon to have a program

intentionally modify its executable code. (It is even more seriously frowned upon

to have it unintentionally to do!) Because the program memory and data memory

share the physical memory it is possible to have a errant program accidentally

overwrite its executable code. This shouldn’t happen, but sometimes does.

The processor uses byte addresses when accessing the program memory.

3.2.2.2 Data address space

When accessing data address space the processor (and hence also does the pro-

grammer) makes use of word addresses. An exception to the use of word ad-

dresses for the data address space is when describing data address space usage

to the linker. All addresses and block sizes used by the linker are in terms of

bytes. Sometimes this is confusing but that is the way things sometimes are.

The C5510 possesses a total of 160K (0x028000) words of on-chip memory.

This is divided up into 48 memory mapped processor registers (MMR), 8 blocks

of 4K words of dual access memory (DARAM) and 32 blocks of 4K words of

single access memory (SRAM). The memory mapped registers overlay the lower

48 words of the first DARAM block.

The C5510 DSK augments the on-chip memory by providing an additional 4M

(0x200000) words of off-chip synchronous dynamic RAM (SDRAM) (the low 160K

words are overlayed by the on-chip memory and are not normally accessible),

512 K bytes of flash ROM and a memory mapped complex logic device (CPLD).
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Figure 3.2 shows how the data address space on the DSK is filled (using 16-bit

word addresses) .

Figure 1-2, Memory Map, VC5510 DSK

Memory Mapped

Registers

Internal Memory

(DARAM)

Internal Memory

(SARAM)

External CE0

External CE3

External CE2

External CE1

0x000000

Word

Address
C55x Family

Memory Type

0x000030

0x008000

0x028000

0x200000

0x400000

0x600000

SDRAM

Flash

CPLD

Daughter

Card

5510 DSK

MMR

Internal

Memory

0x028000

0x200000

0x300000

Figure 3.2: C5510DSK memory map. (From the C5510 Technical Reference.)

The timing requirements for each of these memory types differ. The timing

requirements associated with the off-chip memory are handled by the EMIF on-

chip peripheral. This is automatic in the sense that once programmed properly

the meeting of the requirements is transparent. The EMIF itself needs to be

configured. In the case of the DSK the EMIF is programmed by CCS using a GEL

script. This step is totally transparent to us. The values used to configure the

EMIF depend on the types of memory present. We don’t have to deal with this

when working with the DSK.

• The on-chip memory is designed to operate at the CPU clock rate. At 200

MHz this memory supports making one access for SARAM and two accesses

for DARAM every 5 ns.

• At high CPU clock rates off-chip accesses are invariably slower than those

on the processor. This means the processor needs to wait extra time after

supplying a memory address and, say, receiving a read value. This extra

time is provided by waiting extra CPU cycles. These extra cycles are termed,

wait-cycles. The SDRAM used on the DSK nominally requires 10 ns per

memory access and this each access needs at least one wait cycle added.

An additional concern with the SDRAM is that, because it is a dynamic RAM,

it requires refreshing at least every 15.6 ms (for the particular memory
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chip used on the DSK). The EMIF takes care of this chore as well. It is not

clear whether or not the refreshes are transparent to the CPU in terms of

affecting execution time.

The EMIF peripheral provides four chip enable lines (CE0—CE3) for con-

trolling external memory accesses. The DSK uses the CE0 enable signal

to gain access to the 4M word SDRAM contents. (With the exception of

the lower 160K words of on-chip memory which effectively overlay the

SDRAM’s lower 160K words.)

• The flash CPLD and the EPROM share the portion of the address space

associated with chip enable 1 (CE1). When accessing the flash EPROM the

DSK technical reference manual recommends programming the EMIF for

80 ns accesses. The DSK’s flash EPROM has a 256K×16 capacity.

The timing requirements for the CPLD are not specified in the DSK technical

reference manual beyond that it is faster than the flash EPROM. If the EMIF

is programmed to support the flash EPROM then it is also programmed to

support the CPLD. The CPLD implements four 8-bit registers.

In order to make effective use of the C5510 one needs to understand how the

memory is organized and accessed. Even working at the C/C++ level the details

are not necessarily hidden by the compiler.

3.2.2.3 IO address space

When writing assembly language programs the operand modifier, port( ), can

be used to designate an address as being in I/O space rather than in data space.

With minor exception, any instruction supporting an Smem type memory access

supports use of the port( ) modifier. I/O memory can also be accessed from C

using the ioport keyword that TI added to the language.

3.2.3 C5510 addressing modes

• direct addressing mode

• indirect addressing mode

• absolute addressing mode

• memory mapped register addressing mode

• register bits addressing mode

• circular addressing mode

3.2.4 C5510 memory mapped registers

Introduce all the memory registers in C5510.
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3.2.5 C5510 memory page structure

The C5510 possesses eight 23-bit extended auxiliary registers that are used by

programs in a manner similar to the use of pointers in C. As shown in Figure 3.3

MNRNSOO
^oM^oMeu^oM

^oNe ^oN
^oOe ^oO
^oPe ^oP
^oQe ^oQ
^oRe ^oR
^oSe ^oS
^oTe ^oT

u^oO
u^oP
u^oQ
u^oR
u^oS
u^oT

u^oN

Figure 3.3: Extended auxiliary registers. These are used as pointers into memory

and are easily modeled by pointers as found in C.

each extended auxiliary register (XARn) is made up of a 16-bit auxiliary register

(ARn) and a 7-bit high part (ARnH). By using an auxiliary register as a pointer

one has the ability to access up to 8M words of memory. When properly pro-

grammed the EMIF makes accessing on-chip or off-chip memory transparent to

the programmer.

The ARn registers can be read from and written to using specific instructions

dedicated to this task. They can also be accessed by reading and writing specific

memory addresses (the ARn registers are memory mapped).

The ARnH registers are not accessible individually. They can only be accessed

when reading and writing the full 23-bit XARn. Specific instructions for accessing

the XARn are included in the C5510 instruction set.

Instructions that can directly read and write the XARn include

• AMOV k23, XAdst

• MOV dbl(Lmem),XAdst

• MOV xsrc,xsrc

• MOV XAsrc,dbl(Lmem)

An Lmem is long-word single data memory access (32-bit word). Uses the

same operand as does an Smem reference.

While we are defining these types of things, the term Smem occurs in many

instruction definitions. An Smem reference is an address construct that points

to a single memory location in data memory.
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Carries generated when doing address arithmetic in an auxiliary register do

not propagate into the associated high portion. All address arithmetic involving

an auxiliary register is thus modulo-64K. This characteristic effectively divides

data memory into 64K word pages. The page to be used is determined by the

contents of the ARnH registers. This significantly complicates accessing arrays

greater than 64K words in size. A side effect is that arrays should fit entirely

on a page. There are ways around this restriction but they are, in some sense,

messy.

3.2.6 Small and large memory models

The C5510 C compiler supports two addressing models. These are referred to

as the small memory model and the large memory model.

3.2.6.1 Small memory model

In the small memory model all data and code is assumed to be contained on the

same 64K word page. All of the ARnH registers contain the same value and are

never altered.

3.2.6.2 Large memory model

The large memory model has full access to 8M memory, however still have 64K

pages and associated boundaries to consider.

In the large memory model data and code can be located on various pages.

The ARnH registers are loaded as needed when needed. The page structure is

still present and all data arrays must fit into a single 64K page. However, this

requirement can be circumvented using special code.

3.2.6.3 Comparisons

The small memory model generates more compact code and probably executes

faster than does/will the large memory model. Versions of the run time support

(RTS) library and the DSP library exist for each model. For the small model the

RTS library is named rts.lib and the extended (or large) memory model version

is named rtsx.lib. Generally modules intended for the large memory add an x

to the name of the corresponding small library module.
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3.3 Peripherals on the C5510 DSP

In this section, we will introduce the peripherals on the C5510 DSK. These in-

clude the multichannel buffered serial port, the timer, the clock, etc.

The details about accessing/configuring the peripherals through specific reg-

isters will be discussed in Chapter 5.

3.3.1 The McBSP serial channels

The use of serial data channels to link together subsystems in a system is a

concept that has been around for some time. This was a key feature of the

ill-fated Transputer introduced many years ago.

Use of serial links to link subsystems is a concept that is presently having a

renaissance. Today’s technology allows the implementation of gigabit per sec-

ond links. This involved not only the drivers and receiver but also the interface

hardware needed to implement the channels in a transmitter and receiver.

The TI C5510 has three such channels. In the C5510 these are referred to

as Multichannel Buffered Serial Ports (McBSP). There are a number of registers

associated with each port. The I/O space locations of the registers can be found

in the C5510 data manual. The registers and the operation of these channels is

described in a separate document included in the list given way up above.

A McBSP channel is a very flexible device. This means that it has options and

configuration bits to worry about. Nothing, at least in today’s technical world

appears to be very simple.

McBSP channel 0 is free for general use and is connected to the peripherals

daughter board connector. We plan to connect this channel to the Spartan-3 via

a 6-pin (4 data, one ground and one power (not to be connected)) PMod type

cable.

McBSP channel 1 is used to implement a SPI bus that is used to program the

AIC23 CODEC chip that provides two channels of A/D and two channels of D/A

conversion to the DSK. The C5510 is the SPI master and the AIC 23 is the slave.

This link can be used for this purpose on startup and then by setting bits in the

CPLD reassigned for use by an external device via the peripheral daughter board

connector. Our C5510/S3 interface board will also allow use of this channel.

McBSP channel 2 is pretty much dedicated to moving sample values between

the C5510 and the AIC23 CODEC chip. For this channel the AIC23 is the bus

Master and the C5510 the slave. The master device generates the timing clock

and the data framing signals.
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3.3.2 Plan the memory usage

The command file (EECS452.cmd), and the visual linker.

3.3.3 C5510 pipeline structure

The pipeline structure is used in DSP to improve the processor efficiency. In

pipeline execution, operations are broken into smaller segments and then these

smaller pieces are executed in parallel. In this way, the overall time to execute

the instructions can be reduced, and thus improve the efficiency.

The C5510 instruction pipeline has two segments: the fetch pipeline and the

execution pipeline. They are shown in Figure 3.4, 3.5 and 3.6.

Time

Prefetch 1
(PF1)

Prefetch 2
(PF2)

Fetch
(F)

Predecode
(PD)

Pipeline

Phase Description

PF1 Present program address to memory.

PF2 Wait for memory to respond.

F Fetch an instruction packet from memory and place it in the IBQ.

PD Pre-decode instructions in the IBQ (identify where instructions

begin and end; identify parallel instructions).

Figure 3.4: The fetch pipeline. From SPRU317F.

The fetch pipeline fetches 32-bit instruction packets from memory, places

them in the instruction buffer queue (IBQ), and then feeds the second pipeline

segment with 48-bit instruction packets. The execution pipeline, decodes in-

structions and performs data accesses and computations.

3.3.4 The C5510 Clock

The C5510 uses a digital phase lock loop (DPLL) to take an externally supplied

clock waveform and create an on-chip clock at a different frequency. The C5510

chip used on the lab DSKs can operate using an internal clock rate as high as

200 MHz. A clock multiplier/divider is built into the C5510 DPLL to simplify

(and reduce the cost of implementation) the generation of a clock at this high

frequency. The maximum external clock rate that can be used with the C5510 is

50 MHz. The C5510 is a fully static design allowing it to work at any lower clock

rate.
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The clock generator on the C5510 is described in Chapter 3 of TMS320C55x

DSP Peripherals Overview Reference Guide, SPRU317F.

The CC5510 uses an external clock input and has a clock mode input used

to set divide and multiplier factors. A single I/O space register, the clock mode

register (CLKMD), is used to configure and control the clock generation circuitry.

The address of this register can be found in the C5510 data manual.

The frequency of the clock supplied to the C5510 DSK can be determined

by consulting the schematics contained in the DSK technical reference manual.

Doing so is part of the pre-lab.

The state of the clkmd line is determined by the presence/absence of a

jumper on header JP4. A visual check of JP4 on the DSK shows that a jumper

is present. This means that the line is grounded (logic 0) and that the CLKMD

register is initialized to 0x2002 upon reset.

The bit assignments in the CLKMD register are shown in Figure 5.5. The two

bit clock divide field selects an input clock divide factor of from 1 to 4. The 5-bit

PLL MULT field selects a clock multiplication factor of from 2 to 31.

Given a ?? MHz input clock if we divide by ?? and multiply by ?? the C5510

will generate an internal 200 MHz clock frequency. Determining the above values

to be used on the DSK is part of the laboratory exercise.

3.4 The C5510 DSK

The DSP systems used in the EECS 452 lab are TMS320VC5510 digital signal pro-

cessing starter kits (DSKs). The block diagram of the C5510 DSK is shown in

Figure 3.8. The C5510 DSKs were designed and are manufactured by Spectrum

Digital, http://www.spectrumdigital.com. The DSKs are available from Spec-

trum Digital, Texas Instruments as well as from various distributers. The price

is $395. An educational discount is available from TI. This is the first semester

that we have used the C5510 DSK.

The C5510 DSKs are intended to be used as

• a learning tool for the C55x family of DSP processors and the associated

support software.

• a test bed where hardware and software can be developed and tested.

• serve as a reference design. The schematics and other design documenta-

tion are included in the package.
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The TMS320C5510 processor used on the DSK is a low power, 16-bit, fixed

point processor that can operate using a clock rate of up to 200 MHz and is

capable of executing multiple operations per clock cycle.

Key hardware features of the C5510 DSK include

• operation at clock rates up to 200 MHz,

• a stereo quality codec device, the TI AIC23,

• 4M words of SDRAM,

• 512K bytes of flash EPROM,

• connectors provided for attaching daughter boards,

• four user programmable LEDs,

• four position DIP switch accessible by the user,

• interfaced to a host PC using a version 1.1 USB port.

One of TI’s strengths is the software support that it gives its products. In

particular the Code Composer Studio (CCS) software. CCS is an integrated de-

velopment environment (IDE) designed for use with all of TI’s DSP processors.

The CCS version used in the EECS 452 lab is the one currently supplied with

TMS320C5510 DSK.

CCS executes on a PC and is linked to the C5510 DSK using a USB port. At

the DSK end the USB interfaces to the C5510 JTAG (Joint Test Analysis Group)

hardware built into the C5510 processor. The JTAG interface provides access

to the registers and memory associated with the C5510 and provides control

support. This is done without any associated software support required in the

C5510.

3.5 Code Composer Studio

Code Composer Studio (CCS) Integrated Development Environment (IDE) is a

software development tool from Texas Instruments. It delivers all of the host

tools and runtime software support for your TMS320 DSP and OMAP based re-

alŰtime embedded applications. In this course, we will be using this software

for the C5510 programming.

Code Composer Studio includes DSP/BIOS support, real-time analysis capa-

bilities, debugger and optimization tools, C/C++ Compiler, Assembler, Linker,

integrated CodeWright editor, visual project manager, and a variety of simula-

tors and emulation drivers.
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ÍÍÍ
ÍÍÍ
ÍÍÍ

Time

Decode
(D)

Write+
(W+)

ÍÍ
ÍÍ

Note: Only for memory write operations

Address
(AD)

Access 1
(AC1)

Access 2
(AC2)

Read
(R)

Access 2
(AC2)

Execute
(X)

Write
(W)

Pipeline

Phase

Description

D � Read six bytes from the instruction buffer queue.

� Decode an instruction pair or a single instruction.

� Dispatch instructions to the appropriate CPU functional units.

� Read STx_55 bits associated with data address generation:

ST1_55(CPL) ST2_55(ARnLC)
ST2_55(ARMS) ST2_55(CDPLC)

AD � Read/modify registers involved in data address generation.
For example:

 ARx and T0 in *ARx+(T0)
 BK03 if AR2LC = 1
 SP during pushes and pops

 SSP, same as for SP if in the 32-bit stack mode

� Perform operations that use the A-unit ALU. For example:

 Arithmetic using AADD instruction
 Swapping A-unit registers with a SWAP instruction
 Writing constants to A-unit registers (BKxx,

       BSAxx, BRCx, CSR, etc.)

� Decrement ARx for the conditional branch instruction that
branches on ARx not zero.

� (Exception) Evaluate the condition of the XCC instruction
(execute(AD-unit) attribute in the algebraic syntax).

AC1 For memory read operations, send addresses on the appropriate
CPU address buses.

AC2 Allow one cycle for memories to respond to read requests.

R � Read data from memory and MMR-addressed registers.

� Read A-unit registers when executing specific D-unit
instructions that “prefetch” A-unit registers in the R phase
rather than reading them in the X phase.

� Evaluate the conditions of conditional instructions. Most but

not all condition evaluation is performed in the R phase.
Exceptions are marked with “(Exception)” in this table.

Figure 3.5: The execution pipeline. From SPRU317F.
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Pipeline

Phase

Description

X � Read/modify registers that are not MMR-addressed.

� Read/modify individual register bits.

� Set conditions.

� (Exception) Evaluate the condition of the XCCPART

instruction (execute(D-unit) attribute in the algebraic syntax),

unless the instruction is conditioning a write to memory (in this

case, the condition is evaluated in the R phase).

� (Exception) Evaluate the condition of the RPTCC instruction.

W � Write data to MMR-addressed registers or to I/O space

(peripheral registers).

� Write data to memory. From the perspective of the CPU, the

write operation is finished in this pipeline phase.

W+ � Write data to memory. From the perspective of the memory, the

write operation is finished in this pipeline phase.

Figure 3.6: The execution pipeline (continued). From SPRU317F.
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Figure 3.7: Bit usage in the CLKMD register. From SPRU317F.
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Figure 3.8: C5510 block diagram. (From TMS320C5510 DSK Technical Refer-

ence.)
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4 : Lab Exercise 1 – Code Composer

Studio tutorial

4.1 Introduction

The DSP systems used in the EECS 452 lab are TMS320VC5510 digital signal

processing starter kits (DSKs). The C5510 DSKs were designed and are manu-

factured by Spectrum Digital, http://www.spectrumdigital.com. The DSKs

are available from Spectrum Digital, Texas Instruments as well as from various

distributers. The price is $395. An educational discount is available from TI.

This is the first semester that we have used the C5510 DSK.

The C5510 DSKs are intended to be used as

• a learning tool for the C55x family of DSP processors and the associated

support software.

• a test bed where hardware and software can be developed and tested.

• serve as a reference design. The schematics and other design documenta-

tion are included in the package.

The TMS320C5510 processor used on the DSK is a low power, 16-bit, fixed

point processor that can operate using a clock rate of up to 200 MHz and is

capable of executing multiple operations per clock cycle.

Key hardware features of the C5510 DSK include

• operation at clock rates up to 200 MHz,

• a stereo quality codec device, the TI AIC23,

• 4M words of SDRAM,

• 512K bytes of flash EPROM,

• connectors provided for attaching daughter boards,

• four user programmable LEDs,

• four position DIP switch accessible by the user,

• interfaced to a host PC using a version 1.1 USB port.

One of TI’s strengths is the software support that it gives its products. In

particular the Code Composer Studio (CCS) software. CCS is an integrated de-

velopment environment (IDE) designed for use with all of TI’s DSP processors.
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The CCS version used in the EECS 452 lab is the one currently supplied with

TMS320C5510 DSK.

CCS executes on a PC and is linked to the C5510 DSK using a USB port. At

the DSK end the USB interfaces to the C5510 JTAG (Joint Test Analysis Group)

hardware built into the C5510 processor. The JTAG interface provides access

to the registers and memory associated with the C5510 and provides control

support. This is done without any associated software support required in the

C5510.

This lab exercise consists of doing a portion of the tutorial exercises included

by TI in the Code Composer Studio help system. These exercises are extremely

well written and do an excellent job of introducing the software and hardware

associated with the C5510 DSK.

4.1.1 Comments on the lab installation

The DSKs and CCS have been installed on the lab machines. There will be two

associated ICONS on the Windows desktop: C5510 DSK CCS and 5510

DSK Diagnostics . The first icon is used to place Code Composer Studio

into execution. The second is used to check on the health of the DSK.

You should be aware of the following note contained in the Spectrum Digital

DSK installation instructions:

“Note: Connecting to a USB Hub is a highly recommended pro-

cedure during development to protect your computer’s USB Port

from damage”.

The bold emphasis is Spectrum Digital’s.

Do not connect a DSK directly to a computer’s USB port!

The order suggested by Spectrum Digital in which connections and power are

made to the DSK is:

• Make sure that the hub is connected to the PC and powered. The hubs in

the EECS 452 lab are powered through the PC’s USB port.

• Connect the DSK USB port to the hub.

• Any daughter cards, microphone inputs, speakers should be connected to

the DSK prior to applying power to the DSK.
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• Plug the DSK power supply into the AC prior to connecting the DC power

end to the DSK.

Another quote from the Spectrum Digital installation instructions:

“Warning: Power cable Must be plugged into AC Source Prior to

Plugging the 5 Volt DC output Connector into the DSK.”

Again, the bold emphasis is Spectrum Digital’s.

One would assume that when disconnecting the DSK from the PC that the

order of operations is reversed.

4.1.2 Objectives of this exercise

• Become familiar with Code Composer Studio.

• Learn how to create a project and use it to generate an executable program.

• Learn about using breakpoints and probe points.

• Gain experience with the editor supplied with CCS.

Suggested reading

• Near the end of the Lecture 1 slides there is a reference to a presentation

about CCS that is on the TI web site. This is very informative and very

worthwhile to view.

• TMS320VC5510 DSK Technical Reference.

Don’t attempt to study it. The idea is to look at the document in order to

see what information it contains. Give it a quick read.

The PDF file for this document can be found on the class CD.

Mount the CD. Click on the TIstarthere.html file name. This should

result in a display similar to the listing passed out in class. The top link will

open the manual. You will need Adobe (Acrobat) Reader on your system.

If you wish to open the PDF file directly the path is

X:\TIC55xx\5510_dsk_techref.pdf

where X denotes your CD drive letter.
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4.2 Prelab

Prelabs are to be done individually and are to be handed in at the

start of the lab period. Handwritten work will not be graded.

This prelab familiarizes you with the DSK and it’s documentation and sets

the stage for the tutorial exercises that you will be doing in the lab itself. The

answers can be determined using the TMS320VC5510 DSK Technical Reference

document (Hint: read it first then do the prelab!).

1. The C5510 DSK has provision for accepting power from a 5 volt supply

using a simple power plug (J5) or power from a alternate external power

source providing 5 volts as well as ±12 volts using a 4-pin Molex connector

(J6). If one were to install and use the Molex connector to power the DSK

the Technical Reference manual contains the warning

Do not plug into J5 and J6 at the same time.

what also needs to be done regarding J5 if the DSK is to be powered using

J6? (Hint: examine the DSK’s Input Power schematic and assume that the

board is designed as shown.)

2. What is the Appendix-A page number of the analog circuitry included on

the C5510 DSK. (Hint: contains the TLV320AIC23 codec chip).

3. Assume that you are facing the side of the DSK that contains the four stereo

jacks used for analog inputs and outputs.

Going from left to right, what are the connector names (e.g., J3) and their

function?

4. The connectors used with the audio inputs and outputs use a 3.5 mm stereo

phone plug. The plug consists of a tip, ring, and body. The signals con-

nected to these are the ground, the left signal and the right signal.

• What signal is connected to the tip?

• What signal is connected to the ring?

• What signal is connected to the body?

5. The DSK uses an Altera complex programmable logic device (CPLD) to im-

plement four functions. These are?
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4.3 Exercise

This lab exercise consists of doing a portion of the tutorial included in the CCS

help system.

• Click on the C5510 DSK CCS icon located on the desktop.

• Click on the Help button located about mid of the CCS window.

• Select Tutorial.

• Click on Code Composer Studio IDE.

You should see the screen shown in Figure 4.1.

Figure 4.1: Start of the CCS tutorial.

Today’s exercise consists of doing the

• Developing a Simple Program,

• Project Management,

• Editing Techniques,
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• Using Debug Tools,

• Data Visualization,

• Profiling Code Execution.

lessons.

The Developing a Simple Program directs you to create a working folder (di-

rectory) under c:\ti\myprojects folder. Because the PCs are being multiple

users we need to keep things a bit more isolated in order to allow users to come

back at a later time and continue using their files.

It is strongly suggested that you make a folder for yourself and/or your part-

nership in the folder c:\users. For example, I generally use c:\users\kurt.

Then, if I am asked to create a folder volume1, I would do so in my directory.

The resulting path would be c:\users\kurt\volume1.

A common problem in past semesters has been to cut rather than to copy.

Cutting is somewhat destructive making it difficult for later users to find files

and folders that they need. Please make sure that you are indeed copying when

you supposed to do so.

When TI refers to the target folder, they in this case mean the dsk5510
folder. Apparently the tutorials are somewhat platform independent.

Many of the menu entries that ask for a file have, might be termed, path

memory. The path does not automatically default to the path being used by the

current project. Generally the path defaults to whatever it was from the most

recent use. You need to verify that the path being used is indeed what is desired

and if not click your way there. In past semesters there were several instances of

someone editing someone else’s file of the same name but in another directory,

compiling and wondering why the changes they made had no effect.

Another common past problem when loading an executable into the DSK is

to load someone else’s.

Be paranoid about the paths being used when working with dialog boxes!

We will probably make exclusive of the rts55.lib library through out the

semester. This library was generated assuming that a program and its data fit in

a 64K word page.

There will be a few small inconsistencies between the tutorial and what you

actually encounter. Figuring out what to do about these is part of the learning

process. There also multiple ways to accomplish the same task. For example,
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saving a file. The tutorial gives two ways. A third is to click on the floppy disk

icon in the top tool bar. Another useful alternative is the Halt button just below

the Run button. Good luck.

A question that I’ve not resolved is whether any customizations you make

become part of the project or if they become global to CCS. If they are global

then changing a setting affects all users. Based on my experience with select-

ing between the text linker and the visual linker the changes remain as part of

the CCS setup. This means you need to recognized when someone has made a

change that is not consistent with your needs and correct the situation (in the

process messing them up). This is a side effect of having the share the software

between lab sections. Make an effort to keep changes to a minimum so as to

maintain harmony between lab sections.

Don’t forget that C is case sensitive. The same is true of the TI assemblers.

Some of the exercises have semi-hidden information. For example, the probe

point one has an apparent link More About Probe Points. They conceal useful

information. Check them out.

When you close a project any windows CCS is displaying remain displayed. It

is good practice to also close these windows. To close any of the sub-windows

(panes?) place the cursor on the pane to be closed, right click, and choose close.

If there is a problem or concern with Set as Active Project check the setting

associated with any other projects that might be present. The difference should

make it apparent what is being done.

We will not being using version control software. The exercise Using Version

Control should be read but not done.

We won’t be generating external makefiles. Read the lesson portion titled

Creating an External Makefile to learn what is involved but don’t do this part of

the lesson.

Before doing the Editing Techniques lesson copy the

c:\ti\tutorial\dsk5510\datedisplay

folder into your user based directory. Use the copy for the editing exercise. This

will result in some small problems that should now be able to easily deal with.

Read but do not do the lesson segment titled Using an External Editor. Editors

are personal things and many programmers have strong feelings about their
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editor. CCS acknowledges this by allowing use of an editor different than the

one supplied. We will live what we were given. It’s really quite a good editor.

You are all done for today when you get to Profiling Code Execution.

Keep track of the time needed to do each lesson. This will be included in the

lab report. A volunteer a few summers ago recorded times of approximately 90

minutes, 70 minutes and 30 minutes respectively. The total is about 10 minutes

longer than the class period (well since we run on Michigan time, 20 minutes

longer). But the volunteer was of the cautious sort and very thorough. Your

numbers will help give us a better idea of the times typically required.

Ideally this week’s exercise should be done individually. It is very difficult

to learn how to play the piano watching someone else play. The same thing is

going to be true of working with the DSKs. However, the lab is set up expecting

two lab partners per hardware station. Partners might alternate doing portions

of the exercise. Individuals may also choose to return at a later time to do some

individual work. Whatever works.

The goal is to learn what the lessons are teaching, not to just get through the

exercises as fast as possible and then go to dinner.

4.4 Report

There is really not much to report. The report will be quite short. Note that you

did the requested lessons. Below are a couple of questions to be answered to

show having been there and done that. Don’t forget to put your names on the

report.

1. List three ways by which CCS can be made to save the contents of an editing

window into a file.

2. List three uses of probe points.

3. What sort of execution behavior does the animate button cause to happen?

4. In one of the CCS tutorial lessons you used a probe point to access a data

file containing samples of a sine wave. Our course text also discusses the

use of probe points for reading and writing data between the C55x and the

PC’s file system. In particular the text’s author writes about the presence

of magic numbers as part of the file. Did the file used in the lesson about

working with probe points possess such numbers and if so what were they?

Are they the same as given in the text?

5. Include the times in minutes that it took you to do each lesson.
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5 : Using the C5510

5.1 Overview of the chapter

In this chapter, we will discuss about the use of C5510. This includes ac-

cess/configure the memory and peripherals in the DSK, and the programming

in C and assembly.

Suggested reading

The key C5510 manuals for this chapter are

• CPU Reference Guide,

• TMS320VC5510 Fixed-Point Digital Signal Processor Data Manual,

• DSP Mnemonic Instruction Set Reference Guide,

• Optimizing C/C++ Compiler User’s Guide,

• TMS320C55xx DSP Programmer’s Guide,

• TMS320VC5510 DSK Technical Reference,

• TMS320VC5501/5502/5509/5510 DSP Multichannel Buffered Serial Port

(McBSP) Reference Guide.

Reference for C5510 DSP

• Real-Time Digital Signal Processing: Implementations, Applications, and Ex-

periments with the TMS320C55X, S. M. Kuo and B. H. Lee, Wiley 2001.

Reference for programming

• The C Programming Language 2nd Ed., B. W. Kernighan and D. M. Ritchie,

Prentice Hall 1988.

5.2 Using C5510

5.2.1 Access the memory

Here we talk about how to access the memory in C5510 from different aspects.
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5.2.1.1 Far peek and poke

Far peeking/poking gives general access to the memory independent of model.

Slow but works across page boundaries.

When writing C programs addressing memory beyond the active 64K page

poses a problem when using the small memory model. How to deal with “far”

addressing in C using the small memory model is the focus of the next few

paragraphs.

Doing some research (i.e., looking in the most likely places to find useful

information) we find that, according to the C/C++ manual, the values of the

high portions of the XARn registers are all initialized to point to the 64K page

associated with the .bss section. The .bss section is a region of memory used

by the C compiler to hold uninitialized static variables.

The C/C++ manual also contains an example describing accessing a “far” ob-

ject (in section 6.7.3). In this example use is made of a header file, extaddr.h.

Using the Windows search capability this file can be found. This file describes

peak and poke functions that look like just what we need.

/**************************************************************************/
/* Prototypes for Extended Memory Data Support Functions */
/* */
/* far_peek Read an int from extended memory address */
/* far_peek_l Read a long from extended memory address */
/* far_poke Write an int to extended memory address */
/* far_poke_l Write a long to extended memory address */
/* far_memcpy Block copy between extended memory addresses */
/* far_near_memcpy Block copy from extended memory address to page 0 */
/* near_far_memcpy Block copy from page 0 to extended memory address */
/* */
/**************************************************************************/
int far_peek(FARPTR);
unsigned long far_peek_l(FARPTR);
void far_poke(FARPTR, int);
void far_poke_l(FARPTR, unsigned long);

void far_memcpy(FARPTR, FARPTR, int);
void far_near_memcpy(void *, FARPTR, int);
void near_far_memcpy(FARPTR, void *, int);

The contents of this file are also listed in the C/C++ manual in section 6.7.

The C/C++ manual appears to require that use of these functions requires “P2

Reserved Mode”, whatever that is. Can we make use of these functions or not?

Beyond the header file, there does not appear to be any other documentation

for these functions in the C/C++ manual.

The source code for the extended memory functions is contained in the RTS

library source code module. Examining this should give us more information.

Here is the source code for the far_peek function.
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;/******************************************************************/
;/* far_peek() - read 1 word of data from extended address */
;/******************************************************************/
_far_peek:

AR4 = AC0 & #0FFFFh ; Move page address to AR register
AC0 = AC0 << #-16 ; Shift page # to bottom 16-bits

MDP05 = @AC0_L || mmap() ; Initialize MDP to correct page
AC0 = uns(*AR4) ; Read 1 word of data (unsigned)
MDP05 = #0 ; Reset MDP to the data page
return

Note that this is written for the algebraic assembler. We will be making ex-

clusive use of the mnemonic assembler in this class.

The only information that the author can find about the MDP05 register is

contained in the C5510 Data Manual. The data manual flags the register as “re-

served”. This does not seem to be something one should be using. This function

resets the MDP05 contents to zero regardless of what its previous setting had

been. Is this important?

So what to do?

We could use the large model and simply ignore the problem. (The large

memory model inherently supports far pointers.) We could run tests and deter-

mine whether or not the TI functions work in the small model environment. We

could write our own assembly language far peak and poke functions. The latter

is the more interesting (educational) case and the one we will pursue.

Using TI’s code as a guide we will write a peek function supplying it an un-

signed long corresponding to the memory location that we wish to access. The

function saves the contents of an extended auxiliary register (XAR) onto the

stack, loads the XAR with the value in the accumulator, does a move of the value

pointed by the XAR into T0, pops the stack back into the XAR and return. We can

do about the same for a matching poke function. We can also make the code in-

dependent of memory model increasing the portability of future code that might

need to be ported between models.

Simple?
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_FarPeek:
pshboth xar1 ; push contents of xar1 onto stack
mov ac0,xar1 ; place address into xar1
mov *ar1,t0 ; move 16-bit value into t0
popboth xar1 ; restore contents of xar1
ret ; and return to caller

;
_FarPoke:

pshboth xar1 ; push contents of xar1 onto stack
mov ac0,xar1 ; place address into xar1
mov t0,*ar1 ; move 16-bit value from t0
popboth xar1 ; restore contents of xar1
ret ; and return to caller

The temptation is to use the same names as used by the TI extended memory

support functions and indeed this was done initially. Unfortunately there is a

side effect. The compiler appears to know about these functions even without

including the extaddr.h header file.

Use of the far_peek and far_poke function names causes the compiler to

use TI’s old function calling convention. There was an earlier convention. Infor-

mation can be found in the C5510 C/C++ manual (spru281e). when calling these

functions. Examination of the compiler output indicates that this happens even

when the new calling convention is to be used. These two particular functions

cause the compiler to generate old style (incompatible) calls. The compiler is

even able to mix calls to functions using the new (the default) convention with

the old convention calls for these functions A couple of hours of debugging time

was the cost of discovering this. Changing the names of our homebrew functions

resulted in immediate test success. Makes one wonder how many other special

effects are built into the system.

The homebrew code is quite simple, what is the most likely gotcha? Probably

operation under interrupts. At present we don’t know exactly how the small

model interrupt support works. If the small model assumes that the high part

of XAR1 to be fixed and we have change it then this could, and likely would,

lead to problems. Modifying the above code to protect against interrupts should

avoid this as a possible problem source.

5.2.1.2 How to place arrays into arbitrary 64K memory pages?

C arrays are limited by the 64K memory page size. TI included a pragma which

can be used to place arrays into various memory pages. The names of the other

memory pages are defined in the linker .cmd file. The DATA_SECTION is doc-

umented in the C5510 C/C++ manual section 5.7.4. An example of it’s use is
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#pragma DATA_SECTION(array, "SDRAM1");
int array[10000];

The symbol SDRAM1 is defined in the EECS452.cmd file (which uses byte ad-

dresses) and corresponds to starting word address of 0x030000. Arrays are not

allowed to cross page boundaries.

While we are in the vicinity, initializing a large array is not an easy task.

The best solution that we’ve come up with is to create a MATLAB script that

is used to generate lists of constant declarations that are assembled into the

desired addresses. Generally one or two project teams run into this problem

each semester.

5.2.1.3 Accessing I/O address space from C

Here we use the McBSP registers as examples.

The TI C55xx C/C++ compiler includes support to allow accessing locations

in the I/O memory space.

The ioport keyword is used to modify a standard data type so the variables

so defined have the declared type and are associated with I/O memory. Only

global or static variables can be associated with I/O memory. Local (automatic)

variables may be used as pointers to I/O memory may not themselves lie in I/O

space.

Using the ioport one can define pointers that when dereferenced access IO

memory.

ioport unsigned * device = (ioport unsigned *)5;
.
.

*device = 34;

will place the value 34 into the register at I/O space address 5 (assuming that

there is one there).

Similarly the value contained in I/O space address 0x3422 can be read using

ioport unsigned * dev2 = (ioport unsigned *)0x3422;
.
.

value = *dev2;

Symbols can also be defined that act as if they were variable names

#define REV_ID (*(ioport unsigned *)0x3804)
.
.

chip_id = REV_ID;
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5.2.1.4 Accessing the on-chip sine ROM

A 32K byte (16K word) ROM is included on the C5510. The contents of the ROM

are shown in Figure 5.1.

BYTE ADDRESS RANGE DESCRIPTION

FF8000h − FF8FFFh Bootloader

FF9000h − FFF9FFh Reserved

FFFA00h − FFFBFFh Sine look-up table

FFFC00h − FFFEFFh Factory Test Code

FFFF00h − FFFFFBh Vector Table

FFFFFCh − FFFFFFh ID Code

Figure 5.1: C5510 ROM contents. Note that the addresses shown are in bytes.

From the C5510 data manual.

Access to the on-chip ROM contents is controlled by the MPNPC bit (bit 6) in

status register ST3_55. The status registers are discussed in section 2.10 of the

TMS320C55x DSP CPU Guide, SPRU371E. If this bit is a 0 access to the on-chip

ROM is enabled. If this bit is a 1 access is disabled.

Depending on the voltages on certain pins on the C5510 at reset the C5510

can initialize from a variety of sources. This process is referred to as boot-

strapping into execution. The code for accomplishing this is contained in the

bootloader portion of the ROM.

Of possible utility for us is the table of 256 sine values. These are in Q15

format. If the values are interpreted as integers the values represent fractional

values corresponding to the integer values divided by 215.

In order to determine whether or not access to the ROM is enabled it is re-

quired to read status register ST3_55. If we are working in C we can use our

FarPeek routine to read this register. We just need to know the memory address

associated with ST3_55. This is documented in the C5510 data manual.

It might be possible to access the memory mapped registers using a simple

cast of the form

c = *(int *)0x00??;

where ?? represents the address to be used. This statement assumes that mem-

ory page 0 is being used. If not this statement will not access the intended

memory mapped register. It is far safer to use FarPeek which always uses a

23-bit word address.
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5.2.2 Timers in C5510

The C5510 has two on-chip timers. These are aptly named timer 0 and timer 1.

Each timer is made up of four registers. These registers lie in I/O address space.

The timers can be used for a variety of timing needs. Two typical uses are mea-

suring the intervals between events and the generation of periodic interrupts.

The C5510 timers are documented in TMS320VC5509/5510 DSP Timers Ref-

erence Guide,SPRU595.

16-bit main counter

TIMPRD

4-bit prescaler counter

PSCTDDR

Interrupt request (TINT)
sent to CPU

Synchronization event (TEVT)
sent to DMA controller

MUX

Input clock

CPU clock
External clock

TIN/TOUT
pin

Output (TOUT)

TCR

DATOUT bit

High
impedance

11b

01b
10b

FUNC = 00b

Figure 5.2: Conceptual block diagram of the C5510 timer. From

TMS320VC5509/5510 DSP Timers Reference Guide, SPRU595.

The registers associated with timer 0 and 1 and their associated I/O space

addresses are:

n=0 n=1

TIMn 0x1000 0x2400 main count register.

PRDn 0x1001 0x2401 main period register.

TCRn 0x1002 0x2402 timer control register.

PRSCn 0x1003 0x2403 timer prescaler register.
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5.2.2.1 TIMn

This is the 16-bit read/write main counter register. Counts down. Counter can

be configured so that TIMn register is reloaded with the value contained in the

PRDn register when the count reaches zero. Loaded with 0xFFFF on reset.

5.2.2.2 PRDn

This 16-bit read/write register is used to hold the preset value used to automat-

ically reload the TIMn register. Loaded with 0xFFFF on reset.

5.2.2.3 TCRn

15 14 13 12 11 10 9 8

IDLEEN INTEXT ERRTIM FUNC TLB SOFT FREE

R/W-0 R-0 R-0 R/W-00 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

PWID ARB TSS CP POLAR DATOUT Reserved

R/W-00 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 R-0

Legend: R = Read; W = Write; -n = Value after reset

Figure 5.3: TCRn bit assignments. From TMS320VC5509/5510 DSP Timers Ref-

erence Guide, SPRU595.

5.2.2.4 PRSCn

This register contains the 4-bit prescaler count register and the associated 4-bit

reset data register. Loaded with 0x0000 on reset.

15 10 9 6 5 4 3 0

Reserved PSC Reserved TDDR

R-0 R-0 R-0 R/W-0

Timer reloads PSC from TDDR

Figure 5.4: PRSCn bit assignments. From TMS320VC5509/5510 DSP Timers Ref-

erence Guide, SPRU595.
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5.2.3 Setup the clock

The C5510 uses a digital phase lock loop (DPLL) to take an externally supplied

clock waveform and create an on-chip clock at a different frequency. The C5510

chip used on the lab DSKs can operate using an internal clock rate as high as

200 MHz. A clock multiplier/divider is built into the C5510 DPLL to simplify

(and reduce the cost of implementation) the generation of a clock at this high

frequency. The maximum external clock rate that can be used with the C5510 is

50 MHz. The C5510 is a fully static design allowing it to work at any lower clock

rate.

The clock generator on the C5510 is described in Chapter 3 of TMS320C55x

DSP Peripherals Overview Reference Guide, SPRU317F.

The CC5510 uses an external clock input and has a clock mode input used

to set divide and multiplier factors. A single I/O space register, the clock mode

register (CLKMD), is used to configure and control the clock generation circuitry.

The address of this register can be found in the C5510 data manual.

The frequency of the clock supplied to the C5510 DSK can be determined

by consulting the schematics contained in the DSK technical reference manual.

Doing so is part of the pre-lab.

The state of the clkmd line is determined by the presence/absence of a

jumper on header JP4. A visual check of JP4 on the DSK shows that a jumper

is present. This means that the line is grounded (logic 0) and that the CLKMD

register is initialized to 0x2002 upon reset.
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Figure 5.5: Bit usage in the CLKMD register. From SPRU317F.

The bit assignments in the CLKMD register are shown in Figure 5.5. The two
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bit clock divide field selects an input clock divide factor of from 1 to 4. The 5-bit

PLL MULT field selects a clock multiplication factor of from 2 to 31.

Given a ?? MHz input clock if we divide by ?? and multiply by ?? the C5510

will generate an internal 200 MHz clock frequency. Determining the above values

to be used on the DSK is part of the laboratory exercise.

5.2.4 Multichannel buffered serial port (McBSP)

The details of configuring the McBSP channels will be discussed in Chapter 12.

5.2.5 DMA controller

To be added.

Chapter 5 42 October 16, 2007



D
R
A

FT

6 : Lab Exercise 2 – basic operations

on C5510 DSK

6.1 Introduction

In lab exercise 1, we learned how to use the software tool Code Composer Studio

to work with C5510. In this lab exercise, we begin to actually use the C5510 DSK.

The C5510 might fit onto a small chip but it is a moderately complex device. With

the DSK interface and its peripherals, C5510 is capable of doing a lot of tasks.

In this exercise, we will begin by learning the basic operations on C5510 and

the peripherals on the DSK. You should make sure you know all the materials

presented here after doing this exercise, since it is the foundation for the more

advanced topics in the course and upcoming lab exercises.

Suggested reading

The key C5510 manuals for this exercise are

• CPU Reference Guide,

• TMS320VC5510 Fixed-Point Digital Signal Processor Data Manual,

• Optimizing C/C++ Compiler User’s Guide,

• TMS320C55xx DSP Programmer’s Guide,

• TMS320VC5510 DSK Technical Reference,

• TMS320VC5501/5502/5509/5510 DSP Multichannel Buffered Serial Port

(McBSP) Reference Guide.

Reference for C5510 DSP

• Real-Time Digital Signal Processing: Implementations, Applications, and Ex-

periments with the TMS320C55X, S. M. Kuo and B. H. Lee, Wiley 2001.

Reference for programming

• The C Programming Language 2nd Ed., B. W. Kernighan and D. M. Ritchie,

Prentice Hall 1988.
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6.2 Prelab

Prelabs are to be done individually and are to be handed in at the

start of the lab period. Handwritten work will not be graded.

Read the chapter and related materials to answer the following questions.

6.2.1 C5510 Architecture

1. What are the four units in the C5510 CPU? What are their functionalities?

6.2.2 Far peeking and poking

1. What are the differences between small and large memory models? What

are the advantages and disadvantages of each model?

2. What are the purposes of using far peek and poke?

6.2.3 About the memory

1. What three types of address spaces does the C5510 support?

2. What is the basic purpose of each address space?

3. Which address spaces are commonly addressed using byte addresses and

which use word address (in normal use)?

4. What is the size in bytes or words as appropriate of each address space?

5. What is the pragma directive in C programming? (See the C5510 C manual

or google for the answer.)

6. What is the total size of on-chip memory in the C5510?

7. How many pages is the C5510 memory address space divided into? What

is the size of each page?

8. What are the two ways to plan memory usage?

6.2.4 Addressing modes

1. How many types of addressing modes does C5510 support? (Hint: C5510

CPU Reference Guide)
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6.2.5 Registers

1. What does it mean by “memory mapped registers”?

2. What is the hexadecimal memory mapped address of the status register

ST3_55? (Hint: C5510 data manual.)

3. What is the address in I/O space for the clock mode register CLKMD? (Hint:

C5510 data manual.)

6.2.6 McBSP channels

1. How many McBSP channels does C5510 have?

2. What are the starting addresses of the register sets associated with each

channel?

6.2.7 Chip revision number

1. What address in the I/O space is the chip revision identification code lo-

cated?

6.2.8 DSK peripherals

1. What is the register that contains the information about switches and LEDs

on the C5510 DSK? What is the address of that register? What is the bit

mapping from the register to the switches and LEDs?

6.2.9 Fixed-point arithmetics

1. What does the assembly instruction MANT::NEXP do?

2. What are the mathematical definitions of mantissa and exponent?

3. How many bits are there in the accumulator and temporary register in

C5510?

4. What is 2s-complement representation?

5. What are the results of mantissa and exponent by applying MANT::NEXP to

the following numbers?

• 0x210A0A0A0A

• 0x00E8040000

• 0x0000001234

Chapter 6 45 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

• 0x0000000000

• 0x1111111111

• 0x0078040000

6.3 Exercise

In order to generate an executable program you need to specify a C/C++ run time

support library and linker configuration file. They can be found in the support

folder in the lab files. Here is the list of the files.

• EECS452.cmd: used by the linker to allocate memory.

• peekpoke.asm: used to access extended memory from small memory

model programs.

• rts55.lib: the TI C/C++ run time support library for the small memory

model.

• rts55x.lib: the TI C/C++ run time support library for the large memory

model.

Please make sure that you are working with a copy of the master files when

doing these exercises. In the past there have been instances of the master file

set being modified or having become missing. Make sure that you copy the files

rather than moving them.

6.3.1 Access C5510 memory

In this part of the exercise, we work on accessing different sections of the mem-

ory. We will also work in different memory models and see what is the difference.

6.3.1.1 Far peeking and poking

In this part of the exercise you will create two projects that will be used to access

the contents of the CPLD registers. The first project will named CPLDreadS and

is to use the small memory model. The second project will be named CPLDreadL

is to use the large memory model. Note that the two projects will use the small

and large memory model libraries as appropriate.

The compiler and assembler need to be told whether a small or large memory

program is being generated. This can be done by either checking or unchecking

a box found by accessing

Project – Build Options – Compiler – Advanced
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This part of the lab uses the main programs given in section 6.5.2 and 6.5.3.

These can be found in the given lab files. The source code for the FarPeek and

FarPoke functions is located in the associated support subdirectory.

Once you locate the lab files, do the following steps:

• Create the executables. You need to create a new project and include all

the relevant codes (C/assembly). Do not forget about the library (.lib) and

linker file (.cmd). You will not be able to compile the project without these

files.

• Examine the assembly listings.

• Examine the memory map files.

The contents of the USER_REG CPLD register will contain the DIP switch set-

tings. Execute each program using the following DIP switch settings:

sw0 = up, sw1 = down, sw2 = down, sw3 = down,

sw0 = down, sw1 = up, sw2 = down, sw3 = down,

sw0 = down, sw1 = down, sw2 = up, sw3 = down,

sw0 = down, sw1 = down, sw2 = down, sw3 = up.

Record the results and include in your report.

6.3.1.2 The memory map and the data section declaration

Sometimes it is desirable to place arrays into any 64K memory pages. Write

a simple C code to use the pragma directive to put an integer array of any

size in the data sections of the memory. You should check the text linker file

(EECS452.cmd) to find out where the data sections are defined.

• Create a project and include your program code and other necessary files

(library and linker files).

• In your code, declare an array and put it in SDRAM3 in the data section of

the memory. Initialize the array with some values.

• Run the executable and check the memory location for the array values you

initialized.

To check the memory location, go to

View – Memory
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in code composer studio. You will need to specify the address of the memory

content you want to check. This is the address of SDRAM3 in the data section

defined in the linker file. Note that the linker file uses byte address (8-bit) and

to view the memory you need to specify the word address (16-bit).

Try to run the program with several different array sizes. Is there a limitation

of the array size for the code to execute correctly?

Answer questions and include a listing of your C code in your report.

6.3.1.3 Access the I/O memory space

In this part of the exercise, you will access the I/O memory space in C5510. A

lot of times we need to control the I/O of the chip by accessing the registers

associated with the I/O components in the I/O memory space. For example, the

multichannel buffered serial ports (McBSPs) are configures and accessed through

registers in the I/O space. Another example is the clock mode register (CLKMD),

which is used to configure and control the clock generation circuitry using the

external clock source.

As an illustration of accessing the CLKMD register, do the following for the

exercise:

• Create a project and include necessary files.

• Write a C program to access the CLKMD register by defining ioport as a

pointer.

• Print out the content of the CLKMD register in hexadecimal and record it.

• Using the same code, modify your code to define ioport as a variable to

access the CLKM register.

• Again, run the program and print out the register content. Check if it is the

same as the previous result.

6.3.1.4 Accessing and using the silicon version number

The chip revision identification code is located at I/O port address 0x3804. The

C5510 data manual relates this value to the silicon version number. From the

previous exercise we should be able to access the I/O memory space successfully.

Write a program to read the chip ID identifier and determine the silicon version

used by the C5510 on your DSK. You will need to refer to the C5510 data manual

to convert the revision number into a version value.
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Include the revision ID value that you read and the corresponding version

value in your report.

The CSS support can be made aware of the particular C55xx chip and silicon

version. This is particularly useful in suppressing remarks generated by the

assembler about problems in the silicon that are not relevant. To specify this

number in CSS, go to

Project – Build Options – Compiler – Advanced

Specify the version number in the Processor Version box. The required string for

our DSKs is 5510:version where version represents the silicon version as a text

string, e.g. 1.0.

6.3.2 Timers in C5510

The C5510 has two on-chip timers. These are aptly names timer 0 and timer

1. Each timer is made up of four registers. These registers lie in the I/O ad-

dress space. The timers can be used for a variety of timing needs. Two typical

uses are measuring the intervals between events and the generation of periodic

interrupts. For detail information about the timers can be found in Chapter 5.

6.3.2.1 Accessing the Timers

Create a project named IOport. Create and add a file named IOport.c containing

the text shown in section 6.5.4. Use the small memory model library and the

linker cmd file provided in the support directory. Build a loadable output file.

Execute it. The hexadecimal value 0x1234 is equivalent to the decimal value

4660.

6.3.2.2 Using the timer

This part of the exercise makes use of timer 0 to measure the execution time

required to do various program operations.

The freerun.c source code is provided. Create a project named freerun and

use it to create an executable version of freerun.

Execute the program and note the results. Use the profiler to have CCS time

the same two loops.

When running in a 200 MHz processor it may be necessary to slow up the

counter. This can be done by placing by non zero values into the prescaler. The

code, as given, causes the scaler to divide down by 1. The prescaler can divide

Chapter 6 49 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

by factors of up to 16. The following line of code will set a divide factor into the

prescaler and the prescaler reset register.

PRSC0 = (scale_factor-1)*0x0041;

This line should replace the existing PRSC0 = 0x0000 line. The scale factor

value should be in the range from 1 through 16. Note that the counter count and

prescale registers can only be modified when the counter is configured to permit

this.

Use a scale factor value of 2, and after resetting the CPU measure the mea-

sured execution times. The resulting values should be near half the prior set of

values.

In your report describe what you did and the results. Include a listing of your

program in your lab report.

6.3.3 Investigating the DPLL and the CLKMD register

CCS sets the DPLL register using a GEL script. It is of interest to learn whether or

not the C5510 has been programmed to operate internally at 200 MHz or at some

other clock rate. The C5402 DSK used in previous semesters had the default

clock multiplier set at one. The C5402 DPLL hardware had to be programmed at

execution time to use a larger multiplier in order to run the chip at its maximum

clock rate. This past experience leads us to wonder what the C5510 default clock

rate is.

Write a program to read and print out the values contained in the CLKMD

register that used to determine the clock divide and multiplication factors. What

is the internal C5510 clock rate being set up by CCS? Include the results and a

listing of your program in your report. Your program might simply be a minor

modification of one contained in the appendices.

There are two DPLL operating modes: BYPASS and LOCKED.

The BYPASS mode has a divide factor associated with it The PLL mode has

both a divide factor as well as a multiplier.

The PLL ENABLE bit is used to switch between BYPASS mode and locked PLL

mode. The documentation on the PLL indicates that the transition into lock takes

time. Nothing is said about whether there is any time required to switch out of

lock into BYPASS.

The program CPUclock.c listed in section 6.5.6 does a cursory check to see

if switching the DPLL settings take a detectable amount of time relative to the
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clock “current” values. The program is almost complete but a few things have

been left to be looked up. These are flagged by ? characters. Determine the

require values, modify the code, compile and run.

Note the counts.

Repeat this four or five times to see if the counts are stable. (They might be

and, then again, they might not be.)

Do the counts change if the code is compiled using optimization level 03.

Switching the clock mode requires time. The designers of the C5510 provided

the means to determine when the change has occurred.

6.3.4 C5510 DSK peripherals

6.3.5 Accessing the DSK DIP switches and LEDs

Write a short test program using C to read the DIP switches and copy the setting

into the LEDs. An up switch should produce a correspondingly positioned LED

to light and a down switch should cause the LED to be unlit. Looping forever

reading the switches and then moving the settings into the LEDs makes an effec-

tive test vehicle. You may use the Ůpeekpoke.asmŮ support. Create a project for

your test program and create an executable. Test and demonstrate to the GSI.

Include a listing of your C code in your report.

6.3.6 Fixed-point arithmetics

6.3.6.1 MANT::NEXP

MANT::NEXP is an instruction used to compute the exponent and mantissa of the

source accumulator. The detail description of this instruction is documented in

the TMS320C55x DSP Mnemonic Instruction Set Reference Guide (SPRU374g) and

shown in Figure 6.1 and 6.2.
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In this part of the exercise, we will observe how this instruction works. We

will check this in the following three cases:

• Assembly programming

• C/assembly mixed programming

• C programming using intrinsics

Assembly programming

Create a project and include mant_nexp_test.asm and other necessary files

in the project. Compile the codes and build up the project. Before you run the

program, go to

View – CPU Registers – CPU Registers

A window with all CPU registers and their values will show up in the CCS.

Right click within this window and select Edit Register. Set register AC0 to

0x210A0A0A0A. Now run the program and observe the values of register AC0

and T0, which are where the results of the mantissa and exponent are stored.

The register values that are changed should be highlighted in red. Right click in

the window and select Refresh Window as necessary. Replace the value of AC0

with the following values:

• 0x00E8040000

• 0x0000001234

• 0x0000000000

• 0x1111111111

• 0x0078040000

Run the program and make observations.

Record the register values and the changes in the report.

C/assembly mixed programming

Create a project and include mantnexptest_assembly.c, mantnexptest.asm

and other necessary files in the project. Assign the variable source with the

following values:

• 0x210A0A0A0A

• 0x00E8040000

• 0x0000001234

• 0x0000000000

• 0x1111111111
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• 0x0078040000

Compile the codes and build up the project. Run the program the observe the

values of mantissa and exponent.

Record the values and include them in the report.

C programming using intrinsics

Create a project and include mantnexptest_intrinsic.c and other necessary

files in the project. Assign the variable source with the following values:

• 0x210A0A0A0A

• 0x00E8040000

• 0x0000001234

• 0x0000000000

• 0x1111111111

• 0x0078040000

Compile the codes and build up the project. Run the program the observe the

values of mantissa and exponent.

Record the values and include them in the report.

In the report, also compare the results from all three cases. Are they all

consistent? If not, what might be the reasons?

6.4 Report

In the report, record the results of each exercise. State what you did in the

exercise and your findings and comments. Answer the questions asked in each

exercise. Also include the section of codes you created or modified from the

given lab codes in order to make the programs work.
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6.5 Listings

6.5.1 peekpoke.asm

6.5.2 CPLDreadS.c

6.5.3 CPLDreadL.c

6.5.4 IOport.c

6.5.5 freerun.c

6.5.6 CPUclock.c

6.5.7 mant_nexp_test.asm

6.5.8 mantnexptest_assembly.c

6.5.9 mantnexptest.asm

6.5.10 mantnexptest_intrinsic.c
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 Compute Mantissa and Exponent of Accumulator Content MANT::NEXP

5-193Instruction Set DescriptionsSPRU374G

Compute Mantissa and Exponent of Accumulator ContentMANT::NEXP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] MANT ACx, ACy
:: NEXP  ACx, Tx

Yes 3 1 X2

Opcode 0001 000E DDSS 1001 xxdd xxxx

Operands ACx, ACy, Tx

Description This instruction computes the exponent and mantissa of the source
accumulator ACx. The computation of the exponent and the mantissa is
executed in the D-unit shifter. The exponent is computed and stored in the
temporary register Tx. The A-unit is used to make the move operation. The
mantissa is stored in the accumulator ACy.

The exponent is a signed 2s-complement value in the –31 to 8 range. The
exponent is computed by calculating the number of leading bits in ACx and
subtracting this value from 8. The number of leading bits is the number of shifts
to the MSBs needed to align the accumulator content on a signed 40-bit
representation.

The mantissa is obtained by aligning the ACx content on a signed 32-bit
representation. The mantissa is computed and stored in ACy.

� The shift operation is performed on 40 bits.

� When shifting to the LSBs, bit 39 of ACx is extended to bit 31.

� When shifting to the MSBs, 0 is inserted at bit position 0.

� If ACx is equal to 0, Tx is loaded with 8000h.

This instruction produces in Tx the opposite result than computed by the
Compute Exponent of Accumulator Content instruction (page 5-151).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� EXP (Compute Exponent of Accumulator Content)

Figure 6.1: MANT::NEXP instruction description. From TMS320C55x DSP

Mnemonic Instruction Set Reference Guide, SPRU374g.
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MANT::NEXP Compute Mantissa and Exponent of Accumulator Content

Instruction Set Descriptions5-194 SPRU374G

Example 1

Syntax Description

MANT AC0, AC1
:: NEXP AC0, T1

The exponent is computed by subtracting the number of leading bits in the content of
AC0 from 8. The exponent value is a signed 2s-complement value in the –31 to 8
range and is stored in T1. The mantissa is computed by aligning the content of AC0
on a signed 32-bit representation. The mantissa value is stored in AC1.

Before After

AC0 21 0A0A 0A0A AC0 21 0A0A 0A0A

AC1 FF FFFF F001 AC1 00 4214 1414

T1 0000 T1 0007

Example 2

Syntax Description

MANT AC0, AC1
:: NEXP AC0, T1

The exponent is computed by subtracting the number of leading bits in the content of
AC0 from 8. The exponent value is a signed 2s-complement value in the –31 to 8
range and is stored in T1. The mantissa is computed by aligning the content of AC0
on a signed 32-bit representation. The mantissa value is stored in AC1.

Before After

AC0 00 E804 0000 AC0 00 E804 0000

AC1 FF FFFF F001 AC1 00 7402 0000

T1 0000 T1 0001

Figure 6.2: MANT::NEXP instruction description. From TMS320C55x DSP

Mnemonic Instruction Set Reference Guide, SPRU374g.
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7 : Introduction to the Spartan-3

starter board and VHDL

7.1 Overview of the chapter

In this chapter we introduce the Xilinx Spartan-3 field-programmable gate ar-

ray(FPGA) chip and the starter board manufactured by Digilent. We will also

introduce the digital system design concepts and the hardware description lan-

guages. In this course, we will use VHDL as the main programming language

to work with the FPGA. Xilinx provides a free FPGA design software, ISE Web-

PACK, for HDL synthesis and simulation, implementation, device fitting, and

JTAG programming. We will go through a brief tutorial about using this tool.

The exercises will focus on using the software and writing VHDL codes for basic

operations of the Spartan-3 starter board.

Suggested reading

The documents and books listed here can be found in the class CD or in the

library.

Digilent Spartan-3 Starter Board:

• Spartan-3 Starter Board User Guide

Xilinx ISE WebPACK:

• Xilinx ISE 9.2i Software Manuals and Help

• ISE 9.1i Quick Start Tutorial

VHDL Programming:

• Circuit Design with VHDL, V. A. Pedroni, MIT Press 2004.

• Advanced Digital Logic Design Using VHDL, State Machines, and Synthesis

for FPGAs, S. Lee, Thomson 2006.

• VHDL: A Starter’s Guide 2nd Ed., S. Yalamanchili, Pearson Prentice Hall

2005.

• The VHDL Reference: A Practical Guide to Computer-Aided Integrated Cir-

cuit Design, U. Heinkel et al., Wiley 2000.
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7.2 The Spartan-3 Starter Board

In this course, we will use the Spartan-3 Starter Board (1000K gates) as shown in

Figure 7.1. It is manufactured by Digilent (www.digilentinc.com). The Spartan-

3 FPGA chip on this board is manufactured by Xilinx (www.xilinx.com). The

manual and datasheet can be found online or in the class CD. You are recom-

mended to read the Spartan-3 Starter Kit Board User Guide for more detail infor-

mation.

Figure 7.1: The Spartan-3 starter board.

7.3 Xilinx ISE WebPACK

ISE™WebPACK™is a free design tool provided by Xilinx for FPGA and CPLD design

offering HDL synthesis and simulation, implementation, device fitting, and JTAG

programming. The current version is 8.2i with service pack 3. It can be down-

loaded from Xilinx website. You need to register an account at the Xilinx website

in order to download the software. The purpose of this part of the tutorial is to

guide you through the steps of creating a project using Xilinx ISE WebPACK. It

serves as a very simple way to get you start using the tool. Please refer to the

class handout for this part. Details are not mentioned. You should read ISE 8.2i

Quick Start Tutorial for complete instructions and information.

7.3.1 Tutorial

The purpose of this tutorial is to guide you through the steps of creating a

project using Xilinx ISE WebPACK. It serves as a very simple way to get you start

using the tool. Details are not mentioned. You should read ISE 8.2i Quick Start

Tutorial for complete instructions and information. The latest version of the

software 8.2i with service pack 3. It is free and you can download a copy from

the Xilinx website. You need to register an account at the Xilinx website in order
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to download the software.

Start Xilinx ISE 8.2i by clicking the icon on the desktop. The following window

will show up.

From the File menu, select New Project. The New Project Wizard window will

show up. Choose a Project Name and click Next.

Then we need to specify the Device Properties. Follow the settings as shown

below.

Next, we need to create a new source for the project. In the Create New Source

window, click on New Source. The following window will show up. Choose the

VHDL Module from the list and fill out the File Name. Check ”Add to project" and

click Next.
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Then you need to define the VHDL module you just created. Fill out the Port

Name, Direction (in, out, or inout), and specify the number of bits (Bus, MSB, LSB)

and click Next.

When you are done, check out the Summary and click Finish. In the following

window, you can add existing source files to the project. Once all the files are

created/added, check the Project Summary and click Finish. When all the above

steps are done, you will see the following in the main ISE window.

Chapter 7 60 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

Now we finished creating a new project. Next we can edit the source file using

the ISE build-in editor.
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The details of the design process and VHDL programming will be mentioned

in lecture and lab. Basically, you need to edit all the source files and define the

constraint file for the project. When finish editing the source files, choose the

main VHDL source file in the Sources panel, and then you can click on Synthe-

size, Implement Design, and Generate Programming File in the Processes panel.

Once you finish all the processes without any error, expand the Generating Pro-

gramming File section and click on Configure Device (iMPACT).
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iMPACT is the tool used to load your design configuration from the ISE to the

hardware. When clicking on it, it will be opened in another window as shown in

the following.

The easiest way to load the design into the chip is using the JTAG interface.

Leave the default setting in the pop-up window and click Finish.
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Next, the “Assign New Configuration File" window will show up. Choose the

.bit file of your design and click Open.

Then you will be asked to assign the new configuration file for the EPROM.

For now, since we are not using the EPROM, simply click Bypass.
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Once you finish assigning the configuration file, you will see the following

window.

Right-click on the chip with your design bit file and choose Program. The

following window will show up.
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Make sure you uncheck Verify and hit OK. Next you will see the progress of

the loading the configuration.

When the configuration is done and successful, you will see ”Program Suc-

cessful" in the iMPACT window and the FPGA board should start running.

7.4 VHDL Programming

VHDL will be used extensively in this course for the FPGA exercises. It is a hard-

ware description language, and the programming style is different from C or

Matlab programming due to the nature of hardware. To understand the pro-

gramming style, we should have some ideas about the digital system design

process.

7.4.1 Digital system design

7.4.1.1 System design flow

A digital system design flow is shown in Figure 7.2. At different stages of the

development and production process, different kinds of information about the

system are required, ranging from system specification to physical component

layout.
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7.4.1.2 System description

There are different ways to describe a system from different perspectives. They

can be categorized into three types: behavioral view, structural view, and physi-

cal view.

7.4.1.3 Levels of abstraction

Digital systems nowadays can be very complicated. A way to manage complexity

is to describe a system in several levels of abstraction. For levels of abstraction

are considered in digital system development (from low to high):

• Transistor level

• Gate level

• Register transfer level (RTL)

• Processor level

A high-level abstraction focuses and contains the most vital data. A lowlevel

abstraction is more detailed and contains information ignored in the higher level.

In a design process, it is better to start at a higher abstraction level and focus

on the vital characteristics of the system. Once the system is more completed,

more detail information can be included to develop a lower level abstraction.

In EECS 452, we mainly focus on design at the RTL level. At the RTL level, the

basic building blocks are modules constructed from simple gates.
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• Functional units: adders and multipliers (MAC)

• Storage components: registers and memory

The signals in the RTL level description are frequently grouped together and

interpreted as a special kind of data type, such as unsigned integer or system

state.

The behavioral description at this level uses general expressions to specify

the functional operation and data routing, and uses finite state machine (FSM) to

describe a system.

7.4.1.4 Digital circuits

7.4.2 What is VHDL?

VHDL stands for VHSIC Hardware Description Language. VHSIC stands for Very

High Speed Integrated Circuits.

7.4.3 VHDL basics

The fundamental elements of a VHDL code: LIBRARY, ENTITY, and ARCHITEC-

TURE.
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7.4.3.1 Library

7.4.3.2 Entity

7.4.3.3 Architecture

7.4.3.4 Process and Sequential Statements

7.4.3.5 How to include an existing entity?

7.4.3.6 Finite state machine

7.5 Sanp together projects

7.6 Exercises

7.6.1 ISE WebPACK Implementation Basics

7.6.1.1 Prelab

Answering the following question about using the ISE WebPACK. You might want

to use the “Help” function in the software to look for the answers.

1. What is a user constraints file (UCF)?

2. What are the methods that can be used for editing/entering constraints in

a UCF file?

3. What is iMPACT in the ISE WebPACK and what does it do?
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7.6.1.2 Exercise

7.6.1.3 Report

7.6.2 VHDL programming basics

7.6.2.1 Prelab

Answer the following questions by reading the VHDL references or googling the

Internet.

1. What does VHDL stand for?

2. What is an “entity” in VHDL?

3. What is an “architecture” in VHDL? What are the two types of descriptions

used to describe the architecture?

4. What is a “process” in VHDL?

5. What is the “sensitivity list” of a process?
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7.6.2.2 Exercise

7.6.2.3 Report

7.6.3 Spartan-3 Starter Board Basics

7.6.4 Prelab

Read the Spartan-3 Starter Kit Board User Guide and then answer the following

questions.

1. Is there a clock source on the Spartan-3 FPGA board? If so, what is the

clock rate?

2. What is the total size of on-chip block RAM of the Spartan-3 FPGA?

3. What is the total size of on-board SRAM of the starter board?

4. How many 40-pin expansion connectors are on the starter board?

5. What voltage can be outputted from the 40-pin connectors?

6. What are the pins connected to the 7-segment LEDs, LEDs, slide switches,

and push buttons, and B1 expansion connectors on the board?

7. There is only one set of pins for the 4 7-segment LED displays. How can we

control 4 of them use only one set of pins?

7.6.5 Exercise

None for this part.
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7.6.6 Report

None for this part.

7.6.7 LEDs and slide switches

7.6.7.1 Prelab

7.6.7.2 Exercise

In this part of the exercise, you will build a simple project to control the on/off

of the LEDs using the slide switches.

1. Start a new project in ISE.

2. Create a new VHDL module source file and add it to the project.

3. Specify an input bus of 8 bits (MSB: 7, LSB: 0) for the slide switches and a

output bus of 8 bits for the LEDs. After these steps, you should see the

code in the project navigator window as shown in Figure 8.1.

4. Declare two signals called “input” and “output” as 8-bit standard logic vec-

tors.

5. Write the code to assign the slide switch value to the signal “input”, assign

the signal “input” to the signal “output”, and assign the signal “output” to

the LED output. See Appendix ?? for the VHDL code.
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Requirements
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Timing Simulation
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Design Rule Checking

Figure 7.2: Digital system design flow.

6. Edit the user constraints file for the I/O pins of the project. Map SWi to LDi

for i = 0, 1,· · · , 7. See Appendix ?? for the ucf file.

7. Synthesize the code, implement the design, and generate the programming

file.

8. Load the programming file to the FPGA using iMPACT.

After you successfully load the program to the chip, you should be able to

control the LEDs using the slide switches.

7.6.7.3 Report

1. Can you further simplify the code in Appendix ?? to achieve the same task?

How will you modify the code?

7.6.8 7-segment LED displays

In this part of the exercise, you will learn how to use the 7-segment LED display.

A 7-segment LED display VHDL module is provided as in Appendix ??. You will

also learn how to integrate a VHDL module into your project in a layered coding

structure.
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7.6.8.1 Prelab

7.6.8.2 Exercise

7.6.8.3 Seven-Segment Display Module (SSD01.vhd)

This module is designed for using the four seven-segment displays. The signal

sel is a four-bit vector used to activate the 4 displays. sel(i) controls ssdi for

i = 0,1,2,3. “1” turns the display on the “0” turns it off. When sel=“0000”, the 4

seven-segment displays look like the following

ssd3 ssd2 ssd1 ssd0

To use ssd2, ssd1, and ssd0 to display 4, 5, 2, respectively, we set sel=“0111”,

ssd3=“xxxx”(any number), ssd2=“0100”, ssd1=“0101”, and ssd0=“0010”. The

seven-segment display will look like the following

ssd3 ssd2 ssd1 ssd0

Here is the list all the hex numbers that can be displayed using this module.

If you want to display something more, you need to modify it according to your

needs. See Appendix ?? for the VHDL code.

7.6.8.4 Use the Seven-Segment Display Module

1. Create a new project in ISE.

2. Create a new source file called “SSD_top” with the following I/O signals:

• mclk : input

• ssg : output bus (6 downto 0)

• an : inout bus (3 downto 0)

3. Declare the following signals:
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• ssd0 : 4-bit standard logic vector

• ssd1 : 4-bit standard logic vector

• ssd2 : 4-bit standard logic vector

• ssd3 : 4-bit standard logic vector

• ssd_select : 4-bit standard logic vector

4. Add the following to the main code SSD_top

SSD01_unit : entity work.SSD01 -- seven-segment display module
port map (

ssd0 => ssd0(3 downto 0),
ssd1 => ssd1(3 downto 0),
ssd2 => ssd2(3 downto 0),
ssd3 => ssd3(3 downto 0),
ssd => ssg,
sel => ssd_select,
an => an,
clk => mclk);

5. Add the source file SSD01.vhd to the project. At this point, you should

have the code as shown in Appendix ??.

6. Add the user constraints file spartan3.ucf as shown in Appendix ?? to the

project.

7. Complete the project by add codes to display “EECS” in the four seven-

segment displays.

ssd3 ssd2 ssd1 ssd0

Demonstrate the finished project to the GSI.

7.6.8.5 Report

7.6.9 Processes and sequential statements

A big difference between VHDL and other programming languages such as C or

Matlab is that in VHDL, all statements within an architecture operates concur-

rently while in C or Matlab, all the statements are executed sequentially. Thus,

it is necessary for VHDL to be able to handle sequential behavior. A process,

as a whole, is treated concurrently as other statements within an architecture.

However, the statements within a process are executed one after another as in

conventional programming languages.
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7.6.9.1 Prelab

7.6.9.2 Exercise

7.6.9.3 Report

7.6.10 Push buttons and debouncing

The push button consists of a simple mechanical contact. Whenever you push

and release it to make the contacts close and open, inertia may cause the con-

tacts to bounce. Therefore, we need to debounce the push button to eliminate

the inferior mechanical contacts and determination the state of the push button.

There are two types of push button switch: normally open (NO) and normally

closed (NC). You press the button and the contacts will open and close many

times before finally staying in position. This is known as contact bounce. De-

pending on the switch construction, this mechanical contact bounce can last up

to 20 milliseconds. This isn’t a problem for lamps, doorbells and audio circuits,

but it will play havoc to a fast switching logic circuit or computer.

7.6.10.1 Prelab

7.6.10.2 Exercise

In this part of the exercise you will build a project to test a push button debounce

module.The VHDL model pb_debounce.vhd can be found in Appendix ??.

1. Create a new project and add the following source files.

• pb_db_top.vhd (see Appendix ??)

• pb_debounce.vhd

• spartan3.ucf

2. Modify the UCF file accordingly and build up the program.

3. What are the functions of the switches (sw7 and sw(3 downto 0)), push

button 0, LED 0 and LED 7 in this exercise?
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7.6.10.3 Report

7.6.11 The VGA display

In this part of the exercise, we generate VGA signals and output to the LCD

display via the VGA connector on the spartan-3 board. In the exercise you will

generate a 1024 x 768 pixels display with 70 Hz frame rate. The pixel clock is

75 MHz and is generated using the 50 MHz on board clock and the Xilinx digital

clock manager (DCM) module.

7.6.11.1 Prelab

7.6.11.2 Exercise

Use the files VGA_top.vhd, DCM_config.vhd, and spartan3.ucf as shown in Ap-

pendix ??, ??, and ?? to build a project in ISE. Remember to comment/uncomment

the necessary/unnecessary I/O pins in the UCF file for this specific project. After

you build the project, connect the LCD monitor analog input cable to the VGA

output connector on the spartan-3 board and switch the monitor to display the

analog input. You should see the following pattern shown on the screen.

7.6.11.3 Report

7.6.12 A push button timer with display

In this part of the exercise, the push button, the debouncing module, the 7-

segment LED display, processes are all integrated into one project performing

the function of a timer. The timer program will start to time when you press

push button 0 and display the timing using the 7-segment display in seconds in

hexadecimal number.
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7.6.12.1 Prelab

7.6.12.2 Exercise

1. Create a new project and add the following source files to the project.

• timer01.vhd (see Appendix ??)

• SSD01.vhd

• pb_debounce.vhd

• spartan3.ucf

2. You need to generate a 1 Hz clock using the on board 50 MHz clock. The
easiest way is to use a counter. This part of the code is as the following

...
when st_pb0_pushed =>

if pb_db(0) = ’1’ then
next_pb_clear <= "0001";
next_state <= st_idle;

else
next_clk_counter <= clk_counter + ????; -- counter used to generate 1Hz clock
if clk_counter = ???? then

next_clk_counter <= X"0000000";
next_counter <= counter + ????;

end if;
next_display <= next_counter;
next_state <= st_pb0_pushed;

end if;
...

What should the missing parts marked with ???? be to make this work?

3. Find out what are the functions of push button 0 and push button 3 in the

project?

4. Fill the blanks (marked with ????) to connected to debouncing and 7-
segment display modules to the top file.

push_buttons : entity work.pb_debounce -- push button debouncer
port map (

pb_in => ????, -- input actual push buttons
pb_out => ????, -- debounced push button
pb_clear => ????, -- clears the button state
reset => ????,
clk => ????);

SSD01_unit : entity work.SSD01 -- seven-segment display
port map (

ssd0 => ????,
ssd1 => ????,
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ssd2 => ????,
ssd3 => ????,
ssd => ????,
sel => ????,
an => ????,
clk => ????);

5. Modify the UCF file accordingly.

6. Complete the exercise and demonstrate the result to the GSI.

7.6.12.3 Report

7.7 Code

To be added
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Figure 7.3: Unedited VHDL code
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8.1 Introduction

In this lab exercise, we start to work with the Spartan-3 FPGA starter board. This

includes the use of the software tool Xilinx ISE WebPACK and the basic opera-

tions on the Spartan-3 starter board. The programing language we use in this

course for FPGA is VHDL. Unlike the C5510 DSP, the Spartan-3 FPGA does not

have pre-built structure/unit in it and is fully programmable. The starter board

has a lot of peripherals and user interface components. One of the objective of

this exercise is to get you familiar with the starter board components and their

functionalities. Basic VHDL programing is also one of the skills we would like to

equip you with in this lab exercise.

Suggested reading

The documents and books listed here can be found in the class CD or in the

library.

Digilent Spartan-3 Starter Board:

• Spartan-3 Starter Board User Guide

Xilinx ISE WebPACK:

• Xilinx ISE 9.2i Software Manuals and Help

• ISE 9.1i Quick Start Tutorial

VHDL Programming:

• Circuit Design with VHDL, V. A. Pedroni, MIT Press 2004.

• Advanced Digital Logic Design Using VHDL, State Machines, and Synthesis

for FPGAs, S. Lee, Thomson 2006.

• VHDL: A Starter’s Guide 2nd Ed., S. Yalamanchili, Pearson Prentice Hall

2005.

• The VHDL Reference: A Practical Guide to Computer-Aided Integrated Cir-

cuit Design, U. Heinkel et al., Wiley 2000.

8.2 Prelab

Prelabs are to be done individually and are to be handed in at the

start of the lab period. Handwritten work will not be graded.
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8.2.1 ISE WebPACK Implementation Basics

Answering the following question about using the ISE WebPACK. You might want

to use the “Help” function in the software to look for the answers.

1. What is a user constraints file (UCF)?

2. What are the methods that can be used for editing/entering constraints in

a UCF file?

3. What is iMPACT in the ISE WebPACK and what does it do?

8.2.2 VHDL programming basics

Answer the following questions by reading the VHDL references or googling the

Internet.

1. What does VHDL stand for?

2. What is an “entity” in VHDL?

3. What is an “architecture” in VHDL? What are the two types of descriptions

used to describe the architecture?

4. What is a “process” in VHDL?

5. What is the “sensitivity list” of a process?

8.2.3 Spartan-3 Starter Board Basics

Read the Spartan-3 Starter Kit Board User Guide and then answer the following

questions.

1. Is there a clock source on the Spartan-3 FPGA board? If so, what is the

clock rate?

2. What is the total size of on-chip block RAM of the Spartan-3 FPGA?

3. What is the total size of on-board SRAM of the starter board?

4. How many 40-pin expansion connectors are on the starter board?

5. What voltage can be outputted from the 40-pin connectors?

6. What are the pins connected to the 7-segment LEDs, LEDs, slide switches,

and push buttons, and B1 expansion connectors on the board?

7. There is only one set of pins for the 4 7-segment LED displays. How can we

control 4 of them use only one set of pins?
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8.3 Exercise

8.3.1 LEDs and slide switches

In this part of the exercise, you will use ISE WebPACK to build a simple project to

control the on/off of the LEDs using the slide switches. Do the following steps:

• Start a new project in ISE.

• Create a new VHDL module source file and add it to the project.

• Specify an input bus of 8 bits (MSB: 7, LSB: 0) for the slide switches and a

output bus of 8 bits for the LEDs. After these steps, you should see the

code in the project navigator window as shown in Figure 8.1.

• Declare two signals called “input” and “output” as 8-bit standard logic vec-

tors.

• Write the code to assign the slide switch value to the signal “input”, assign

the signal “input” to the signal “output”, and assign the signal “output” to

the LED output. See section 8.5.1 for the VHDL code.

• Edit the user constraints file for the I/O pins of the project. Map SWi to LDi

for i = 0, 1,· · · , 7. See section 8.5.2 for the ucf file.

• Synthesize the code, implement the design, and generate the programming

file.

• Load the programming file to the FPGA using iMPACT.

After you successfully load the program to the chip, you should be able to

control the LEDs using the slide switches.

Can you further simplify the code listed in section 8.5.1 to achieve the same

task? How will you modify the code?

8.3.2 7-segment LED displays

In this part of the exercise, you will learn how to use the 7-segment LED display.

A 7-segment LED display VHDL module is provided as in section 8.5.3. You will

also learn how to integrate a VHDL module into your project in a layered coding

structure.
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Figure 8.1: Unedited VHDL code
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8.3.2.1 Seven-Segment Display Module (SSD01.vhd)

This module is designed for using the four seven-segment displays. The signal

sel is a four-bit vector used to activate the 4 displays. sel(i) controls ssdi for

i = 0,1,2,3. “1” turns the display on the “0” turns it off. When sel=“0000”, the 4

seven-segment displays look like the following

ssd3 ssd2 ssd1 ssd0

To use ssd2, ssd1, and ssd0 to display 4, 5, 2, respectively, we set sel=“0111”,

ssd3=“xxxx”(any number), ssd2=“0100”, ssd1=“0101”, and ssd0=“0010”. The

seven-segment display will look like the following

ssd3 ssd2 ssd1 ssd0

Here is the list all the hex numbers that can be displayed using this module.

If you want to display something more, you need to modify it according to your

needs. See section 8.5.3 for the VHDL code.

8.3.2.2 Use the Seven-Segment Display Module

• Create a new project in ISE.

• Create a new source file called “SSD_top” with the following I/O signals:

– mclk : input

– ssg : output bus (6 downto 0)

– an : inout bus (3 downto 0)

• Declare the following signals:

– ssd0 : 4-bit standard logic vector

– ssd1 : 4-bit standard logic vector
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– ssd2 : 4-bit standard logic vector

– ssd3 : 4-bit standard logic vector

– ssd_select : 4-bit standard logic vector

• Add the following to the main code SSD_top

SSD01_unit : entity work.SSD01 -- seven-segment display module
port map (

ssd0 => ssd0(3 downto 0),
ssd1 => ssd1(3 downto 0),
ssd2 => ssd2(3 downto 0),
ssd3 => ssd3(3 downto 0),
ssd => ssg,
sel => ssd_select,
an => an,
clk => mclk);

• Add the source file SSD01.vhd to the project. At this point, you should

have the code as shown in section 8.5.4.

• Add the user constraints file spartan3.ucf as shown in section 8.5.5 to the

project.

• Complete the project by add codes to display “EECS” in the four seven-

segment displays.

ssd3 ssd2 ssd1 ssd0

Demonstrate the finished project to the GSI.

8.3.3 Processes and sequential statements

A big difference between VHDL and other programming languages such as C or

Matlab is that in VHDL, all statements within an architecture operates concur-

rently while in C or Matlab, all the statements are executed sequentially. Thus,

it is necessary for VHDL to be able to handle sequential behavior. A process,

as a whole, is treated concurrently as other statements within an architecture.

However, the statements within a process are executed one after another as in

conventional programming languages.

8.3.4 Push buttons and debouncing

The push button consists of a simple mechanical contact. Whenever you push

and release it to make the contacts close and open, inertia may cause the con-

tacts to bounce. Therefore, we need to debounce the push button to eliminate
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the inferior mechanical contacts and determination the state of the push button.

There are two types of push button switch: normally open (NO) and normally

closed (NC). You press the button and the contacts will open and close many

times before finally staying in position. This is known as contact bounce. De-

pending on the switch construction, this mechanical contact bounce can last up

to 20 milliseconds. This isn’t a problem for lamps, doorbells and audio circuits,

but it will play havoc to a fast switching logic circuit or computer.

In this part of the exercise you will build a project to test a push button

debounce module.The VHDL model pb_debounce.vhd can be found in section

8.5.6.

• Create a new project and add the following source files.

– pb_db_top.vhd (see section 8.5.7)

– pb_debounce.vhd

– spartan3.ucf

• Modify the UCF file accordingly and build up the program.

• What are the functions of the switches (sw7 and sw(3 downto 0)), push

button 0, LED 0 and LED 7 in this exercise?

8.3.5 The VGA display

In this part of the exercise, we generate VGA signals and output to the LCD

display via the VGA connector on the spartan-3 board. In the exercise you will

generate a 1024 x 768 pixels display with 70 Hz frame rate. The pixel clock is

75 MHz and is generated using the 50 MHz on board clock and the Xilinx digital

clock manager (DCM) module.

Use the files VGA_top.vhd, DCM_config.vhd, and spartan3.ucf as shown in

section 8.5.8, 8.5.9, and 8.5.5 to build a project in ISE. Remember to comment or

uncomment the necessary/unnecessary I/O pins in the UCF file for this specific

project. After you build the project, connect the LCD monitor analog input cable
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to the VGA output connector on the spartan-3 board and switch the monitor to

display the analog input. You should see the following pattern shown on the

screen.

8.3.6 A push button timer with display

In this part of the exercise, the push button, the debouncing module, the 7-

segment LED display, processes are all integrated into one project performing

the function of a timer. The timer program will start to time when you press

push button 0 and display the timing using the 7-segment display in seconds in

hexadecimal number.

• Create a new project and add the following source files to the project.

– timer01.vhd (see section 8.5.10)

– SSD01.vhd

– pb_debounce.vhd

– spartan3.ucf

• You need to generate a 1 Hz clock using the on board 50 MHz clock. The
easiest way is to use a counter. This part of the code is as the following

...
when st_pb0_pushed =>
if pb_db(0) = ’1’ then

next_pb_clear <= "0001";
next_state <= st_idle;

else
next_clk_counter <= clk_counter + ????; -- counter used to generate 1Hz clock
if clk_counter = ???? then

next_clk_counter <= X"0000000";
next_counter <= counter + ????;

end if;
next_display <= next_counter;
next_state <= st_pb0_pushed;

end if;
...
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What should the missing parts marked with ???? be to make this work?

• Find out what are the functions of push button 0 and push button 3 in the

project?

• Fill the blanks (marked with ????) to connected to debouncing and 7-
segment display modules to the top file.

push_buttons : entity work.pb_debounce -- push button debouncer
port map (

pb_in => ????, -- input actual push buttons
pb_out => ????, -- debounced push button
pb_clear => ????, -- clears the button state
reset => ????,
clk => ????);

SSD01_unit : entity work.SSD01 -- seven-segment display
port map (

ssd0 => ????,
ssd1 => ????,
ssd2 => ????,
ssd3 => ????,
ssd => ????,
sel => ????,
an => ????,
clk => ????);

• Modify the UCF file accordingly.

• Complete the exercise and demonstrate the result to the GSI.

8.4 Report

In the report, record the results of each exercise. State what you did in the

exercise and your findings and comments. Answer the questions asked in each

exercise. Also include the section of codes you created or modified from the

given lab codes in order to make the programs work. Do not include the whole

lab codes.
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8.5 Listings

8.5.1 sw_led.vhd

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 23:55:47 01/10/2007
-- Design Name:
-- Module Name: sw_led - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity sw_led is
Port ( sw : in STD_LOGIC_VECTOR (7 downto 0);

led : out STD_LOGIC_VECTOR (7 downto 0));
end sw_led;

architecture Behavioral of sw_led is

signal input : std_logic_vector (7 downto 0);
signal output : std_logic_vector (7 downto 0);

begin

input <= sw;
output <= input;
led <= output;

end Behavioral;

8.5.2 sw_led.ucf

NET "sw<0>" LOC = "F12";
NET "sw<1>" LOC = "G12";
NET "sw<2>" LOC = "H14";
NET "sw<3>" LOC = "H13";
NET "sw<4>" LOC = "J14";
NET "sw<5>" LOC = "J13";
NET "sw<6>" LOC = "K14";
NET "sw<7>" LOC = "K13";
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NET "led<0>" LOC = "K12";
NET "led<1>" LOC = "P14";
NET "led<2>" LOC = "L12";
NET "led<3>" LOC = "N14";
NET "led<4>" LOC = "P13";
NET "led<5>" LOC = "N12";
NET "led<6>" LOC = "P12";
NET "led<7>" LOC = "P11";

8.5.3 SSD01.vhd

----------------------------------------------------------------------------------
-- Company: UM EECS 452
-- Engineer: Chih-Wei Wang
--
-- Create Date: 16:35:23 10/07/2006
-- Design Name:
-- Module Name: 7seg_LED_display - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity SSD01 is
Port ( ssd0 : in STD_LOGIC_VECTOR (3 downto 0);

ssd1 : in STD_LOGIC_VECTOR (3 downto 0);
ssd2 : in STD_LOGIC_VECTOR (3 downto 0);
ssd3 : in STD_LOGIC_VECTOR (3 downto 0);
ssd : out STD_LOGIC_VECTOR (6 downto 0);
sel : in STD_LOGIC_VECTOR (3 downto 0);
an : inout STD_LOGIC_VECTOR (3 downto 0);
clk : in STD_LOGIC);

end SSD01;

architecture Behavioral of SSD01 is

constant num0 : STD_LOGIC_VECTOR(6 downto 0) := "0000001"; -- 0
constant num1 : STD_LOGIC_VECTOR(6 downto 0) := "1001111"; -- 1
constant num2 : STD_LOGIC_VECTOR(6 downto 0) := "0010010"; -- 2
constant num3 : STD_LOGIC_VECTOR(6 downto 0) := "0000110"; -- 3
constant num4 : STD_LOGIC_VECTOR(6 downto 0) := "1001100"; -- 4
constant num5 : STD_LOGIC_VECTOR(6 downto 0) := "0100100"; -- 5
constant num6 : STD_LOGIC_VECTOR(6 downto 0) := "0100000"; -- 6
constant num7 : STD_LOGIC_VECTOR(6 downto 0) := "0001111"; -- 7
constant num8 : STD_LOGIC_VECTOR(6 downto 0) := "0000000"; -- 8
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constant num9 : STD_LOGIC_VECTOR(6 downto 0) := "0001100"; -- 9
constant num10 : STD_LOGIC_VECTOR(6 downto 0) := "0001000"; -- A
constant num11 : STD_LOGIC_VECTOR(6 downto 0) := "1100000"; -- B
constant num12 : STD_LOGIC_VECTOR(6 downto 0) := "0110001"; -- C
constant num13 : STD_LOGIC_VECTOR(6 downto 0) := "1000010"; -- D
constant num14 : STD_LOGIC_VECTOR(6 downto 0) := "0110000"; -- E
constant num15 : STD_LOGIC_VECTOR(6 downto 0) := "0111000"; -- F

signal ssd_0 : std_logic_vector(6 downto 0);
signal ssd_1 : std_logic_vector(6 downto 0);
signal ssd_2 : std_logic_vector(6 downto 0);
signal ssd_3 : std_logic_vector(6 downto 0);
signal ctr: std_logic_vector(12 downto 0);

begin

SSD_select : process(sel)
begin
if sel(0) = ’0’ then

ssd_0 <= "1111111";
else

case ssd0 is
when "0000" => ssd_0 <= num0;
when "0001" => ssd_0 <= num1;
when "0010" => ssd_0 <= num2;
when "0011" => ssd_0 <= num3;
when "0100" => ssd_0 <= num4;
when "0101" => ssd_0 <= num5;
when "0110" => ssd_0 <= num6;
when "0111" => ssd_0 <= num7;
when "1000" => ssd_0 <= num8;
when "1001" => ssd_0 <= num9;
when "1010" => ssd_0 <= num10;
when "1011" => ssd_0 <= num11;
when "1100" => ssd_0 <= num12;
when "1101" => ssd_0 <= num13;
when "1110" => ssd_0 <= num14;
when others => ssd_0 <= num15;

end case;
end if;
if sel(1) = ’0’ then

ssd_1 <= "1111111";
else

case ssd1 is
when "0000" => ssd_1 <= num0;
when "0001" => ssd_1 <= num1;
when "0010" => ssd_1 <= num2;
when "0011" => ssd_1 <= num3;
when "0100" => ssd_1 <= num4;
when "0101" => ssd_1 <= num5;
when "0110" => ssd_1 <= num6;
when "0111" => ssd_1 <= num7;
when "1000" => ssd_1 <= num8;
when "1001" => ssd_1 <= num9;
when "1010" => ssd_1 <= num10;
when "1011" => ssd_1 <= num11;
when "1100" => ssd_1 <= num12;
when "1101" => ssd_1 <= num13;
when "1110" => ssd_1 <= num14;
when others => ssd_1 <= num15;

end case;
end if;
if sel(2) = ’0’ then

ssd_2 <= "1111111";
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else
case ssd2 is
when "0000" => ssd_2 <= num0;
when "0001" => ssd_2 <= num1;
when "0010" => ssd_2 <= num2;
when "0011" => ssd_2 <= num3;
when "0100" => ssd_2 <= num4;
when "0101" => ssd_2 <= num5;
when "0110" => ssd_2 <= num6;
when "0111" => ssd_2 <= num7;
when "1000" => ssd_2 <= num8;
when "1001" => ssd_2 <= num9;
when "1010" => ssd_2 <= num10;
when "1011" => ssd_2 <= num11;
when "1100" => ssd_2 <= num12;
when "1101" => ssd_2 <= num13;
when "1110" => ssd_2 <= num14;
when others => ssd_2 <= num15;

end case;
end if;
if sel(3) = ’0’ then

ssd_3 <= "1111111";
else

case ssd3 is
when "0000" => ssd_3 <= num0;
when "0001" => ssd_3 <= num1;
when "0010" => ssd_3 <= num2;
when "0011" => ssd_3 <= num3;
when "0100" => ssd_3 <= num4;
when "0101" => ssd_3 <= num5;
when "0110" => ssd_3 <= num6;
when "0111" => ssd_3 <= num7;
when "1000" => ssd_3 <= num8;
when "1001" => ssd_3 <= num9;
when "1010" => ssd_3 <= num10;
when "1011" => ssd_3 <= num11;
when "1100" => ssd_3 <= num12;
when "1101" => ssd_3 <= num13;
when "1110" => ssd_3 <= num14;
when others => ssd_3 <= num15;

end case;
end if;

end process SSD_select;

-- SSD main unit
process (clk)
begin
if clk’event and clk = ’1’ then

if (ctr="0000000000000") then
if (an(3)=’0’) then

an(3) <= ’1’;
ssd <= ssd_2; -- ssd2
an(2) <= ’0’;

elsif (an(2)=’0’) then
an(2) <= ’1’;
ssd <= ssd_1; -- ssd1
an(1) <= ’0’;

elsif (an(1)=’0’) then
an(1) <= ’1’;
ssd <= ssd_0; -- ssd0
an(0) <= ’0’;

elsif (an(0)=’0’) then
an(0) <= ’1’;
ssd <= ssd_3; -- ssd3
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an(3) <= ’0’;
end if;

end if;
ctr <= ctr+"0000000000001";
if (ctr > "1000000000000") then
CTR <= "0000000000000";

end if;
end if;

end process;

end Behavioral;

8.5.4 SSD_top.vhd

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 22:45:27 01/11/2007
-- Design Name:
-- Module Name: SSD_top - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity SSD_top is
Port ( mclk : in STD_LOGIC;

ssg : out STD_LOGIC_VECTOR (6 downto 0);
an : inout STD_LOGIC_VECTOR (3 downto 0));

end SSD_top;

architecture Behavioral of SSD_top is

signal ssd0 : std_logic_vector(3 downto 0);
signal ssd1 : std_logic_vector(3 downto 0);
signal ssd2 : std_logic_vector(3 downto 0);
signal ssd3 : std_logic_vector(3 downto 0);
signal ssd_select : std_logic_vector(3 downto 0);

begin

SSD01_unit : entity work.SSD01 -- seven-segment display module
port map (
ssd0 => ssd0(3 downto 0),
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ssd1 => ssd1(3 downto 0),
ssd2 => ssd2(3 downto 0),
ssd3 => ssd3(3 downto 0),
ssd => ssg,
sel => ssd_select,
an => an,
clk => mclk);

end Behavioral;

8.5.5 spartan3.ucf

# Spartan-3 User Constraints File: spartan3.ucf
#
# 11Jan2007
#

# oscillator clock (in)

NET "mclk" PERIOD = 20 ns HIGH 40 %;
NET "mclk" LOC = "T9" | IOSTANDARD = LVCMOS33;

# push buttons

#NET "btn<0>" LOC = "M13" | IOSTANDARD = LVCMOS33;
#NET "btn<1>" LOC = "M14" | IOSTANDARD = LVCMOS33;
#NET "btn<2>" LOC = "L13" | IOSTANDARD = LVCMOS33;
#NET "btn<3>" LOC = "L14" | IOSTANDARD = LVCMOS33;

# light emitting diodes

#NET "led<0>" LOC = "K12" | IOSTANDARD = LVCMOS33;
#NET "led<1>" LOC = "P14" | IOSTANDARD = LVCMOS33;
#NET "led<2>" LOC = "L12" | IOSTANDARD = LVCMOS33;
#NET "led<3>" LOC = "N14" | IOSTANDARD = LVCMOS33;
#NET "led<4>" LOC = "P13" | IOSTANDARD = LVCMOS33;
#NET "led<5>" LOC = "N12" | IOSTANDARD = LVCMOS33;
#NET "led<6>" LOC = "P12" | IOSTANDARD = LVCMOS33;
#NET "led<7>" LOC = "P11" | IOSTANDARD = LVCMOS33;

# seven segment digit anodes

NET "an<0>" LOC = "D14" | IOSTANDARD = LVCMOS33;
NET "an<1>" LOC = "G14" | IOSTANDARD = LVCMOS33;
NET "an<2>" LOC = "F14" | IOSTANDARD = LVCMOS33;
NET "an<3>" LOC = "E13" | IOSTANDARD = LVCMOS33;

# seven segment digit cathodes

NET "ssg<0>" LOC = "N16" | IOSTANDARD = LVCMOS33; # segment G
NET "ssg<1>" LOC = "F13" | IOSTANDARD = LVCMOS33; # segment F
NET "ssg<2>" LOC = "R16" | IOSTANDARD = LVCMOS33; # segment E
NET "ssg<3>" LOC = "P15" | IOSTANDARD = LVCMOS33; # segment D
NET "ssg<4>" LOC = "N15" | IOSTANDARD = LVCMOS33; # segment C
NET "ssg<5>" LOC = "G13" | IOSTANDARD = LVCMOS33; # segment B
NET "ssg<6>" LOC = "E14" | IOSTANDARD = LVCMOS33; # segment A
#NET "ssg<7>" LOC = "P16" | IOSTANDARD = LVCMOS33; # dp(decimal point)

# slide switches

#NET "swt<0>" LOC = "F12" | IOSTANDARD = LVCMOS33;
#NET "swt<1>" LOC = "G12" | IOSTANDARD = LVCMOS33;
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#NET "swt<2>" LOC = "H14" | IOSTANDARD = LVCMOS33;
#NET "swt<3>" LOC = "H13" | IOSTANDARD = LVCMOS33;
#NET "swt<4>" LOC = "J14" | IOSTANDARD = LVCMOS33;
#NET "swt<5>" LOC = "J13" | IOSTANDARD = LVCMOS33;
#NET "swt<6>" LOC = "K14" | IOSTANDARD = LVCMOS33;
#NET "swt<7>" LOC = "K13" | IOSTANDARD = LVCMOS33;

# DB15 video connector

#NET "blu" LOC = "R11" | IOSTANDARD = LVCMOS33;
#NET "grn" LOC = "T12" | IOSTANDARD = LVCMOS33;
#NET "red" LOC = "R12" | IOSTANDARD = LVCMOS33;
#NET "hs" LOC = "R9" | IOSTANDARD = LVCMOS33;
#NET "vs" LOC = "T10" | IOSTANDARD = LVCMOS33;

8.5.6 pb_debounce.vhd

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 18:12:27 10/16/2006
-- Design Name:
-- Module Name: pb_debounce - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity pb_debounce is
Port ( pb_in : in STD_LOGIC_VECTOR (3 downto 0);

pb_out : inout STD_LOGIC_VECTOR (3 downto 0);
pb_clear : in STD_LOGIC_VECTOR (3 downto 0);
reset : in STD_LOGIC;

clk : in STD_LOGIC);
end pb_debounce;

architecture Behavioral of pb_debounce is

type t_state is (st_idle, st_pb0_pushed, st_pb1_pushed,
st_pb2_pushed, st_pb3_pushed);

signal state : t_state := st_idle;

signal bounce_counter : std_logic_vector(19 downto 0);

signal next_state : t_state := st_idle;
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signal sr_pb0 : std_logic_vector(3 downto 0);
signal sr_pb1 : std_logic_vector(3 downto 0);
signal sr_pb2 : std_logic_vector(3 downto 0);
signal sr_pb3 : std_logic_vector(3 downto 0);
signal pb0 : std_logic_vector(1 downto 0); -- used as edge detector
signal pb1 : std_logic_vector(1 downto 0);
signal pb2 : std_logic_vector(1 downto 0);
signal pb3 : std_logic_vector(1 downto 0);
signal next_pb0 : std_logic_vector(1 downto 0);
signal next_pb1 : std_logic_vector(1 downto 0);
signal next_pb2 : std_logic_vector(1 downto 0);
signal next_pb3 : std_logic_vector(1 downto 0);
signal next_pb_out : std_logic_vector(3 downto 0) := "0000";

begin

process(clk, reset)
begin

if reset = ’1’ then
state <= st_idle;
pb_out <= "0000";

elsif rising_edge(clk) then
if bounce_counter = 1000000 then

sr_pb0 <= sr_pb0(2 downto 0) & pb_in(0);
sr_pb1 <= sr_pb1(2 downto 0) & pb_in(1);
sr_pb2 <= sr_pb2(2 downto 0) & pb_in(2);
sr_pb3 <= sr_pb3(2 downto 0) & pb_in(3);
bounce_counter <= X"00000";

else
bounce_counter <= bounce_counter+1;

end if;
state <= next_state;
pb0 <= next_pb0;
pb1 <= next_pb1;
pb2 <= next_pb2;
pb3 <= next_pb3;
pb_out <= next_pb_out;

end if;
end process;

process(state, pb_in)
begin

next_state <= state;
next_pb0 <= pb0(0) & (sr_pb0(3) and sr_pb0(2) and sr_pb0(1) and sr_pb0(0));
next_pb1 <= pb1(0) & (sr_pb1(3) and sr_pb1(2) and sr_pb1(1) and sr_pb1(0));
next_pb2 <= pb2(0) & (sr_pb2(3) and sr_pb2(2) and sr_pb2(1) and sr_pb2(0));
next_pb3 <= pb3(0) & (sr_pb3(3) and sr_pb3(2) and sr_pb3(1) and sr_pb3(0));
next_pb_out <= pb_out and (not pb_clear);

case state is
when st_idle =>

if pb0 = "01" then
next_state <= st_pb0_pushed;

elsif pb1 = "01" then
next_state <= st_pb1_pushed;

elsif pb2 = "01" then
next_state <= st_pb2_pushed;

elsif pb3 = "01" then
next_state <= st_pb3_pushed;

end if;
when st_pb0_pushed =>

next_pb_out <= pb_out(3) & pb_out(2) & pb_out(1) & ’1’;
next_state <= st_idle;
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when st_pb1_pushed =>
next_pb_out <= pb_out(3) & pb_out(2) & ’1’ & pb_out(0);
next_state <= st_idle;

when st_pb2_pushed =>
next_pb_out <= pb_out(3) & ’1’ & pb_out(1) & pb_out(0);
next_state <= st_idle;

when st_pb3_pushed =>
next_pb_out <= ’1’ & pb_out(2) & pb_out(1) & pb_out(0);
next_state <= st_idle;

end case;
end process;

end Behavioral;

8.5.7 pb_db_top.vhd

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 14:52:45 11/29/2006
-- Design Name:
-- Module Name: pb_db_top - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity pb_db_top is
Port ( mclk : in STD_LOGIC;

btn : in STD_LOGIC_VECTOR (3 downto 0);
swt : in STD_LOGIC_VECTOR (7 downto 0);
led : out STD_LOGIC_VECTOR (7 downto 0));

end pb_db_top;

architecture Behavioral of pb_db_top is

signal reset : std_logic := ’0’;
signal pb_db : std_logic_vector (3 downto 0) := "0000";
signal pb_clear : std_logic_vector (3 downto 0) := "0000";

begin

led(6 downto 1) <= "000000";
reset <= swt(7);
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pb_clear <= swt(3 downto 0);
led(0) <= btn(0);

process(mclk,pb_db(0))
begin

if rising_edge(mclk) then
if pb_db(0)=’1’ then

led(7) <= ’1’;
else

led(7) <= ’0’;
end if;

end if;
end process;

push_buttons : entity work.pb_debounce -- push button debouncer
port map (

pb_in => btn, -- input actual push buttons
pb_out => pb_db, -- debounced push button
pb_clear => pb_clear, -- clears the button state
reset => reset,
clk => mclk);

end Behavioral;

8.5.8 VGA_top.vhd

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 00:29:09 11/16/2006
-- Design Name:
-- Module Name: VGA_top - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity VGA_top is
port( mclk : in std_logic;

red : out std_logic;
grn : out std_logic;
blu : out std_logic;
hs : out std_logic;
vs : out std_logic);
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end VGA_top;

architecture Behavioral of VGA_top is

---- VGA 640 x 480 @ 60Hz with 25MHz pixel clock
constant H_TOTAL : integer := 800; -- pixels
constant H_DISP : integer := 640; -- pixels
constant H_SYNC : integer := 96; -- pixels
constant H_FPORCH : integer := 16; -- pixels
constant H_BPORCH : integer := 48; -- pixels

constant V_TOTAL : integer := 521; -- lines
constant V_DISP : integer := 480; -- lines
constant V_SYNC : integer := 2; -- lines
constant V_FPORCH : integer := 10; -- lines
constant V_BPORCH : integer := 29; -- lines

constant CLK_MULTIPLY : integer := 1;
constant CLK_DIVIDE : integer := 2;

-- VGA 1024 x 768 @ 70Hz with 75MHz pixel clock
--constant H_TOTAL : integer := 1328; -- pixels
--constant H_DISP : integer := 1024; -- pixels
--constant H_SYNC : integer := 136; -- pixels
--constant H_FPORCH : integer := 24; -- pixels
--constant H_BPORCH : integer := 144; -- pixels
--
--constant V_TOTAL : integer := 806; -- lines
--constant V_DISP : integer := 768; -- lines
--constant V_SYNC : integer := 6; -- lines
--constant V_FPORCH : integer := 3; -- lines
--constant V_BPORCH : integer := 29; -- lines
--
--constant CLK_MULTIPLY : integer := 3;
--constant CLK_DIVIDE : integer := 2;

signal clk0 : std_logic;
signal clk75 : std_logic;
signal clkin_IBUFG_out : std_logic;
signal clk25 : std_logic;
signal pclk : std_logic;

signal h_counter : integer range 0 to H_TOTAL := 0;
signal v_counter : integer range 0 to V_TOTAL := 0;
signal x : integer range 0 to H_DISP-1;
signal y : integer range 0 to V_DISP-1;
signal display_enable : std_logic;

begin

pclk <= clk25;

x <= h_counter-H_SYNC-H_BPORCH-1;
y <= v_counter-V_SYNC-V_BPORCH;

VGA_display : process(display_enable)
begin

if rising_edge(pclk) then
if display_enable = ’1’ then

if x = 0 then
red <= ’1’;
grn <= ’0’;
blu <= ’0’;
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--elsif x = 512 then
elsif x = H_DISP/2 then

red <= ’0’;
grn <= ’0’;
blu <= ’1’;

--elsif x = 1023 then
elsif x = H_DISP-1 then

red <= ’0’;
grn <= ’1’;
blu <= ’0’;

elsif y = 0 then
red <= ’0’;
grn <= ’1’;
blu <= ’1’;

--elsif y = 384 then
elsif y = V_DISP/2 then

red <= ’1’;
grn <= ’0’;
blu <= ’1’;

--elsif y = 767 then
elsif y = V_DISP-1 then

red <= ’1’;
grn <= ’1’;
blu <= ’1’;

else
red <= ’0’;
grn <= ’0’;
blu <= ’0’;

end if;
else

red <= ’0’;
grn <= ’0’;
blu <= ’0’;

end if;
end if;

end process VGA_display;

VGA_sync : process(pclk)
begin

if rising_edge(pclk) then

h_counter <= h_counter+1;
if h_counter = H_TOTAL then

h_counter <= 0;
v_counter <= v_counter+1;
if v_counter = V_TOTAL then

v_counter <= 0;
end if;

end if;

if (h_counter >= H_SYNC + H_BPORCH) and
(h_counter <= H_SYNC + H_BPORCH + H_DISP) and
(v_counter >= V_SYNC + V_BPORCH) and
(v_counter <= V_SYNC + V_BPORCH + V_DISP) then
display_enable <= ’1’;

else
display_enable <= ’0’;

end if;

if h_counter < H_SYNC then
hs <= ’0’;

else
hs <= ’1’;

end if;
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if v_counter < V_SYNC then
vs <= ’0’;

else
vs <= ’1’;

end if;

end if;
end process VGA_sync;

-- generate 25 MHz clock from 50 MHz
clk_25MHz : process(clk0)
begin

if rising_edge(clk0) then
clk25 <= not clk25;

end if;
end process clk_25MHz;

-- generate 75 MHz clock from 50 MHz
DCM_config : entity work.DCM_config
port map( CLKIN_IN => mclk,

CLK0_OUT => clk0,
CLKFX_OUT => clk75,
CLKIN_IBUFG_OUT => clkin_IBUFG_out,
RST_IN => ’0’);

end Behavioral;

8.5.9 DCM_config.vhd

--------------------------------------------------------------------------------
-- Copyright (c) 1995-2006 Xilinx, Inc. All rights reserved.
--------------------------------------------------------------------------------
-- ____ ____
-- / /\/ /
-- /___/ \ / Vendor: Xilinx
-- \ \ \/ Version : 8.2.03i
-- \ \ Application : xaw2vhdl
-- / / Filename : DCM_config.vhd
-- /___/ /\ Timestamp : 11/16/2006 18:15:17
-- \ \ / \
-- \___\/\___\
--
--Command: xaw2vhdl-st c:\Documents and Settings\GSI\Desktop\VGA\DCM_config.xaw c:\Documents and Settings\GSI\Desktop\VGA\DCM_co
--Design Name: DCM_config
--Device: xc3s200-ft256-4
--
-- Module DCM_config
-- Generated by Xilinx Architecture Wizard
-- Written for synthesis tool: XST

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;
library UNISIM;
use UNISIM.Vcomponents.ALL;

entity DCM_config is
port ( CLKIN_IN : in std_logic;

RST_IN : in std_logic;
CLKFX_OUT : out std_logic;
CLKIN_IBUFG_OUT : out std_logic;
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CLK0_OUT : out std_logic);
end DCM_config;

architecture BEHAVIORAL of DCM_config is
signal CLKFB_IN : std_logic;
signal CLKFX_BUF : std_logic;
signal CLKIN_IBUFG : std_logic;
signal CLK0_BUF : std_logic;
signal GND1 : std_logic;
component BUFG

port ( I : in std_logic;
O : out std_logic);

end component;

component IBUFG
port ( I : in std_logic;

O : out std_logic);
end component;

-- Period Jitter (unit interval) for block DCM_INST = 0.06 UI
-- Period Jitter (Peak-to-Peak) for block DCM_INST = 0.76 ns
component DCM

generic( CLK_FEEDBACK : string := "1X";
CLKDV_DIVIDE : real := 2.0;
CLKFX_DIVIDE : integer := 1;
CLKFX_MULTIPLY : integer := 4;
CLKIN_DIVIDE_BY_2 : boolean := FALSE;
CLKIN_PERIOD : real := 10.0;
CLKOUT_PHASE_SHIFT : string := "NONE";
DESKEW_ADJUST : string := "SYSTEM_SYNCHRONOUS";
DFS_FREQUENCY_MODE : string := "LOW";
DLL_FREQUENCY_MODE : string := "LOW";
DUTY_CYCLE_CORRECTION : boolean := TRUE;
FACTORY_JF : bit_vector := x"C080";
PHASE_SHIFT : integer := 0;
STARTUP_WAIT : boolean := FALSE;
DSS_MODE : string := "NONE");

port ( CLKIN : in std_logic;
CLKFB : in std_logic;
RST : in std_logic;
PSEN : in std_logic;
PSINCDEC : in std_logic;
PSCLK : in std_logic;
DSSEN : in std_logic;
CLK0 : out std_logic;
CLK90 : out std_logic;
CLK180 : out std_logic;
CLK270 : out std_logic;
CLKDV : out std_logic;
CLK2X : out std_logic;
CLK2X180 : out std_logic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
STATUS : out std_logic_vector (7 downto 0);
LOCKED : out std_logic;
PSDONE : out std_logic);

end component;

begin
GND1 <= ’0’;
CLKIN_IBUFG_OUT <= CLKIN_IBUFG;
CLK0_OUT <= CLKFB_IN;
CLKFX_BUFG_INST : BUFG

port map (I=>CLKFX_BUF,
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O=>CLKFX_OUT);

CLKIN_IBUFG_INST : IBUFG
port map (I=>CLKIN_IN,

O=>CLKIN_IBUFG);

CLK0_BUFG_INST : BUFG
port map (I=>CLK0_BUF,

O=>CLKFB_IN);

DCM_INST : DCM
generic map( CLK_FEEDBACK => "1X",

CLKDV_DIVIDE => 2.0,
CLKFX_DIVIDE => 2,
CLKFX_MULTIPLY => 3,
CLKIN_DIVIDE_BY_2 => FALSE,
CLKIN_PERIOD => 20.0,
CLKOUT_PHASE_SHIFT => "NONE",
DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS",
DFS_FREQUENCY_MODE => "LOW",
DLL_FREQUENCY_MODE => "LOW",
DUTY_CYCLE_CORRECTION => TRUE,
FACTORY_JF => x"8080",
PHASE_SHIFT => 0,
STARTUP_WAIT => TRUE)

port map (CLKFB=>CLKFB_IN,
CLKIN=>CLKIN_IBUFG,
DSSEN=>GND1,
PSCLK=>GND1,
PSEN=>GND1,
PSINCDEC=>GND1,
RST=>RST_IN,
CLKDV=>open,
CLKFX=>CLKFX_BUF,
CLKFX180=>open,
CLK0=>CLK0_BUF,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLK180=>open,
CLK270=>open,
LOCKED=>open,
PSDONE=>open,
STATUS=>open);

end BEHAVIORAL;

8.5.10 timer01.vhd

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 23:37:58 10/28/2006
-- Design Name:
-- Module Name: timer01 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
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-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity timer01 is
Port ( mclk : in STD_LOGIC;

btn : in STD_LOGIC_VECTOR (3 downto 0);
ssg : out STD_LOGIC_VECTOR (6 downto 0);
an : inout STD_LOGIC_VECTOR (3 downto 0));

end timer01;

architecture Behavioral of timer01 is

type t_state is (st_idle, st_pb0_pushed, st_pb1_pushed, st_pb2_pushed,
st_pb3_pushed);

signal state : t_state := st_idle;
signal next_state : t_state;

signal pb_db : std_logic_vector(3 downto 0);
signal pb_clear : std_logic_vector(3 downto 0) := "0000";
signal next_pb_clear : std_logic_vector(3 downto 0);

signal display : std_logic_vector(15 downto 0) := X"0000";
signal next_display : std_logic_vector(15 downto 0);
signal ssd_select : std_logic_vector(3 downto 0) := "1111";

signal reset : std_logic := ’0’;

signal counter : std_logic_vector(15 downto 0) := X"0000";
signal next_counter : std_logic_vector(15 downto 0);

signal clk_counter : std_logic_vector(27 downto 0) := X"0000000";
signal next_clk_counter : std_logic_vector(27 downto 0);

begin

process(mclk,reset)
begin

if reset = ’1’ then
state <= st_idle;

elsif rising_edge(mclk) then
state <= next_state;
pb_clear <= next_pb_clear;
display <= next_display;
counter <= next_counter;
clk_counter <= next_clk_counter;

end if;
end process;
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process(state,pb_db)
begin

next_state <= state;
next_pb_clear <= pb_clear;
next_display <= display;
next_counter <= counter;
next_clk_counter <= clk_counter;

case state is
when st_idle =>

if pb_db(0) = ’1’ then
next_pb_clear <= "0001";
next_state <= st_pb0_pushed;

elsif pb_db(1) = ’1’ then
next_pb_clear <= "0010";
next_state <= st_pb1_pushed;

elsif pb_db(2) = ’1’ then
next_pb_clear <= "0100";
next_state <= st_pb2_pushed;

elsif pb_db(3) = ’1’ then
next_pb_clear <= "1000";
next_state <= st_pb3_pushed;

end if;
when st_pb0_pushed =>

if pb_db(0) = ’1’ then
next_pb_clear <= "0001";
next_state <= st_idle;

else
next_clk_counter <= clk_counter + ????; -- counter used to generate 1Hz clock
if clk_counter = ???? then

next_clk_counter <= X"0000000";
next_counter <= counter + ????;

end if;
next_display <= next_counter;
next_state <= st_pb0_pushed;

end if;
when st_pb1_pushed =>

next_state <= st_idle;
when st_pb2_pushed =>

next_state <= st_idle;
when st_pb3_pushed => -- pb(3) used as "reset"

next_display <= X"0000";
next_counter <= X"0000";
next_clk_counter <= X"0000000";
next_state <= st_idle;

end case;

end process;

push_buttons : entity work.pb_debounce -- push button debouncer
port map (

pb_in => ????, -- input actual push buttons
pb_out => ????, -- debounced push button
pb_clear => ????, -- clears the button state
reset => ????,
clk => ????);

SSD01_unit : entity work.SSD01 -- seven-segment display
port map (

ssd0 => ????,
ssd1 => ????,
ssd2 => ????,
ssd3 => ????,
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ssd => ????,
sel => ????,
an => ????,
clk => ????);

end Behavioral;
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9 : Working with Fixed Point

Computer arithmetic: the art of being precise about being imprecise.

Working with integers and thinking of them as if they were fractions.

Q notation and how to use it.

Ran out of summer. To be done in lecture. Sorry.

9.1 Examples

9.1.1 Calculating frequency tuning values

To be added.

9.1.2 Moving average filter

A useful and easily implemented finite impulse response filter is to form the

moving average of the current sample and the previous N − 1 values.

y[n] =
1

N

N−1
∑

k=0

x[n− k] n = 0,1,2, . . .

where N > 1.

The sum can be computed using two instruction times (independent of the

value of N) plus maybe two or three instruction times for loop overhead. Neither

the C5510 nor the Spartan-3 support a time efficient way of dividing by N.

Exercise 4 contains a demonstration program where 12-bit samples are:

• acquired by the Spartan-3 using a 1 MHz sample rate,

• sent to the C5510 via a bit-serial data link,

• sliding averaged, N = 100, by the C5510,

• with the result sent back to the Spartan-3,

• and fed to a 12-bit D/A converter using a 1 MHz sample rate.
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The purpose of this Chapter’s example is to examine some options for divid-

ing by N = 100.

Assumptions:

• The sample values are in two’s complement form.

• In the C5510 the 12-bit values are typically normalized to Q15 form. The

12-bit values are placed into the top 12 bits of a 16-bit word with the low

four bits set equal to 0. In order to simply things a little, the sample values

will be assumed to use 16 bits. The assumption being that obtaining good

accuracy for 16-bit values does the same for 12-bit values.

• Most positive sum value is 3276700, the most negative sum value is -

3276800.

• The value of N is equal to 100 and is fixed.

• The sum value is in a 32 bit word.

• More?

A reasonable question is “how precise is the result needed”? An another

question is whether the value of N = 100 is necessary. Could N = 128 could be

used instead. Division by 128 requires only a single multi-bit shift instruction.

Given that there is a vague highly important requirement for N = 100 how to

proceed?

One could simply figure out how to implement division. Division is an inverse

operation. Inverse operations are almost always more difficult to implement

than the forward operation. How about multiplying by 0.01?

0.010000 . . .10 = 0.00000010100011110101110000 . . .2

The decimal representation has an infinite number of zeros to the right. The

binary representation does not.

The worst case sum value, y[n], should fit into 16+7 = 23 bits but not into

22 bits. Because the original values are in Q15 format the it is reasonable that

the average value should also use the Q15 format.

One way to implement the multiplication of the sum by the above binary bit

pattern is

ave = 0;
ave += value >> 6;
ave += value >> 8;
ave += value >> 12;
ave += value >> 13;
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ave += value >> 14;
ave += value >> 15;
ave += value >> 17;

The next term would shift the value 19 places to the right. The result should

be zero. Oh, oh. What if the value was negative? The result won’t be zero. We

forgot to round. Ideally we should use convergent rounding but for the moment

let’s use two’s complement rounding. The corrected code becomes:

ave = 0;
ave += (value + 32) >> 6;
ave += (value + 128) >> 8;
ave += (value + 2048) >> 12;
ave += (value + 4096) >> 13;
ave += (value + 8192) >> 14;
ave += (value + 16384) >> 15;
ave += (value + 65536) >> 17;

This might work acceptably well. The accumulation of the round off errors is

a concern. How about another try?

The previous try assumed the value was Q15. How about interpreting the

value as Q31?

A Q15 value can be made a Q31 value by shifting it left 16 bits. This is

equivalent to multiplying the bit pattern by 216.

0.01valueQ31 = valueQ15216 × 0.01 .

We can leave the starting bit pattern of “value” alone and instead multiply

0.01 by 216 and then use that result to multiply “value”. Doing so results in mul-

tiplying the original value by 1010001111.01011100002 . The C for the integer

part of the multiplication can be written as

ave = value;
ave = (ave<<2) + value;
ave = (ave<<4) + value;
ave = (ave<<1) + value;
ave = (ave<<1) + value;
ave = (ave<<1) + value;

Alternately,

ave = ((((((value<<2)+value)<<4)+value)<<1)+value)<<1)+value;
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This requires five additions and five shift operations. In the C5510 the shifts

and the adds can be done simultaneously. The multiplication by 0.01 nominally

can be accomplished using five machine cycles.

If two’s complement rounding is acceptable, add 32768 to the result and shift

right 16 places to obtain the desired Q15 result.

The above is a variation on Horner’s method of efficient polynomial evalua-

tion. A side effect is that no bits are lost until the last step when converting the

Q31 value into Q15 form.

Let’s do a hand calculation. Even though we are thinking Q15 we can just as

well think that we are working with integers in Q0. The binary point is a booking

tool and we can put it where we want so long as we are careful and consistent.

Assume a “value” equal to 100000. The average will be 1000.

ave = 100000; // ave = value;
ave = 500000; // ave = (ave<<2) + value;
ave = 8100000; // ave = (ave<<4) + value;
ave = 16300000; // ave = (ave<<1) + value;
ave = 32700000; // ave = (ave<<1) + value;
ave = 65500000; // ave = (ave<<1) + value;

The shift right of 16 bits corresponds to a divide by 65536. The result is

999.4506836, close. When this value is rounded the result is one off.

Let’s try adding the effects of the next four non-zero bits.

ave = value;
ave = (ave<<2) + value;
ave = (ave<<4) + value;
ave = (ave<<1) + value;
ave = (ave<<1) + value;
ave = (ave<<1) + value; // 65500000
ave = ave + (value>>2); // 65525000
ave = ave + (value>>4); // 65431250
ave = ave + (value>>5); // 65534375
ave = ave + (value>>6); // 65535937

Dividing by 65536 gives 999.9990387. With rounding the result is the ex-

pected average value of 1000.

Prior to doing the first right shift by 2 bits step there were no truncations.

Prior to the the right shift operation the partial result was as accurate as possible

for the number of bits given.

A reasonable question “is how many shift and add steps are needed in order

maintain the maximum possible accuracy over the full range of sum values”.
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Have to think about this. A task left to be done. For now the procedure to be

followed (proceeding on a guess and a prayer) will be to use

ave = (((((((value<<2)+value)<<4)+value)<<1)+value)<<1)+value;
low = (((((value>>1)+value)>>1)+value)>>2+value)>>2;
ave = (ave+low+32768)>>16; // combine, round, convert to Q15

Two’s complement rounding is assumed to be adequate. Should also check

to verify proper operation for the maximum + and - values. Might have to add a

check in order to guard against the possibility of overflow.
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10 : Fixed point homework exercise

Overview discussion. When due. What to do about setting up with the GSI for

demonstration of working solution.

Intent of the homework is to provide experience working with fixed point and

the display/debugging tools available with 5510 and S3SB.

We probably should be doing the same or very similar test calculations on

both the C5510 and the S3SB. For example implementing an NEXP :: MANT.

The basic needs later in the semester involve multiplying Qn and Qm values

and getting a Qr value. Demonstrate overflow, use and non use of saturation,

truncation, rounding and convergent rounding.

Possible to work at the C5510 using C (raw and with intrinsics) and/or as-

sembler. In the FPGA one is on their own and limited only by their imagination

and their abilities.

10.1 C5510

Uses CCS debugger to step through code and watch the register contents.

Cover:

• NEXP :: MANT
• Rotations. Used for demodulation and modulation.

• How to do Q arithmetic at the C level.

• How to do Q arithmetic in assembler.

• Compare C assembler output with hand coded.

• ?

10.2 S3SB

Uses the switches, the extra switches, push buttons, LEDs and seven segment

displays.

Cover:
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• Use of VHDL generic feature to set word size.

• Simple bit serial addition/subtraction.

• Use of the bit serial-parallel multiplier.

• Do MAC related. Will be in the notes. How to make different?

• ?
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11 : Bit–serial data movement between

whatevers

Consider the use of a 12-bit D/A converter by a microcomputer or FPGA. The

microcomputer/FPGA provides 12-bit values and a signal used to load the values

into the D/A’s registers.

One way to implement such a processor/converter combination is to have

the process provide 12 bits of data in parallel and a pulse to be used to strobe

the bits into a register located in the D/A. Not counting power and ground, 13

wires or connections are needed between the processor and the D/A. The logic

circuitry needed in the processor and the D/A converter is generally very simple.

Another approach to the system design is to serialize the data values and

send them a bit at a time from the processor to the D/A converter. There are

many ways such serial operation can be accomplished. Commonly encountered

techniques use from one line (again not including power and ground) to three

lines. Subsystems are needed in the processor and in the the D/A in order to

convert from parallel form, to serial form and back again.

The system costs of a parallel implementation consist mostly of: space on

the printed circuit board for the routing of the signal lines and the size of the

packages needed to support the number of signals (i.e., pins) on the processor

and on the D/A converter. For a 12-bit D/A converter there typically would

be ground, power, analog out, 12-data bits in and a strobe. A total of 16 pins.

Moving to a 16-bit converter would require four more pins as well as like number

of additional PCB traces.

A three wire bit-serial A/D or D/A device needs only six pins. Three pins for

the data interface, one for an input or output, one for power and one for ground.

The benefits include a smaller package (6 pins instead of 16). This results in a

small foot print on a printed circuit board and fewer wires to route than for a

parallel design. Moving from a 12-bit converter to a 16-bit converter can often

be accomplished by simply replacing 12-bit chip with a 16-bit chip without any

changes being needed to the printed circuit board. The costs associated with a

bit-serial interface include: additional logic in the processor and the D/A and

generally a lower maximum D/A sample rate. As we will see later in this chapter

the required logic is not all that significant and is easily (inexpensively) incorpo-

rated into a device’s silicon. For many applications the lower maximum possible

sample rate of a serial device as compared to a parallel device is not an issue.
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The serial A/D and D/A devices use in EECS 452 with the S3SB have a nominal

maximum sample rate of 1 Ms/s.

This chapter and the following chapter describe the implementation and use

of bit-serial data interfaces for moving data values between:

• the C5510 and the S3SB.

• the C5510 and the AIC23 analog I/O CODEC used on the C5510 DSK.

• the Spartan-3 FPGA and PMod A/D and D/A boards.

• between the S3SB and the PC via USB.

A simple one-way (simplex or half-duplex) three signal interface is described

in Section 11.8.1. This interface is the basis for:

• the connection between the C5510 and the AIC23 CODEC used to configure

the AIC23.

• the interface between the C5510 and the S3SB XVGA display unit.

Section 11.8.2 presents a bi-directional (full-duplex) bit-serial data link design

variation that closely models

• the C5510 – AIC23 interface used to move D/A values from the C5510 to

the AIC23 and A/D values in the return direction.

• a “high” speed link that can (and has) be used to move a 1 MHz sample

stream from the S3SB to the C5510.

The AIC23 and the Spartan-3 serve as the bus masters in these applications.

The following chapter builds on the material presented in this chapter and

takes up

• the communication between the C5510 and the AIC23 CODEC chip used

for A/D and D/A conversion on the C5510 DSK

• the interfacing and operation of the A/D and D/A PMod units used on the

S3SB.

Places to find information

Lots of material about serial transfers in general is available on the web. There

is very useful information on (or is it in?) the Wikepedia. Relevant Wikebooks

are also available.

The TI McBSP unit is documented in TMS320VC5501/5502/5509/5510 DSP

Multichannel Buffered Serial Port (McBSP) Reference Guide, SPRU592E.

The AIC23 Data sheet. The AIC23 is the part used on the C5510 for A/D and

D/A conversion.

Also see the data sheets for the A/D and D/A converters used on the EECS

452 lab’s PMod modules.

Chapter 11 118 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

11.1 Overview of bit-serial methods

A data interface generally has two aspects, a signal set and a protocol. We are

going to focus on a particular style of bit-serial interface sometimes loosely re-

ferred to as being serial peripheral interface (SPI), or SPI-like or SPI compatible

or . . . .

req_in

ack_out

d_outd_in

pull

(a)

demand driven channel

active passive

req_out

ack_in

req_in

ack_out

d_out d_in

push

(b)

data driven channel

active passive

req_out

ack_in

req_in

ack_out

d_out d_in

biput

(c)

bi-directional channel

active passive

d_outd_in

req_out

ack_in

Figure 11.1: Common dataflow and handshake configurations. a). b). c).

The common thread running through “SPI like” interface designs appears to

be

• the use of one (simplex) or two wires (full duplex) for data bits.

• a clock whose transitions are related to the data stream transitions. The

transmitter and the receiver are synchronous to each other,

• a pulse or level providing information about data word boundaries. This

waveform is used to establish data frame synchronization.

The protocol, the relationships between function and the waveforms, varies

significantly between devices.

Typically a one-way link, such as from a CPU to an A/D or D/A converter, will

use 3 signal lines or wires. Links such as one between the C5510 and the S3SB

might be duplex using four or more lines.

Figures 11.12 and 11.15 show the waveforms associated with two somewhat

different bit-serial interfaces that are used in EECS 452 to move data values be-

tween the C5510 and the S3SB.

Pretty much what happens is that device manufacturers attempt to make

their parts easy to work with for particular classes of applications. The processor

then has to do what is necessary in order to use the part.

When linking the C5510 to the Spartan-3 the C5510’s built in bit-serial sup-

port provides some structure that can be built on while the S3 is amorphous

Chapter 11 119 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

and pretty much can be made to do as desired. Both ends of the link are highly

configurable leading to having to choose among a large of possibilities. Life

sometimes is more simple if one does not have many choices.

11.1.1 The Serial Peripheral Interface

The serial peripheral interface (SPI).

• Nominally de facto standard.

• Synchronous serial data link.

• A Motorola (now Freescale) creation.

• Simplex or full Duplex

• Master/slave.

http://wikipedia.org/wiki/Serial_Peripheral_Interface_Bus.

A full duplex “SPI-like” interface uses four signal lines. One line supplies a

clock waveform that is used to determine event times on the other three lines.

One line is for data being transmitted from a device (TX). One line is for data

being received from a device (RX). The fourth line is to indicate the word bound-

aries (frame-sync) used by the data lines. In a processor/device system one of

the two entities is responsible for generating the clock and the frame-sync sig-

nal. This entity is referred to as the master and the other is referred to as the

slave.

The AIC23 CODEC present on the C5510 is a good illustration of the flexibility

that can be built into a device. Upon power on the AIC23 waits as a slave until

the processor programs the AIC23 configuration registers. This is done using a

half-duplex SPI port present specifically for this task. The AIC23 uses a second

port to move sample values to and from the processor (full duplex). In this case

the AIC23 is the master and controls the timing and the data transfers. The

configuration remains active and the characteristics of the second port (such as

sample rate) can be changed “on-the-fly”.

11.1.2 RS232

One of the earliest interfaces. Originally used between a phone modem and a

terminal. The RS-232 standard basically defines a set of signals, their function

and their electrical characteristics. It does not define things such as the con-

nector, word size, bit rates, character codes and the like. These have evolved

from practice. Early connectors used a 25-pin DB25 connector. Early in the PCs

history IBM implemented a signal subset using a 9-pin DB9 connector.

http://en.wikipedia.org/wiki/RS-232.
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Often the term RS232 loosely refers to a full duplex asynchronous data chan-

nel that uses signally typically found in real RS-232 devices.

Xilinx Application XAPP223 describes a UART implementation for use with

some of the (now) older FPGA families. It was written by Ken Chapman who

also created the PicoBlaze microcomputer. This gives a view of the UART at a

very basic VHDL level. EECS 452 projects have made use of the UART subsystem,

especially the 16 word FIFOs, contained in the PicoBlaze demonstration package.

11.1.3 Others

Combined clock and data.

High speed, differential signaling.

One wire.

Material to be added if/when used in lab.

11.1.4 Crossing clock domain boundaries

When communicating between independent devices such as the C5510 and the

S3 parts of the link operate using timing established by the C5510 and other

parts operate using timing established by the S3. In this case it is said that there

are two “clock domains”. There will be points where data needs to moved from

one domain into the other. These domain crossings need to be done with some

amount of care.

Consider a simple one bit D-register. Assume the D input is generated by the

C5510 and the clock generated by the Spartan-3. The two clocks are not related

in any particular way. Model that the value present on the D input is loaded into

the register on the rising edge of the clock input.

The D register has a period of time, the setup time, where the input must be

present prior to the clock rising edge in order to guarantee that the input value

is loaded into the register.

There is also a hold time where the D input has to be maintained following

the clock rising edge to guarantee proper operation. Generally the hold time is

0 ns.

The setup time is not (cannot be) zero. So, what happens if the D input

changes closer to the rising clock edge than it should? A condition termed

metastability can (and generally will) occur.

The register output can become neither a 0 nor a 1 but somewhere in between

and this condition can persist for as long as forever. When crossing between in-

dependent clock domains there is no way to guarantee that this will not happen.

However, there are things, very simple things, that a designer can do that will

reduce the probability of a missed clock tic will happen only once in day, or in

100 years or even the lifetime of the universe.

Chapter 11 121 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

Metastability is a real phenomenon. How to deal with it? Add delay. More to

come. For the present, use Google to learn more.

11.2 The TI McBSP bit-serial interface

TI has developed a bit-serial data transfer logic unit named Multichannel Buffered

Serial Port (McBSP). McBSP units are present across TI’s DSP product lines. The

C5510 DSP used in lab possesses three McBSP units.

Each McBSP unit supports two independently configurable bit-serial half-duplex

data ports, one for transmit and and one for receive. The two sub-ports can be

combined to function as a single full duplex port. Because of the creative rich-

ness of bit-serial interface designs in common use, TI has designed the McBSP

to be highly configurable. There are typically eleven 16-bit registers whose con-

tents have to be specified for any given application. Initially this is a daunting

task but after doing this a couple of times it becomes much less overwhelming.

As always, in order to become proficient it takes practice, practice, practice. TI

does provide a configuration tool as part of the DSP BIOS. The user fills in blanks

and the tool fills in the bits. HOWEVER, one still needs to know how to fill in the

blanks. Filling in the bits by hand is not all that difficult, as we will see.

Other manufacturers, facing the the same creative design richness, have equipped

their DSP devices with units having capabilities similar to those of the McBSP.

The FPGA designer also has to be able to work with a variety of interface struc-

tures but has the freedom (responsibility) to target the VHDL to work with the

component du jour. Bit serial interfaces are common and the person planning to

be a system designer and/or implementor needs to have a good understanding

of how to work with them.

The C5510 McBSP units are numbered 0, 1, and 2. Channel 0 is not used on

the DSK and is available for use via the peripheral connector.

The DSK uses McBSP channel 1 to initialize the AIC23. The C5510 is the

bus master. Once the AIC23 up and running channel can be used to reprogram

the AIC23 “on the fly". It is also possible to disconnect channel 1 from the

AIC23 and reroute its lines to the peripheral connector. Once the AIC23 has been

programmed many applications haven’t a need to change the configuration. For

these cases the channel 1 lines can then switched to the peripheral connector.

With care it probably is possible to switch the McBSP channel 1 lines between

the AIC23 and an external peripheral on an “as needed” basis.

Channel 2 is used by the DSK to move data back and forth between the C5510

and the AIC23 on a continuous basis. The AIC23 serves as the bus master. If the

AIC23 is not being used, McBSP 2 channel’s signal lines can also be rerouted to

the peripheral connector.
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The programming procedure used to redirect channels 1 and 2 from the

AIC23 to the peripheral connector involves the DSK’s CPLD and is not described

here. Consult the C5510 DSK Technical Reference Manual for information.

The C5510/S3SB systems in the lab have a cable connecting the C5510 exter-

nal peripheral interface (EPI) connector to the A2 40-pin connector on the S3SB.

A subset of the EPI signals are supported. Included are the six lines per McBSP

channel for channels 0 and 1. The signals connected by the EPI/A2 cable are

listed in Figure 11.5.

The two main sources for information about the McBSP system

• Introduction to McBSP, TI’s document number SPRU592E. This is a 285 page

document. The size indicates that some effort is going to be needed in

order to understand McBSP operation.

• TMS320VC5510 Fixed-Point Digital Signal Processor Data Manual, TI’s doc-

ument number SPRS607E. This documents the addresses of the McBSP reg-

isters in I/O space.

Because of its flexibility the McBSP is a very difficult device to internalize as a

whole. One needs to understand the range of applications that it is designed for

as well as its design and its operation. A reasonable way to develop the ability

to work with it is to read, study, SPRU592E and then apply the material to a few

simple projects. One reasonable starting point is writing C5510 support routines

for the AIC23. Another, the one used in this document, is to implement simple

data links between the C5510 and the Spartan-3. Data movement is an important

part of any DSP system and developing an understanding of the issues and some

of the ways such can be done is important.

As an aside, the McBSP represents only a small of the I/O support hardware

included in the C5510.

11.2.1 McBSP overview

The definitive McBSP document, SPRU592E, contains 285 pages. We only sketch

a basic overview. It is suggested that the entire contents of SPRU592E be at least

skimmed. The chapters that are most important to us are 2, 6, 7, 8 and 12. This

is not to imply that the other chapters are not important.

Figure 11.2 shows the overall structure of a single McBSP channel or unit.

Wording is a problem here. It feels uncomfortable to write “McBSP port” knowing

that it expands out to “Multichannel Buffered Serial Port port”.

Each McBSP nominally implements a full duplex bit-serial interface. A McBSP

unit is used to transmit and/or receive fixed length (such as 16 or 32 bit) values

using a bit serial link. These ports minimize the number of wires needed to

connect peripheral devices such as A/D and D/A converters to the C5510. This
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Figure 11.2: McBSP channel block diagram. (From TI SPRU592E)

greatly simplifies the interconnection design on a printed circuit board. There is

a corresponding cost increase for the supporting logic within the C5510 and the

peripheral device but with today’s technology this extra cost is very minimal.

As noted, a McBSP unit is a very flexible and thus complex device. We will

make use of a small part of its capabilities. Of primary concern will be the data

path shown in Figure 11.3 and the configuration registers shown in Figure 11.4.

These are located in the C5510’s I/O address space.
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Figure 11.3: McBSP channel block diagram. (From TI SPRU592E)

The McBSP input and output portions can be operated independently. For a

port input or output channel

• one of the devices at the end of the channel serves as either a master or as
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a slave,

• there is a line for transmitting data values in bit-serial form,

• the master generates a timing waveform that is to be used by the slave to

generate the bit-serial data,

• the master generates a frame-sync waveform that identifies a frame of sev-

eral n-bit values.

The McBSP system is extremely flexible and is intended for use in a large and

diverse number of applications. Because of this, a large number of decisions

need to be made regarding determining the control values for any particular

application. Once properly configured the McBSP runs well.

The key I/O space registers associated with a McBSP port are shown in Figure

11.4.

even addr odd addr Usage

DRR2 DRR1 Data Receive Registers

DXR2 DXR1 Data Transmit Registers

SPCR2 SPCR1 Serial Port Control Registers

RCR2 RCR1 Receive Control Registers

XCR2 XCR2 Transmit Control Registers

SRGR2 SRGR1 Sample Range Generator Registers

MCR2 MCR1 Multichannel Registers

PCR

Figure 11.4: Basic McBSP port control registers. The receive/transmit multichan-

nel enable registers are not shown.

Each register contains 16 bits. Registers are located in I/O address space in

such a way so that they can be read and written as 32-bit units. The McBSP port

0 register set starts at address 0x2800. The port 1 register set starts at 0x2C00
and the port 2 register set starts at 0x3000.

For a more complete description of the McBSP see the TI McBSP manual, TI

document SPRU592E. It will be very helpful at this point if the reader has at least

scanned this document.

Because we are not going to be involved in making multichannel transfers

there are fifteen registers that we will be dealing with. There four registers used

for data movement, DRR1, DRR2, DXR1 and DXR2 registers. There are four con-

trol register used to determine how the channel operates, RCR1, RCR2, XCR1 and

XCR2. Two registers are used in setting transfer rates. The two multi-channel

control registers are only of interest because we will have to make sure that this
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feature is not active. The pin control register (PCR) controls the functions asso-

ciated with several of the channel’s external pins. The PCR is used to switch use

of specific McBSP I/O pins to use as general purpose I/O pins (GPIO pins).

11.2.2 Accessing the McBSP registers using C

The McBSP registers lie in I/O address space. Chapter 5 of TMS320C55x Opti-

mizing C/C++ Compiler User’s Guide (SPRU281E) describes how to access values

in I/O space.

We need to be able to read and write the registers associated with McBSP

ports 0, 1 and 2. It would be nice if we could refer to the McBSP registers by

name say as,

McBSP_reg(port, register_name)

where port could take on the values 0, 1, and 2 and register_name would be

the same used in the McBSP documentation.

This is easily accomplished using a header file to contain symbol and macro

definitions. A file, McBSP_452.h, was created for this purpose. Define state-

ments are used to define register names. For example:

#define McBSP_DRR1 0x1
#define McBSP_DRR2 0x0

The string McBSP_ has been prepended in order make the register names being

defined very specific to the McBSP. This is considered a good practice. Unfortu-

nately, it also becomes quite the nuisance if the names are typed frequently.

The piece d’resitance in this effort is the macro definition:

#define McBSP_reg(port,register) \
(*((ioport unsigned *)((port*0x0400u)+0x2800u+register)))

.

Using this macro we can write C statements of the form

McBSP_reg(1, McBSP_XCR1) = 0x4322;
uTemp = McBSP_reg(1, McBSP_DRR1);

making both life easier and our code more readable. We could use a variable

rather than a constant to select the port making the code somewhat more gen-

eral.
There are other choices that could have been made. One alternative to the

above approach would be to define C macros for each I/O memory address used
the the various McBSP ports. A naming convention making use of the register
names found in the C5510 data manual would be quite reasonable. For example:
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#define DRR1_0 (*((ioport unsigned *)(0x2801u)))
#define DRR2_0 (*((ioport unsigned *)(0x2800u)))

.

.
#define DRR1_1 (*((ioport unsigned *)(0x2C01u)))
#define DRR2_1 (*((ioport unsigned *)(0x2C00u)))

.

.

Another choice could have to define register names with a single parameter

specifying the port. For example, DRR1(0). Generally it is worthwhile to exper-

iment a bit and see what works well and what doesn’t. Two significant goals

of whatever convention is chosen are to minimize the opportunities for making

programming mistakes and to make the programming task easier.

Appendix E contains a listing of McBSP_452.h.

11.2.3 Receiving values

To be written.

11.2.4 Transmitting values

Registers DXR2 and DXR1 are used to pass values from a program to the McBSP.

These are 16-bit registers. DXR2 is only used when it desired to send more than

16-bits per frame. When being used, it should be loaded prior to register DXR1.

Loading a value into register DXR1 initiates a transmission.

Register SPCR2 bits 2 and 1 can be used to determine the status of the McBSP

transmitter.

Bit 2: XEMPTY

If 0 the transmitter has completed transmitting and there is no value present

in DXR1. This bit is essential for operation under interrupts.

Bit 1: XRDY

If 0 the transmitter is not ready to accept a new value. The program should

wait until this bit becomes a 1 before loading a new value.

Send then wait until ready:

McBSP_DXR1 = value;
while((McBSP_reg(port), McBSP_SPCR2)&0x2) == 0);
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Wait if not ready then send:

while((McBSP_reg(port, McBSP_SPCR2)&0x2) == 0);
McBSP_reg(port, McBSP_DXR1) = value;

The latter approach allows the computer to compute while values are trans-

mitted waiting only when necessary.

11.3 RS232 on the C5510 DSK

Have Global Specialties dual channel RS232 daughter boards available. This sec-

tion remains to be worked on. Information about the DSK compatible RS232

boards can be found on the course web site.

11.4 Accessing the PC from the DSK

TI’s RTDX allows real-time data transfers. We don’t cover RTDX in this course.

One or two past projects have successfully used RTDX. One or two weren’t all

that successful.

C5510 C file read and writes access files on the PC. These break real time. So

does printf. There is either a problem reading and writing character data to

the PC, or some misunderstanding of how to do so. Use ASCII.

11.5 S3B Serial I/O

The Spartan-3 is relatively amorphous. One can pretty much do what one wants.

Generally, what is done is responsive. Generally a device being interfaced to has

a (hopefully) well defined interface which drives the VHDL design in the S3.

Life is a bit more complicated when interfacing the S3 to the C5510 McBSP.

The McBSP itself is highly configurable leading to the need to make lots of deci-

sions with little on which to base them.

The DSK and USB boards in the lab are connected using cables connecting the

DSK External Peripheral Connector (EPC) and the S3SB A2 connector. A 40-pin

cable is used. Only a subset of signals present on the EPC are connected.

Include a table giving the pin connected.
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11.6 S3SB RS232

The S3SB has a two channel RS232 level converter and one 9-pin RS232 connec-

tor. If necessary it should be possible to piggy-back a second connector onto the

existing one.

Xilinx’s Ken Chapman’s PicoBlaze demonstration design comes with a RS232

interface entity which also includes transmit and receive FIFO VHDL entities. The

PicoBlaze is described in Chapter 26.

11.7 Cables and connectors

11.7.1 S3SB A1 connector

EECS 452 usage is to not connect to this connector. The signals present on

this connector are also connected to the SRAM. The SRAM is used by the XVGA

display support. In effect, the XVGA display system is plugged into A1.

11.7.2 S3SB A2 connector to C5510 DSK EPI connector

Figure 11.5 shows the mapping from the C5510 DSK external peripheral inter-

face connector to pins on the FPGA.

11.7.3 S3SB B1 connector to MIB

Figure 11.6 shows the mapping of signals from the S3 FPGA to the socket posi-

tions on a MIB plugged into connector position B1. The convention used allows

ready mapping to the Nexys and Basys boards. The use of this naming conven-

tion is encouraged.

Figure 11.7 provides an alternate naming which maps directly to all MIB PMod

connectors.

Be careful when working with the MIB schematic. Digilent uses a convention

that reorders the pins on mating connectors. The connector labeled Peripheral

Board RA Female pin numbers match to the pins used on the S3SB socket. Nor-

mal EECS 452 usage is to mount a MIB on B1.

11.8 Examples:

One has to start somewhere. The following examples form a reasonable starting

point. Chapter 12 contains additional examples.
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EPI signal A2 FPGA

21 CLKX0 5 D5

23 FSX0 6 C5

24 DX0 7 D6

27 CLKR0 8 C6

29 FSR0 9 E7

30 DR0 10 C7

33 CLKX1 11 D7

35 FSX1 12 C8

36 DX1 13 D8

39 CLKR1 14 C9

41 FSR1 15 D10

42 DR1 16 A3

45 TOUT0 17 B4

46 TIN0 18 A4

48 INT2N 19 B5

53 INT1N 20 A5

59 RESETN 21 B6

64 DC_CNTL0 22 B7

-- D0 23 A7

-- D1 24 B8

-- RD 25 A8

-- D2 26 A9

-- WR 27 B10

-- D3 28 A10

-- RXF 29 B11

-- D4 30 B12

-- TXF 31 A12

-- D5 32 B13

-- D6 33 A13

-- D7 34 B14

Figure 11.5: Connector pin usage for the cable connecting the C5510 DSK exter-

nal peripheral connector to the FPGA via the S3SB A2 connector. Pins 23 through

34 are used to connect to the FT245R and FT232R USB boards.
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# MIB sockets on B1 names compatible with Nexys and Basys

# PMod A : J1 on MIB to B1
#
#NET "pmod_a<0>" LOC = "C10" | IOSTANDARD = LVCMOS33;
#NET "pmod_a<1>" LOC = "E10" | IOSTANDARD = LVCMOS33;
#NET "pmod_a<2>" LOC = "T3" | IOSTANDARD = LVCMOS33;
#NET "pmod_a<3>" LOC = "C11" | IOSTANDARD = LVCMOS33;

# PMod B : J3 on MIB to B1
#
#NET "pmod_b<0>" LOC = "R10" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<1>" LOC = "D12" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<2>" LOC = "T7" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<3>" LOC = "E11" | IOSTANDARD = LVCMOS33;

# PMod C : J5 on MIB to B1
#
#NET "pmod_c<0>" LOC = "M6" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<1>" LOC = "C16" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<2>" LOC = "C15" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<3>" LOC = "D16" | IOSTANDARD = LVCMOS33;

# PMod D : J7 on MIB to B1
#
#NET "pmod_d<0>" LOC = "F15" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<1>" LOC = "H15" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<2>" LOC = "G16" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<3>" LOC = "J16" | IOSTANDARD = LVCMOS33;

Figure 11.6: S3SB B1 PMod MIB socket connections.
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# Alternate naming for MIB on B1 .. 15July2007KM

# MIB J1 using B1
#
#NET "mib_j1_b1<0>" LOC = "C10" | IOSTANDARD = LVCMOS33;
#NET "mib_j1_b1<1>" LOC = "E10" | IOSTANDARD = LVCMOS33;
#NET "mib_j1_b1<2>" LOC = "T3" | IOSTANDARD = LVCMOS33;
#NET "mib_j1_b1<3>" LOC = "C11" | IOSTANDARD = LVCMOS33;

# MIB J2 using B1
#
#NET "mib_j2_b1<0>" LOC = "N11" | IOSTANDARD = LVCMOS33;
#NET "mib_j2_b1<1>" LOC = "D11" | IOSTANDARD = LVCMOS33;
#NET "mib_j2_b1<2>" LOC = "P10" | IOSTANDARD = LVCMOS33;
#NET "mib_j2_b1<3>" LOC = "C12" | IOSTANDARD = LVCMOS33;

# MIB J3 using B1
#
#NET "mib_j3_b1<0>" LOC = "R10" | IOSTANDARD = LVCMOS33;
#NET "mib_j3_b1<1>" LOC = "D12" | IOSTANDARD = LVCMOS33;
#NET "mib_j3_b1<2>" LOC = "T7" | IOSTANDARD = LVCMOS33;
#NET "mib_j3_b1<3>" LOC = "E11" | IOSTANDARD = LVCMOS33;

# MIB J4 using B1
#
#NET "mib_j4_b1<0>" LOC = "R7" | IOSTANDARD = LVCMOS33;
#NET "mib_j4_b1<1>" LOC = "B16" | IOSTANDARD = LVCMOS33;
#NET "mib_j4_b1<2>" LOC = "N6" | IOSTANDARD = LVCMOS33;
#NET "mib_j4_b1<3>" LOC = "R3" | IOSTANDARD = LVCMOS33;

# MIB J5 using B1
#
#NET "mib_j5_b1<0>" LOC = "M6" | IOSTANDARD = LVCMOS33;
#NET "mib_j5_b1<1>" LOC = "C16" | IOSTANDARD = LVCMOS33;
#NET "mib_j5_b1<2>" LOC = "C15" | IOSTANDARD = LVCMOS33;
#NET "mib_j5_b1<3>" LOC = "D16" | IOSTANDARD = LVCMOS33;

# MIB J6 using B1
#
#NET "mib_j6_b1<0>" LOC = "D15" | IOSTANDARD = LVCMOS33;
#NET "mib_j6_b1<1>" LOC = "E16" | IOSTANDARD = LVCMOS33;
#NET "mib_j6_b1<2>" LOC = "E15" | IOSTANDARD = LVCMOS33;
#NET "mib_j6_b1<3>" LOC = "G15" | IOSTANDARD = LVCMOS33;

# MIB J7 using B1
#
#NET "mib_j7_b1<0>" LOC = "F15" | IOSTANDARD = LVCMOS33;
#NET "mib_j7_b1<1>" LOC = "H15" | IOSTANDARD = LVCMOS33;
#NET "mib_j7_b1<2>" LOC = "G16" | IOSTANDARD = LVCMOS33;
#NET "mib_j7_b1<3>" LOC = "J16" | IOSTANDARD = LVCMOS33;

# MIB J8 using B1
#
#NET "mib_j8_b1<0>" LOC = "H16" | IOSTANDARD = LVCMOS33;
#NET "mib_j8_b1<1>" LOC = "K15" | IOSTANDARD = LVCMOS33;
#NET "mib_j8_b1<2>" LOC = "K16" | IOSTANDARD = LVCMOS33;
#NET "mib_j8_b1<3>" LOC = "L15" | IOSTANDARD = LVCMOS33;

Figure 11.7: Alternate connection definition to access all MIB J positions.
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11.8.1 DSK (master) to S3SB seven segment display

The goal is to implement a simple SPI type interface. The C5510 transmits 16-bit

values to the S3 where the values are displayed in hex using the seven segment

display.

At the C5510 end we need to program a McBSP transmitter to work in SPI

fashion. The McBSP receiver is not used in this application.

At the S3 end we need to implement a SPI like receiver. Driving the seven

display was covered earlier.

Chapter 6 of SPRU592 describes the use of the McBSP in an SPI setting.

11.8.1.1 Programming the McBSP transmitter

This is the topic covered in great detail in SPRU592E Chapter 8. Rather than

parrot the chapter contents it is suggested that the reader look at the original.

It is reasonable to assume that the reader has read, or at least looked at, the

preceding 7 chapters.

Based on having read Chapter we next skip to McBSP manual Chapter 12.

Chapter 12 does a register by register description. The register descriptions

provide a lot of coaching on what the described bit fields control. Only the bit

field values that that differ from the default settings are discussed. Figure 11.8

can be copied and serve as a work sheet to be filled in as we work through the

Chapter 12 register descriptions.

Register DRR2

Receive data high part. Not involved in configuring the McBSP.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register DRR1

Receive data low part. Not involved in configuring the McBSP.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register DXR2

Transmit data high part. Not involved in configuring the McBSP.
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register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DRR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DXR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DXR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPCR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XCR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRGR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRGR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MCR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11.8: Template for setting up a McBSP channel register values.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DXR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register DXR1

Transmit data low part. Not involved in configuring the McBSP.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DXR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register SPCR1

Bit 0 is used to reset the McBSP channel receiver. If zero, the receiver is placed

into the reset state. The receiver should be held in the reset state while being

configured. For this exercise only the transmit portion of the McBSP channel is

being used.

Bits 12 and 11 are used to configure the clock stop mode. The effect of these

bits on the clock/data timing is illustrated in Figure 11.9. Slightly arbitrarily we

will set these bits to 11.
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Figure 6 4. SPI Transfer With CLKSTP = 10b (no clock delay), CLKXP = 1, CLKRP = 0
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Notes: 1) If the McBSP is the SPI master (CLKXM = 1), MOSI = DX. If the McBSP is the SPI slave (CLKXM = 0), MOSI = DR.

2) If the McBSP is the SPI master (CLKXM = 1), MISO = DR. If the McBSP is the SPI slave (CLKXM = 0), MISO = DX.

Figure 6 5. SPI Transfer With CLKSTP = 11b (clock delay), CLKXP = 1, CLKRP = 1
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2) If the McBSP is the SPI master (CLKXM = 1), MISO=DR. If the McBSP is the SPI slave (CLKXM = 0), MISO = DX.

Figure 11.9: The effect of the stop mode bits on SPI transfer waveform timing.

(From TI SPRU592E.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPCR1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Register SPCR2

Bit 0 is used to reset the McBSP channel transmitter. The transmitter should

be held in the reset state while being configured. Once configured bit 0 should

be set to a 1. If the reset use sets any bits the same bit values need to be present

in the instruction used to take the transmitter out of reset.

Bit 7 if a 0 places the frame-sync logic into reset. Bit 6 if a 0 places the sample

rate generator into reset.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Register RCR1

Not used for this application.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register RCR2

Not used for this application.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register XCR1

Bits 7 through 5 set the word size. 000b selects 8 bits, 010b selects 16 bits.

A transfer size of 16-bit will be used.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCR1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Register XCR2

Bits 1 and 0 select the delay from frame-sync start and data. SPRU592 Chap-

ter 6 indicates that these bits should have value 01b when the McBSP is a master

and value of 00b when the McBSP is a slave.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Register SRGR1

Bits 7 through 0 specify the clock divide factor (value+1). We will configure

to use the 200 MHz clock divided down from the CPU clock (assuming that the

CPU is actually running at 200 MHz). Initially we will generate a 10 MHz clock.

The divide value is 1001b.
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register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRG1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Register SRGR2

To use the divided down CPU clock, bit 13 needs to be a 1. The low 12 bits

determine the duration of the frame-sync pulse, value+1. A count of 17 should

make frame-sync mimic Figure 11.9

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRG2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Register MCR1

Not used for this application.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MCR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register MCR2

Not used for this application.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register PCR

Bit 11 needs to be 1 in order to output frame-sync.

Bit 9 needs to be 1 in order to output the transmit clock. Bit 3 needs to be a

one to make the frame-sync pulse low (again to mimic Figure-refSPIstopmode.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCR 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
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Register SPCR2 to start running

Bit 7 needs to be one in order to start the frame-sync generator running. Bit

6 needs to be one in order to start the timing generator running. Bit 0 needs to

be one to right the transmitter out of reset.

register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPCR2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

Attention needs to be given to the possibility of unintended as well as in-

tended consequences when setting undiscussed bits to their 0 state.

Using the above register definitions and macro a simple C test program was

written and is shown in Figure 11.10

Figure 11.10: First try C code to send values to the S3SB via a SPI link using

McBSP channel 0.

McBSP channel 0 was used. The low 8 bits of SRGR1 sets the 200 MHz divide

down factor. The divide factor is the value of the bit pattern plus 1.

Working through the above set of steps was a little tedious. This is the nature

of the process. We were essentially following a supplied outline. We do this again

programming the AIC23 support in the following chapter. The name of the game

is practice, practice, etc. Unfortunately the one benefitting most from the above

effort was the author. At best, the reader learns vicariously. Try working though

this yourself.

A common question is “Do I need to know all this?”. Well, it depends on what

is meant by “know”. Knowing what information is present, how it is organized

and how it applies to a problem in hand is adequate. Getting to this level of

knowledge is one of the purposes of this exercise. Once one had gotten a McBSP

interface up and running it is often quite easy to simply modify it for the next.
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11.8.1.2 VHDL to display bit-serial data

The cable system connecting the C5510 external peripheral connector and the

A2 connector on the SB3 does not have a convenient place to connect a scope in

order to visually inspect the McBSP waveforms. This is easily handled by echoing

the signals onto the MIB (at connector B1) J1 where a test point module can be

used to give easy access. Use a wire connected to MIB J9 as the scope probe

ground point.

Figure 11.11: First try VHDL code to copy the waveforms received from McBSP

channel zero via the A2 connector to PMod_a on B1. This allows the waveforms

received from the C5510 DSK to be observed using an oscilloscope.

Figure 11.11 contains a listing of the VHLD code used to route the signals

received from the DSK’s McBSP channel to PMod_a on the B1 connector. Trivially

simple.

Figure 11.12 shows the observed waveforms. No surprises. Any problems in

getting the correct values to display on the S3SB seven segment display will be

in the VHDL.

Figure 11.13 contains the top level VHDL code connecting the seven-segment

display support with a serial-to-parallel VHDL entity. Figure 11.14 contains the

VHDL for the serial-to-parallel definition.

Note how simple the logic design can be made by using the frame-sync signal.

The way the design is written it essentially is word size independent.

The signals received from the DSK are copied to PMod_a.

11.8.2 DSK/S3SB loop back exercise

This example uses the Spartan-3 as the bus master. C5510 McBSP channel 0 is

used as the slave. This exercise can be used as the starting point for support for

moving a single channel of 12-bit 1 MHz samples from the PMod-AD1 board to

the C5510.

In this example the clock runs continuously and the frame-sync waveform is

a one clock period duration pulse. The serialized data bits occupy the 16 clock

periods following the frame-sync pulse. The waveforms for this implementation

are shown in Figure 11.15.

The clock, frame-sync and transmitted data waveforms are generated by the

Spartan-3. The C5510 uses the clock and frame sync to generate the Spartan-

3’s “receive” waveform (the McBSP transmit waveform. The naming sometimes

get confusing). There appears to be an delay between the transmit and receive

waveforms of about 20 ns. The link was operated at 12.5 MHz in Figure 11.15 in
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Figure 11.12: Top plot shows clock over frame-sync. Mid plot shows data over

frame-sync. Bottom plot shows data over clock. Time axis is 200 ns per division.

The data value used was 0x8251.

Figure 11.13: Top level VHDL for receiving values from the DSK and displaying

on the four digit seven segment display. Ignores the use of handshaking.
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Figure 11.14: Simple serial to parallel converter. Tailored to this example’s use

of frame-sync.

order to produce reasonably good looking plots. The link works reliability using

a 25 MHz clock. It does not work using a 50 MHz clock.

Because the timing is generated by the Spartan-3 there is only one clock do-

main in the FPGA. For this implementation, properly crossing the clock domain

boundary between the two boards is the responsibility of the McBSP.

In this example, the Spartan-3 controls when values are to be transferred.

A value is transmitted in each direction for each frame-sync. An application

beyond just loop-back testing might be for the Spartan-3 to take samples at a 1

MHz rate, send them to the C5510 to be filtered and then receive filtered values

back to be sent to a D/A converter.

Timing waveforms show that the data bit transitions occur on the rising edges

of the clock. The data is to be read using the falling edge. Because the Spartan-

3 is generating the clock it has the option of reading the received data values

using the rising edge. There is a causality chain that guarantees that this is safe

for the Spartan-3. The C5510 needs time to receive the clock and then act on

it. Conversely the C5510 cannot be sure that the data bits that is receives are

stable on the leading clock edge and must sample the data bits it receives using

the falling clock edges.

At the C5510 end this example the McBSP is programmed amost identically

as needed for moving data value between the AIC23 and the C5510. In this

case the AIC23 generates the sample clocks and needs to move the data values

in synchronism with the sample rate. It thus makes sense for it to be the bus

master.

Figure 11.16 shows the function used to configure McBSP channel 0 for this

example. The port number was hard coded. This should be changed so that the

function can be used with other ports. This example did not require changing

many control register bits from their default settings.

11.8.3 C5510 to S3SB half-duplex link with handshake

Used by the data path between the C5510 and the S3SB XVGA graphic display

system (Chapter 15). Display commands are generated by the C5510 and sent

via the McBSP to the S3SB for processing. The intent is to operate this path as

fast as possible. However not all commands take that same amount of time to

process. For example long lines take more time to draw than do short lines.

This is dealt with by using one of the unused McBSP receive lines as a hand-

shake signal. The XVGA support raises this line whenever it wants the C5510 to
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a

b

c

Figure 11.15: Loop back interface waveforms. Clock at 1.5 MHz. a) Top: data

sent by S3. Bottom: frame-sycn. Time scale: 200 ns/div. b) Top: data sent by

the C5510. Bottom: data sent by the S3. Time scale: 100 ns/div. c) Top: clock.

Bottom: frame-sync. Time scale: 100 ns/div. Data word was 0x8251.

Figure 11.16: Function used to set up McBSP channel for the loop back example.

Figure 11.17: The VHDL driver for use in the loop back example.
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wait up and then lowers it when the C5510 can resume. This is done by using

the PCR to reassign the chosen pin as a general purpose I/O pin. A small amount

of programming is needed in the C5510 to make use of this pin.

There can be more that one data value present in the McBSP pipeline before

the C5510 realizes it should wait up. Probably the easiest way to handle this is

to place a FIFO in the data path from the VHDL receive logic and the input to the

XVGA unit.

There are two components to the XVGA input interface design. The data link

and the handshake. The handshake consists of the single line used by the S3 to

tell the C5510 to hold off for a while.

void McBSP_plot(unsigned port, unsigned value)
{

while( ((McBSP_reg(port, McBSP_PCR))&0x0010)!=0 ); // wait on FPGA ready
while((McBSP_reg(port, McBSP_SPCR2)&0x0002) == 0); // wait on McBSP xmtr ready
McBSP_reg(port, McBSP_DXR1) = value; // send value to McBSP xmtr

}

The XVGA link uses a four wire interface. It can be used with the 40pin

EPI/A2 connection or using a “straight” 6-pin PMod type cable via the MIB. The

data link portion of the design is essentially identical to the that described in

Section 11.8.1. The needed changes in the McBSP configuration values can be

puzzled out from Figure 11.18

McBSP_reg(port, McBSP_SPCR2) = 0x0000; // stop xmtr
McBSP_reg(port, McBSP_SPCR1) = 0x1800; // clock stop mode, half cycle delay
McBSP_reg(port, McBSP_RCR1) = 0x0000;
McBSP_reg(port, McBSP_RCR2) = 0x0000;
McBSP_reg(port, McBSP_XCR1) = 0x0040; // 16-bit words
McBSP_reg(port, McBSP_XCR2) = 0x0000;
McBSP_reg(port, McBSP_SRGR1) = 0x0004; // low 8 bits is clock divide
McBSP_reg(port, McBSP_SRGR2) = 0x2011;
McBSP_reg(port, McBSP_MCR1) = 0x0000;
McBSP_reg(port, McBSP_MCR2) = 0x0000;
McBSP_reg(port, McBSP_PCR) = 0x1A08; // rcv as gpio in
McBSP_reg(port, McBSP_SPCR2) = 0x00C1; // start xmtr

Figure 11.18: The McBSP initialization for linking to the Spartan-3 XVGA support.

11.8.4 C5510/S3SB full duplex metastability demonstration

This example implements a full duplex link between the C5510 (master) and the

Spartan-2 (slave). Because the C5510 is the master it generates the frame-sync

and clock waveforms. The S3SB has a 50 MHz clock that it uses to clock the

FPGA logic. There are thus two clock domains in the Spartan-3.

Chapter 11 143 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

The link timing is controlled by the C5510 McBSP transmitter. The receive

clock and frame-sync lines are driven by the FPGA and are nominally copies of

the waveform generated by the McBSP transmitter.

The serial/deserial VHDL support in the Spartan-3 is driven by the C5510 data

clock. The movement of the transmit and receive data values is carefully coor-

dinated with the C5510 frame-sync event. A discussion of the timing involved

with these transfers needs to be added.

The FPGA receive logic generates a have-data waveform. This waveform rising

edges signal the reception of a data frame from the C5510. This waveform is

timed by the McBSP data clock. The S3 support living in the S3SB 50 MHz clock

domain looks for the rising edge.

One way to detect the have-data rising edge is to sample the waveform using

the 50 MHz clock. Comparing the sampled value to the current value should

allow determining when the waveform has changed state. For the rising edge, the

previous value should be a ’0’ and the current value a ’1’. Another approach

is to sample the have-data waveform using a two bit shift register in stead of a

single bit one and look for the rising edge using the register contents.

Checking into the performance difference of these two closely related edge

detection approaches is part of the upcoming lab exercise.

http://www.signalintegrity.com/Pubs/news/3_15.htm.

McBSP_reg(0, McBSP_SPCR1) = 0x0000; // stop rcvr
McBSP_reg(0, McBSP_SPCR2) = 0x0000; // stop xmtr
McBSP_reg(0, McBSP_RCR1) = 0x0040; // 1 16-bit word
McBSP_reg(0, McBSP_RCR2) = 0x0001; // delay data 1 bit
McBSP_reg(0, McBSP_XCR1) = 0x0040; // 1 16-bit word
McBSP_reg(0, McBSP_XCR2) = 0x0001; // delay data 1 bit
McBSP_reg(0, McBSP_SRGR1) = 0x0013; // low 8 bits divide clock
McBSP_reg(0, McBSP_SRGR2) = 0x2000;
McBSP_reg(0, McBSP_MCR1) = 0x0000;
McBSP_reg(0, McBSP_MCR2) = 0x0000;
McBSP_reg(0, McBSP_PCR) = 0x0A00; // use of clock edges

McBSP_reg(0, McBSP_SPCR1) = 0x0001; // start rcvr
McBSP_reg(0, McBSP_SPCR2) = 0x00C1; // start xmtr

Figure 11.19: McBSP configuration setup for full duplex metastability demon-

stration. The McBSP is the timing master. The clock runs all the time. The

frame-sync duration is 1 clock period long. Data starts immediately following

the frame-sync.

Figure 11.19 lists the commands used to set up McBSP channel 0 for this

example. The transmitter generates the data clock and frame-sync waveforms.
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The receive clock and frame-sync are expected to be identical. However, it is the

responsibility of the FPGA to generate them. If had beein desired the receive

timing could have been independent of the transmit timing. Decisions on what

choices are made are driven by the application.

11.8.5 S3SB transfers to/from the PC

Uses a USB/RS-232 interface board, purchased from SparkFun. The board uses

the FT232R chip and is mounted on the EPI/A2 connector. This unit is new to

EECS 452 as this summer. A simple loop back interface was implemented in the

Spartan-3 and PC test program was written using Watcom-C.

The FT245R device presents a dual FIFO interface to the device end (the

FPGA). We have not been able to make this unit work as reliably as we would

like. The FT232R presents a bit serial RS232 like interface with two handshake

lines. Its VHDL interface is a bit more complicated that that needed for the

FT245R and includes two small FIFOs of its own. The PC end code used for test-

ing is identical. The FT232R simply runs and runs and runs. We have mounted

FT232R units on all of the C5510/S3SB system in the lab.

Current data rate is about 400,000 bits/second. The USB data rate is 12 Mb/s

and the RS232 end rate is 3 Mb/s. It should be possible to do better. The parallel

FIFO FT245 runs only about 10% faster.

A goal for this semester is to use this data path to allow MATLAB to exercise

a VHDL FFT butterfly design in order to verify proper operation and to evaluate

the effects of varying word size and truncation/rounding procedures.
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12 : C5510 and S3SB A/D and D/A

conversion

The focus of this chapter is the interfacing and use of the A/D and D/A convert-

ers on the C5510 DSK and available for use on the S3SB.

The C5510 DSK uses the “TLV320AIC23 CODEC Stereo Audio CODEC, 8- to

96-kHz, With Integrated Headphone Amplifier” (data manual (SLWS106D) title.)

The term, codec derives from (compressor/decompressor). A codec typically

samples a waveform and compresses them in some non-linear way reducing

the bit rate. It also typically does the inverse. The AIC23 possesses two 16-bit

A/D converters and two 16-D/A converters. The compression/decompression

subsystem can be bypassed resulting allowing the part to act as a combined

dual channel A/D and dual channel D/A. This is a very flexible device and can be

configured under program control to operate in a number of ways.

There are numerous sections of the CCS help system that deal with both the

AIC23 interface and the McBSP. There are also code examples also included with

CCS. The associated header (.h) files are a valuable source of information.

The A/D and D/A converters available in the lab are mounted on small 6-

pin modules called PMods and were purchased from Digilent Inc. The Digilent

AD1 PMod provides two National Semiconductor 12-bit 1 MHz A/D converter de-

vices. The Digilent DA2 PMod provides two 12-bit 1 MHz D/A converter devices.

These are simple devices designed to be easy to be interfaced to and easy to be

controlled.

The C5510 AIC23 and the S3SB PMod units are powered using a single 3.3

Volt supply and use a bit-serial digital interface.

For the TI C5510 attention is given to

• the characteristics of the AIC23 CODEC chip,

• the user interface to the AIC23 implemented on C5510 DSK

• the TI McBSP bit-serial I/O interface,

• initializing the AIC23,

• controlling the data flow between the AIC223 and the C5510,

• accessing the TI sine ROM,

• direct digital synthesis (DDS) of a sine wave,

• dual-tone multi-frequency waveform generation,

• accessing files on the PC.
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For the Spartan-3 attention is given to

• the Digilent PMod A/D and D/A modules,

• bipolar analog waveforms using a single power supply,

• use of the S3 DCM to generate new clock frequencies,

• moving information across clock domain boundaries,

• creating a sinewave ROM using a block RAM (BRAM),

• direct digital synthesis of a sine wave,

• moving data between the S3SB and the PC.

Where to find helpful information

• The AIC23 data manual.

• The TI McBSP manual.

• The TI C5510 data manual.

• The MIB data sheet.

• The A/D PMod and A/D data sheets.

• The A/D PMod and D/A data sheets.

• Spartan-3 SB user manual.

• op-amp data sheet.

Details need to be added.

12.1 The C5510 and the AIC23 A/D–D/A

In order to understand and use the DSK’s AIC23 there are some basic questions

about the device itself that would be useful to have answered.

• How does one connect to it?

• What are the safe input levels?

• What is the input impedance?

• How is the input filtered?

• What are the expected output levels?

• What is the output impedance?

• How is the output filtered?

• What freedoms do we have in choosing the

– input and output sample rates,

– the number of input and output quantization levels,

– number formats,

• How is it configured and controlled?

• How are samples moved over the digital interface.

• What else?
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On the C5510 side we need to understand how the AIC23 is physically con-

nected, what hardware I/O support is present, and how to program the I/O sup-

port.

So how to proceed? A good place to start is the DSK’s data manual.

Consulting the TMS320VC5510DSK Technical Reference manual we find a

high level description of the AIC23 and its interface.

Consulting the data manual for the AIC23 we find that it is indeed a very

sophisticated device. The list of important features given in the data manual is

reproduced in Figure 12.1.

The C5510 DSK manual shows in its Figure 2-1 (reproduced here as Figure

12.2) that the AIC23 is interfaced to the DSK via two ports of the Buffered multi-

channel Serial Port (McBSP). McBSP port 1 is used for setting AIC23 control words

and McBSP port 2 is used to move stereo sample values values (two 16-bit values)

between the C5510 and the AIC23.

12.1.1 User connections to the AIC23

Input and output voltage levels and impedances should be of interest to a so-

phisticated user. Perhaps more to an unsophisticated one. This is material for

an exercise.

The schematic documenting the implementation of the AIC23 subsystem on

the C5510 DSK is contained in Figure 12.3. Components having the “value” NO
POP are not populated ( i.e., not present). The printed circuit board contains the

associated mounting pads for possible future addition of these parts.

The L1–L8 components (inductors) included in the circuit are ferrite beads.

These are used to add a small amount of inductance at RF frequencies. The

purpose is to reduce the possibility of the high clocks present on the DSK from

“getting into” to the audio waveforms. Included with the CCS DSK support is a

file giving a bill of materials (BOM) which lists all parts. This can consulted to

determine the supplier and part number of the parts used on the DSK. Doing

so for the beads and consulting the supplier’s data sheets show that at audio

frequencies the components can be reasonably modeled as 0 ohm resistors.

12.1.2 AIC23 internals

The CODEC is documented in a data manual, TLV320AIC23 Stereo Audio CODEC,

8- to 96-kHz, With Integrated Headphone Amplifier Data Manual, SLWS106D.

Checking the DSK schematics it determined that a 12 MHz clock is supplied to

the AIC23. The AIC23 uses this clock to set its internal timings. The sample rates

available for the A/D and the D/A converters are related but not necessarily the
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High-Performance Stereo Codec
90-dB SNR Multibit Sigma-Delta ADC (A-weighted at 48 kHz)
100-dB SNR Multibit Sigma-Delta DAC (A-weighted at 48 kHz)
1.42 V Ű 3.6 V Core Digital Supply: Compatible With TI C54x DSP Core Voltages
2.7 V Ű 3.6 V Buffer and Analog Supply: Compatible Both TI C54x DSP Buffer Voltages
8-kHz Ű 96-kHz Sampling-Frequency Support

Software Control Via TI McBSP-Compatible Multiprotocol Serial Port
2-wire-Compatible and SPI-Compatible Serial-Port Protocols
Glueless Interface to TI McBSPs

Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface
I2S-Compatible Interface Requiring Only One McBSP for both ADC and DAC
Standard I2S, MSB, or LSB Justified-Data Transfers
16/20/24/32-Bit Word Lengths
Audio Master/Slave Timing Capability Optimized for TI DSPs (250/272fs), USB mode
Industry-Standard Master/Slave Support Provided Also (256/384 fs), Normal mode
Glueless Interface to TI McBSPs

Integrated Total Electret-Microphone Biasing and Buffering Solution
Low-Noise MICBIAS pin at 3/4 AVDD for Biasing of Electret Capsules
Integrated Buffer Amplifier With Tunable Fixed Gain of 1 to 5
Additional Control-Register Selectable Buffer Gain of 0 dB or 20 dB

Stereo-Line Inputs
Integrated Programmable Gain Amplifier
Analog Bypass Path of Codec

ADC Multiplexed Input for Stereo-Line Inputs and Microphone
Stereo-Line Outputs

Analog Stereo Mixer for DAC and Analog Bypass Path
Analog Volume Control With Mute
Highly Efficient Linear Headphone Amplifier

30 mW into 32 . From a 3.3-V Analog Supply Voltage
Flexible Power Management Under Total Software Control

23-mW Power Consumption During Playback Mode
Standby Power Consumption <150 µW
Power-Down Power Consumption <15 µW

IndustryŠs Smallest Package: 32-Pin TI Proprietary MicroStar Junior.
25 mm2 Total Board Area
28-Pin TSSOP Also Is Available (62 mm2 Total Board Area)

Ideally Suitable for Portable Solid-State Audio Players and Recorders

Figure 12.1: Features of the AIC23 codec listed in its data manual. (From the

AIC23 data manual.)
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MIC IN

LINE IN

LINE OUT

HP OUT

ADC

DAC

McBSP2

DSP Format

0   LEFTINVOL

1   RIGHTINVOL
2   LEFTHPVOL

3   RIGHTHPVOL

4   ANAPATH
5   DIGPATH

6   POWERDOWN
7   DIGIF

8   SAMPLERATE

9   DIGACT
15   RESET

C
o
n
tr

o
l 
R

e
g

is
te

rs
LRCIN
BCLK

DIN

DOUT

LRCOUT
FSX2

DX2

CLKX

FSR2

CLKR

DR2

CS

SCLK

SDIN

McBSP1

SPI Format

FSX1

TX1
CLKX1

AIC23 Codec

Digital Analog

MIC IN

LINE IN

LINE OUT

HP OUT

Figure 12.2: The AIC23 and C5510 interface. (From the TMS320VC5510 DSK

Technical Reference.)

same. The anti-alias/image filter cutoff frequencies vary with the sample rates.

The filter transfer function characteristics can vary depending on the sample

rate. A total of 11 A/D and D/A sample rate combinations are available.

12.1.2.1 AIC23 configuration

The AIC contains 10 registers that determine how the device operates and one

register whose loading is used to cause a reset. The registers are listed in Figure

12.5.

The AIC23 control registers are 9 bits in length. Values are sent to the AIC23

as 16-bit units. The 7 most significant bits contain the address of the register to

be loaded and the 9 least significant bits contain the value to be loaded. It is not

possible to read the control registers back to the host processor.

The SPI interface. TI is the master. Registers to be programmed.

12.1.2.2 The data interface

The AIC23 becomes the master. Timing. Comment on DMA possibilities.

12.1.3 The DSK interface between the AIC23 and the C5510

The schematics for the DSK document the connections between C5510 device

and the AIC23. DSK schematic page 15 is shown in Figure 12.3. Two sets of
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Control
Interface

Digital
Filters

Digital
Audio

Interface

Σ–∆
DAC

Σ
6 to –73 dB,
1 dB Steps

Headphone
Driver

Σ–∆
DAC

Σ

6 to –73 dB,
1 dB Steps

Headphone
Driver

CLKOUT
Divider

(1x, 1/2x)

OSC

CS

SDIN

SCLK

MODE

DVDD

BVDD

DGND

LRCIN

DIN

LRCOUT

DOUT

BCLK

AVDD

VMID

AGND

RLINEIN

LLINEIN

HPVDD

HPGND

RHPOUT

ROUT

LOUT

LHPOUT

XTI/MCLK

XTO

CLKOUT

DSPcodec
TLV320AIC23

1.0X

1.0X

VADC

VMID

50 kΩ

50 kΩ

Σ–∆
ADC

2:1
MUX

VDAC

Σ–∆
ADC

2:1
MUX

Mute,
0 dB, 20 dB

VMID

50 kΩ

10 kΩ
VADC

12 to –34.5 dB,
1.5 dB Steps

1.0X

1.5X

VDAC

12 to –34 dB,
1.5 dB Steps

MICBIAS

MICIN

CLKIN
Divider

(1x, 1/2x)

Line
Mute

Line
Mute

Side Tone 
Mute

Bypass
Mute

Bypass
Mute

NOTE: MCLK, BCLK, and SCLK are all asynchronous to each other.

Figure 12.4: Functional block diagram of the AIC23 codec. (From the

TMS320VC5510 DSK Technical Reference.)
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address register

0000000 left line input channel volume control

0000001 right line input channel volume control

0000010 left channel headphone volume control

0000011 right channel headphone volume control

0000100 analog audio path control

0000101 digital audio path control

0000110 power down control

0000111 digital audio interface format

0001000 sample rate control

0001001 digital interface activation

0001111 reset registers

Figure 12.5: The AIC23 register set.

signals are shown.

The section of the AIC23 associated with control word transfers is connected

to the C5510 via McBSP port 1. Starting with schematic sheet 15 we can some-

what arduously trace the data path back to the C5510 shown on schematic sheet

2.

Sheet 13 shows the USB interface and the AIC23 as subsystems. Sheet 15

expands on the AIC23 subsystem. Sheet 8 shows the multiplexing and buffering

of the signals. Sheet 2 shows which pins on the C5510 that are associated with

the signals from sheet 8.

The sheet numbers and signals that propagate between sheets is shown in

Figure 12.6.

C5510 pin sheet 2 sheet 8 sheet 13 sheet 15

DX1 DSP_BDX1 DSP_BDX1 CTL_DX1 CTL_DATA

CLKX1 DSP_BCLKX1 DSP_BCLKX1 CTL_CLKX1 CTL_CLK

FSX1 DSP_BFSX1 DSP_BFSX1 CTL_FSX1 CTL_CS

Figure 12.6: Tracing the waveforms between the AIC23 data section and the

C5510 chip.

The section of the AIC23 associated with data transfers is connected to the

C5510 via McBSP port 2. Starting with schematic sheet 15 we can (still arduously)

trace the data path back to the C5510 shown on schematic sheet 2.

Sheet 13 shows the USB interface and the AIC23 as subsystems. Sheet 15
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expands on the AIC23 subsystem. Sheet 8 shows the buffering of the signals.

Sheet 2 shows which pins on the C5510 that are associated with the signals

from sheet 8.

The sheet numbers and signals that propagate between sheets is shown in

Figure 12.7.

C5510 pin sheet 2 sheet 8 sheet 13 sheet 15

DX2 DSP_BDX2 AIC23SDATAIN DATA_DIN SDIN

FSX2 DSP_BFSX2 LRCIN DATA_SYNCIN LRCIN

FSR2 DSP_BRSR2 LRCOUT DATA_SYNCOUT LRCOUT

CLKX2 DSP_BCLKX2 BCLK DATA_BCLK BCLK

CLKR2 DSP_BCLKR2 BCLK

DR2 DSP_BDR2 AIC23SDATAOUT DATA_DOUT DOUT

Figure 12.7: Tracing the waveforms between the AIC23 data section and the

C5510 chip.

One can learn a lot about a design by tracing interesting signals.

12.1.3.1 McBSP channel 1 setup for use with AIC23

Next we need to figure out what values are needed in the registers for port 1.

Checking the AIC23 data sheet we see that AIC23 control register interface can

be configured to use either the I2C or the SPI control protocol to read and/or

write values. Which convention is used is determined by the level on the MODE

pin. A quick check of the DSK schematic determines that the hardware is de-

signed to use the SPI protocol.

At this point we don’t know much if anything about either the I2C or SPI

protocols. The former has no relevance to the problem at hand while the latter

has become of great interest.

Rummaging through the McBSP manual (SPRU592A) it is discovered that (not

surprisingly) the McBSP supports the SPI protocol. Chapter 6 is dedicated to the

SPI mode.

At this point one should sit down and read both documents focusing on the

SPI.

Probably the first thing to be determined is which of the C5510 and the AIC23

is the master and which is the slave. The answer may differ depending on the

McBSP port.

Because the control interface needs to be used to program the AIC23 oper-

ation we start there. The AIC23 functional diagram shows the clock going into

the control interface. This indicates that for the control interface the chip is a

slave.

The AIC23 control interface uses three lines.

Chapter 12 155 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

• One line is for the control data being sent to the AIC. This is in 16-bit units.

The most significant 7 bits selects a register and the least significant 9 bits

are the value to be written into that register.

• One line is used for the clock that strobes values from the data line into

the AIC.

• The remaining line is latch control line. It is used to latch the deserialized

9-bit data value into the appropriate register.

B[15:9] Control Address Bits
B[8:0] Control Data Bits

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

MSB LSB

CS

SCLK

SDIN

Figure 12.8: The AIC23 control waveform timing. (From the AIC23 data manual.)

The relationship between these three waveforms is shown in Figure 12.8. The

AIC23 samples the serial data on the rising edges of the clock.

We still don’t know much about SPI but the first topic we encounter in the

McBSP SPI chapter is the clock stop mode. With Figure 12.8 in hand we should

be able determine the settings needed for the McBSP SPI clock stop mode.

The McBSP gives us four timing relationship choices for the clock stop mode.

All we have to do is compare the given timing diagrams with the one in the AIC23

sheet and we are home free, at least on this part.

• CLKSTP = 10b, CLKXP = 0, CLKRP = 0

The clock transitions high to low during the middle of the bit period. Can’t

use.

• CLKSTP = 11b, CLKXP = 0, CLKRP = 1

Looks good to me.

• CLKSTP = 10b, CLKXP =1, CLKRP = 0

Probably will work. Not comfortable with the start up clock timing but

should be ok.
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• CLKSTP = 11b, CLKXP =1, CLKRP =1

Negative transitions at mid bit interval. Can’t use.

We will go with the second choice. We will use a 16-bit frame size.

Section 6.5 of the SPI manual is titled Procedure for Configuring a McBSP for

SPI Operation. This is followed by section 6.6 McBSP as the SPI Master. There

is useful information present here but not a step by step procedure that we can

follow. Let’s fast forward to section 8.2 and the immediately following sections.

Next we work through the outlined steps making programming notes as we

go. We are not using the receiver and so will not make any changes there.

In order to guarantee a known starting point we will load the McBSP registers

with the default values set into them after a hardware reset. These values are

documented in the McBSP manual.

The McBSP prepend is dropped for the moment to keep line lengths (and the

amount of typing) manageable.

McBSP_reg(1, SPCR1) = 0x0000;
McBSP_reg(1, SPCR2) = 0x0000;
McBSP_reg(1, RCR1) = 0x0000;
McBSP_reg(1, RCR2) = 0x0000;
McBSP_reg(1, XCR1) = 0x0000;
McBSP_reg(1, XCR2) = 0x0000;
McBSP_reg(1, SRGR1) = 0x00FF;
McBSP_reg(1, SRGR2) = 0x2000;
McBSP_reg(1, MCR1) = 0;
McBSP_reg(1, MCR2) = 0;
McBSP_reg(1, PCR) = 0;

Next we will follow the steps outlined in Chapter 8 of the McBSP manual for

configuring the port 1 transmitter. We will assume that the register contents are

unknown and only the particular bits involved with a setting are to be altered.

Such might be the case if we had previously programmed the receiver.

1. To reset the transmitter, sample generator and frame-sync logic

McBSP_reg(1, SPCR1) = McBSP_reg(1, SPCR1)&(~0x00C1);

2. Setting the transmitter pins to operate as McBSP pins:

This is done by setting PCR bit 13 to a zero.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x2000);
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3. Disable digital loop back. This can be done by clearing bit 15 of SPCR1.

McBSP_reg(1, SPCR1) = McBSP_reg(1, SPCR1)&(~0x8000);

We might should define a symbol and avoid hard wiring constants into the

code.

4. Enable the clock stop mode bits in SPCR1.

Above we decided to use CLDSTP=11.

McBSP_reg(1, SPCR1) = (McBSP_reg(1, SPCR1)&(~0x1800))|0x1800;

We are a bit more general than needed here.

5. Enable/disable the transmit multichannel selection. Choosing disable.

McBSP_reg(1, MCR2) = McBSP_reg(1, MCR2)&(~0x0001);

Again we are more general than perhaps expected.

6. Choosing 1 or 2 phases for transmit. Choosing one phase.

McBSP_reg(1, XCR2) = McBSP_reg(1, XCR2)&(~0x8000);

7. Setting the transmit word length. Setting 16 bits.

McBSP_reg(1, XCR1) = (McBSP_reg(1, XCR1)&(~0x00E0))|0x0040;

8. Setting the transmit frame word length.

One value per frame is needed. Since we are only using one phase we only

need to set a value in XCR1.

McBSP_reg(1, XCR1) = McBSP_reg(1, XCR1)&(~0x7F00);

9. Enable/disable transmit frame sync ignore.

I think that this is a don’t care for this application.

10. Setting the transmit companding mode. Not for the control data values.

McBSP_reg(1, XCR2) = McBSP_reg(1, XCR2)&(~0x0014);

11. Setting the transmit data delay. Setting to 0 seems reasonable.

McBSP_reg(1, XCR2) = McBSP_reg(1, XCR2)&(~0x0003);

12. Setting the transmit DXENA mode. I don’t know. setting to 0 seems reason-

able.

McBSP_reg(1, SPCR1) = McBSP_reg(1, SPCR1)&(~0x0080);

13. Setting the transmit interrupt mode. Interrupts are later in the semester.

McBSP_reg(1, SPCR2) = McBSP_reg(1, SPCR2)&(~0x0030);
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14. Setting the transmit frame-sync mode. The discussion on this item indi-

cates doing the following operations for SPI use.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)|(0x0800);
McBSP_reg(1, SRGR2) = McBSP_reg(1, SRGR2)&(~0x1000);

15. Setting the transmit frame-sync polarity. The AIC23 needs sync low.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)|(0x0008);

16. Setting the SRG frame-sync period and pulse width. The frame sync period

needs to be at least as the frame size. A value of 18 should work.

McBSP_reg(1, SRGR2) = (McBSP_reg(1, SRGR2)&(~0x00ff))|0x0013;
McBSP_reg(1, SRGR1) = McBSP_reg(1, SRGR1)&(~0xff00);

17. Setting the transmit clock mode. The McBSP needs to generate.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)|(0x0200);

18. Setting the transmit clock polarity. This is the CLKXP signal which we de-

cided way above needs to be 0.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x0002);

19. Setting the SRG clock divide down value. This is determines the clock rate

for the control data. The value divided down is C5510 clock (I think). As-

suming a max clock of 200 MHz if we divide by 200 we get a 1 MHz control

clock to the AIC23. Seems reasonable. A value of 128 gives a reasonable

clock rate and is easy to convert to binary.

McBSP_reg(1, SRGR1) = (McBSP_reg(1, SRGR1)&(~0x00ff))|0x0080;

20. Choosing an input clock. Want to use the CPU clock.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x0080);
McBSP_reg(1, SRGR2) = McBSP_reg(1, SRGR2)|0x2000;

21. Setting the input clock polarity. This involves setting the CLKSP, CLKXP and

CLKRP bits. The CLKSP bit is not used for this application.

McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x0003);

22. Enable the transmitter.

McBSP_reg(1, SPCR2) = McBSP_reg(1, SPCR2)|0x00C1;

Away we go!

Chapter 12 159 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

Wow! We made it through the Chapter 8 transmitter check list. TI even

supplies forms to be filled out while going through this. They can be found in

the McBSP manual and are also available in the CCS help system. We will have to

go through this again for McBSP port 2, both for transmit and for receive.

Summarizing:

• SPCR1

McBSP_reg(1, SPCR1) = 0x0000;
McBSP_reg(1, SPCR1) = McBSP_reg(1, SPCR1)&(~0x8000);
McBSP_reg(1, SPCR1) = (McBSP_reg(1, SPCR1)&(~0x1800))|0x1800; McBSP_reg(1, SPCR1) =

• SPCR2

McBSP_reg(1, SPCR2) = 0x0000;
McBSP_reg(1, SPCR1) = McBSP_reg(1, SPCR1)&(~0x00C1)
McBSP_reg(1, SPCR2) = McBSP_reg(1, SPCR2)&(~0x0030);

• RCR1

McBSP_reg(1, RCR1) = 0x0000;

• RCR2

McBSP_reg(1, RCR2) = 0x0000;

• XCR1

McBSP_reg(1, XCR1) = 0x0000;
McBSP_reg(1, XCR1) = (McBSP_reg(1, XCR1)&(~0x00E0))|0x0040;
McBSP_reg(1, XCR1) = (McBSP_reg(1, XCR1)&(~0x7F00));

• XCR2

McBSP_reg(1, XCR2) = 0x0000;
McBSP_reg(1, XCR2) = McBSP_reg(1, XCR2)&(~0x8000);
McBSP_reg(1, XCR2) = McBSP_reg(1, XCR2)&(~0x0014);
McBSP_reg(1, XCR2) = McBSP_reg(1, XCR2)&(~0x0003);

• SRGR1

McBSP_reg(1, SRGR1) = 0x00FF;
McBSP_reg(1, SRGR1) = McBSP_reg(1, SRGR1)&(~0xff00);
McBSP_reg(1, SRGR1) = (McBSP_reg(1, SRGR1)&(~0x00ff))|0x0080;

• SRGR2

McBSP_reg(1, SRGR2) = 0x2000;
McBSP_reg(1, SRGR2) = McBSP_reg(1, SRGR2)&(~0x1000);
McBSP_reg(1, SRGR2) = (McBSP_reg(1, SRGR2)&(~0x00ff)|0x0013;
McBSP_reg(1, SRGR2) = McBSP_reg(1, SRGR2)|0x2000;

• MCR1

McBSP_reg(1, MCR1) = 0x0000;
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• MCR2

McBSP_reg(1, MCR2) = 0x0000;
McBSP_reg(1, MCR2) = McBSP_reg(1, MCR2)&(~0x0001);

• PCR

McBSP_reg(1, PCR) = 0x0000;
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x2000);
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)|(0x0800);
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)|(0x0008);
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)|(0x0200);
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x0002);
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x0080);
McBSP_reg(1, PCR) = McBSP_reg(1, PCR)&(~0x0003);

This distills down to a more manageable:

McBSP_reg(1, McBSP_SPCR2) = 0x0000; // stop xmtr
McBSP_reg(1, McBSP_SPCR1) = 0x1800;
McBSP_reg(1, McBSP_RCR1) = 0x0000;
McBSP_reg(1, McBSP_RCR2) = 0x0000;
McBSP_reg(1, McBSP_XCR1) = 0x0040;
McBSP_reg(1, McBSP_XCR2) = 0x0000;
McBSP_reg(1, McBSP_SRGR1) = 0x0080;
McBSP_reg(1, McBSP_SRGR2) = 0x2011;
McBSP_reg(1, McBSP_MCR1) = 0x0000;
McBSP_reg(1, McBSP_MCR2) = 0x0000;
McBSP_reg(1, McBSP_PCR) = 0x0A08;
McBSP_reg(1, McBSP_SPCR2) = 0x00C1; // start xmtr

12.1.4 Using McBSP port 1 to initialize the AIC23

At this point we have the capability to send control values to the AIC23 using

McBSP serial port 1. There are 10 8-bit registers in the AIC23 that need to be

programmed.

Studying the DSK schematic and the AIC23 data manual we see that the AIC23

is supplied with a 12 MHz clock. The AIC23 can use this to set the sample rate.

The AIC23 audio data channel also has a DSP mode designed to connect directly

to TI DSP devices. Because the AIC23 is controlling the sample timing it makes

sense that it be the master for audio data transfers on McBSP port 2.

It makes sense to do as was done in Spectrum Digital’s example, tone.c, and

simply place the required 10 AIC23 setup values in an array and use a function

to send the array contents to the AIC23.
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How does one send a 16-bit value to the AIC23 over McBSP port 1? Back to

the McBSP documentation we go.

Basically the McBSP transmitter has a register that we place values into when

it is empty. We check to see this register is empty and if so place a value into it.

If not, we wait until it is empty. There is a bit in the SPCR2 register that we can

check to see if transmitter data register is empty.

while((McBSP_reg(1, McBSP_SPCR2)&0x0002) == 0);
McBSP_reg(1, McBSP_DXR1) = value;

This can be made into a function or macro. Going the function route:

void McBSP_send(unsigned port, unsigned value)
{

while((McBSP_reg(port, McBSP_SPCR2)&0x0002) == 0); // wait
McBSP_reg(port, McBSP_DXR1) = value;

}

Some efficiency can be gained by letting the compiler expand this in line.

However, the savings will not be significant compared to the typical wait time

associated with the transfers.

The AIC23 initialization code can be written in the form

McBSP_send(2, 0) = 0x0F00; // reset the AIC23
for (ctr = 0; ctr < N_presets; ctr++) {

McBSP_send(2, *presets++)
}

The assumption here being that the preset values include the associated reg-

ister address in the top 7 bits of a 16 bit value.

With this code we can get the AIC23 up and running (hopefully). Once run-

ning, the AIC takes whatever is on the McBSP port 2 output and sends it to the

D/As and sends out A/D values to the McBSP port 2 input. The AIC23, being

the master, generates all the control and timing signals. The AIC23 runs au-

tonomously assuming the device attached to it is accepting the A/D values being

sent and sends values to be for the D/A.

However, at this point in our setup, McBSP port 2 is neither listening nor

talking.
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12.1.4.1 McBSP channel 2 setup for use with AIC23

Next we setup the transfer of audio data as sets of two 16-bit values, left and

right channel samples. McBSP port 2 needs to be configured to be compatible

with the waveforms generated by the AIC23.

LRCIN/

BCLK

DIN/
n n–1 01 n–1n

Left Channel Right Channel

1 0

MSB LSB MSB LSB

LRCOUT

DOUT

Figure 12.9: The AIC23 audio data digital waveform timing. (From the AIC23

data manual.)

We start by stopping the McBSP port 2 receiver and transmitter.

McBSP_reg(2, McBSP_SPCR1) = 0x0000; // stop rcvr
McBSP_reg(2, McBSP_SPCR2) = 0x0000; // stop xmtr

For setting up McBSP port 2 the use of the TI work sheets looks like the way

to go. We are now a bit higher on the learning curve and hopefully now have a

basic understanding of the McBSP.

This time we work through the registers on a register by register basis refer-

ring to McBSP manual chapters 7 and 8 as needed.

The AIC23 sends 2 16-bit words per frame, left channel followed by the right.

This can be read by the McBSP as a 32-bit value with the most significant part,

the left 16-bit value, placed into DRR2 and the least significant part, the right

16-bit value, placed into DRR1.

Conversely the AIC23 expects the C5510 to send two 16-bit values per frame,

left followed by right. A 32-bit frame can be used with the DXR2 being used for

the left part and DXR1 for the right part.

The data sent by the AIC23 should be sampled on the rising edge of the

receive clock. The data sent by the McBSP is expected to change on the falling

edge if the transmit clock.

Working through the register list in Chapter 12 of the McBSP manual we get:

McBSP_reg(2, McBSP_SPCR1) = 0x0000; // stop rcvr
McBSP_reg(2, McBSP_SPCR2) = 0x0000; // stop xmtr

Chapter 12 163 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

McBSP_reg(2, McBSP_RCR1) = 0x00A0; // 2 16-bit words/frame
McBSP_reg(2, McBSP_RCR2) = 0x0000;
McBSP_reg(2, McBSP_XCR1) = 0x00A0; // 2 16-bit words/frame
McBSP_reg(2, McBSP_XCR2) = 0x0000;
McBSP_reg(2, McBSP_SRGR1) = 0x0000;
McBSP_reg(2, McBSP_SRGR2) = 0x0000;
McBSP_reg(2, McBSP_MCR1) = 0x0000;
McBSP_reg(2, McBSP_MCR2) = 0x0000;
McBSP_reg(2, McBSP_PCR) = 0x0003; // use of clock edges

McBSP_reg(2, McBSP_SPCR1) = 0x0001; // start rcvr
McBSP_reg(2, McBSP_SPCR2) = 0x00C1; // start xmtr

Looking at the non-zero bits that resulted it appears that life is much simpler

when the peripheral acts as the master. The above set of configuration values

was a lot easier figure out than the ones for the control channel!

12.1.4.2 Changing sample rates on the fly

The McBSP channel was written in a way that it can be used to change the con-

tents of any AIC23 register nominally at any time.

There are lab exercises where a sample rate other than 48 kHz is desired. In

(far) past semesters this was done by changing the AIC23 support code. This

often led to later exercises being run using an unexpected sample rate. In order

to minimize such surprises, sample rates other than 48 kHz should be changed

by programs that require such as part of their start-up prologue.

12.1.4.3 McBSP programming when using interrupts

The McBSP system will be run under interrupts in the real-time FFT exercise.

How to do this will be discussed in Chapter 23.
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12.2 A/D, D/A and bit-serial I/O support on the S3SB

Figure 12.10: Component

sides of the PMod–AD1 (top)

and PMod-DA2 (bottom)

boards.

Digilent has developed a number of small circuit

boards that it refers as PMod modules. These 6-

pin modules are used to add various peripheral

devices to Digilent FPGA boards.

Picture to the left shows the the back sides

(where the components are mounted) of the Dig-

ilent PMod–AD1 (top board) and the PMod–DA2

(bottom board).

The pin spacing is 0.1 inches. The bottom

most pin on each module is Vcc .

The number of PMod modules that can be

added to a Spartan-3/3E board depends upon

which board is involved. The Basys and Nexys

boards have provision for directly connecting

four PMod modules.

The lab Spartan-3 Starter Boards use MIB boards to add eight PMod connec-

tion points per 40 pin board edge connector. There are three 40 connectors per

Starter Board. One would likely overload the SB power regulators before running

out of PMod slots.

Figure 12.11: Modified MIB.

The MIBs, as supplied by Digilent,

have eight 6-pin positions using connector

posts. We have modified the MIBs used in

the lab so they have four socket positions

and four posted positions.

For this exercise we will connect PMod

modules to the S3SB using a single MIB

that is plugged into the S3SB B1 connec-

tor.
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12.2.1 Connecting to the “real’ world

12.2.1.1 MIB

The naming conventions used by Digilent on the MIB pin/male end (plugs into

the S3SB) and the MIB socket/female end (for possible signal extension) can be a

bit confusing.

The connectors have two rows of positions. The top row corresponds to odd

numbered connections and the bottom row corresponds to the even numbered

connections. The pin end numbers go in direction opposite to the numbers used

on the S3SB 40 pin connector. The socket end numbers are one-to-one with

those used on the S3SB. Given that the MIB pins and sockets point in opposite

directions, this is not an unreasonable convention.

The mapping of MIB PMod connector pins to S3SB socket positions is most

easily done using the MIB female socket positions shown on the Digilent MIB

schematic. The names are the same. The following table relates PMod pins (left

most column) to positions on the S3SB connector that the MIB is plugged into.

PMod pin J1 J2 J3 J4 J5 J6 J7 J8

1 4 7 11 15 19 23 27 31

2 6 10 14 18 22 26 30 34

3 5 9 13 17 21 25 29 33

4 8 12 16 20 24 28 32 35

These pins have mapped into FPGA pins in the UCF files included in the lab

support files.

Positions J1, J3, J5, and J7 have 6-pin sockets. Figure 12.12 shows how the

connectors are described in the S3SB UCF file used in the lab exercises. In UCF

files the character, #, starts comments. Remove only those #’s associated with

the PMod positions being used.

It is often convenient to hang a wire out of the GND pin of the MIB’s blue

auxiliary power connector for use as a scope ground.

12.2.1.2 Single supply level shifting

The FPGA boards use a single supply voltage. The A/D converter expects an

input voltage between 0 Volts to 3.3 Volts. Many signal sources that we would

like to use swing (often reasonably symmetrically) between plus and minus volt-

ages. There are also instances where one would like to digitize a DC or semi-DC

voltage. An external DC coupled, perhaps level shifiting op-amp circuit can be

connected to the input of the A/D.

Chapter 12 166 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

It is desirable to power this circuit using the FPGA board 3.3 Volts and have

the output swing over the supply range. Op-amps exist, often referred to as

being rail-to-rail, that will allow us do this.

See Appendix-E for information about how to build a single level shifting

circuit for use at the A/D converter inputs.

12.2.2 The Digilent PMod-AD1 A/D module

Supports two A/D channels. Active (op-amp) DC coupled low pass filters are

included at the A/D inputs. Because the PMod-AD1 uses a 3.3Volt supply the

nominal A/D input voltage range is from 0 Volts to 3.3 Volts.

Uses National’s ADCS6476 1MSPS 12-bit A/D converter. SPI (and other bit-

serial protocols) compatible. We will only present a broad stroke view of the

device. See the data sheet for a more detailed description.

• Uses a three wire interface, chip select, clock and data.

• Samples are acquired on the falling edge of select.

• Maximum sample rate is 1 MHz.

• Full power input bandwidth using a 3.3Volt supply is 8 MHz.

• The maximum shift clock is 20 MHz.

• Data is transmitted using a 16-bit frame.

The input filters use a two-pole op-amp Sallen-Key configuration lowpass fil-

ter.

http://en.wikipedia.org/wiki/Sallen_Key_filter.

The bandwidth of this filter is nominally ?? kHz. The op-amp filter also isolates

the input sampling capacitor from the input to the module. This is a good thing.

From the data sheet:

“The sampling nature of the analog input causes input current pulses

that result in voltage spikes at the input. The ADCS7476/77/78 will

deliver best performance when driven by a low-impedance source to

eliminate distortion caused by the charging of the sampling capaci-

tance. In applications where dynamic performance is critical, the in-

put might need to be driven with a low output-impedance amplifier.

In addition, when using the ADCS7476/77/78 to sample AC signals,

a band-pass or low-pass filter will reduce harmonics and noise and

thus improve THD and SNR.”

Proper power supply bypassing is one of the concepts that is emphasized in

this course. Again, from the data sheet:
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Positive supply pin. These pins should be connected to a quiet +2.7V

to +5.25V source and bypassed to GND with 0.1 ţF and 1 ţF monolithic

capacitors located within 1 cm of the power pin. The ADCS7476/77/78

uses this power supply as a reference, so it should be thoroughly by-

passed.

Note the maximum distance requirement.

12.2.2.1 PMod-AD1 pin assignments

Digital interface:

1 chip select,

2 A/D 1 data bit stream,

3 A/D 2 data bit stream,

4 shift clock,

5 ground,

6 Vcc.

Analog interface:

1 A/D 1 analog input,

2 ground,

3 A/D 2 analog input,

4 ground,

5 ground,

6 Vcc.

12.2.2.2 PMod-AD1 analog input

Note that if we aren’t using a 1 MHz sample rate, or there abouts, the anti-alias

filter isn’t anti-aliasing. The filter on the board is most likely there to simply limit

the bandwidth of the input waveform. For significantly lower sample rates we

would add an external filter. Later in this exercise we very much want to see what

happens when a waveform is aliased. There are communications applications

where one can exploit aliasing by using it to frequency shift a waveform.

12.2.2.3 Sample and SPI interface timings

Include DCM use.
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# MIB sockets on B1 names compatible with Nexys and Basys

# Pmod A : J1 on MIB to B1

#NET "pmod_a<0>" LOC = "C10" | IOSTANDARD = LVCMOS33;
#NET "pmod_a<1>" LOC = "E10" | IOSTANDARD = LVCMOS33;
#NET "pmod_a<2>" LOC = "T3" | IOSTANDARD = LVCMOS33;
#NET "pmod_a<3>" LOC = "C11" | IOSTANDARD = LVCMOS33;

# Pmod B : J3 on MIB to B1

#NET "pmod_b<0>" LOC = "R10" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<1>" LOC = "D12" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<2>" LOC = "T7" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<3>" LOC = "E11" | IOSTANDARD = LVCMOS33;

# Pmod C : J5 on MIB to B1

#NET "pmod_c<0>" LOC = "M6" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<1>" LOC = "C16" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<2>" LOC = "C15" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<3>" LOC = "D16" | IOSTANDARD = LVCMOS33;

# Pmod D : J7 on MIB to B1

#NET "pmod_d<0>" LOC = "F15" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<1>" LOC = "H15" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<2>" LOC = "G16" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<3>" LOC = "J16" | IOSTANDARD = LVCMOS33;

Figure 12.12: Contents of the default EECS 452 S3SB UCF file defining the sock-

eted MIB positions. An alternate set of NET definitions is available that will give

access to all eight MIB positions. The naming used here is consistent with that

of the four PMod connectors present on the Digilent Basys and Nexys boards.
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Figure 12.13: PMod-AD1 block diagram. (From the Digilent PMod–AD1 user man-

ual.)

Figure 12.14: ADCS7476MSPS A/D converter timing diagram. (From the National

Semiconductor ADCS7476MSPS data sheet.)
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12.2.2.4 A bit-serial A/D interface implementation

12.2.3 The Digilent PMod-DA2 D/A module

12.2.3.1 PMod-DA2 pin assignments
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 VCC

DAC121S101
D/A

Converter

DAC121S101
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Converter

D2

D1

2 Sync,
Clock

Analog Outputs
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Figure 12.15: PMod-DA2 block diagram. (From the Digilent PMod–DA2 user man-

ual.)

Digital interface:

1 sync,

2 D/A 1 data bit stream,

3 D/A 2 data bit stream,

4 shift clock,

5 ground,

6 Vcc.

Analog interface

1 D/A 1 analog output,

2 no connection,

3 D/A 2 analog output,

4 no connection,

5 ground,

6 Vcc.

12.2.3.2 D/A analog output

12.2.3.3 Load and SPI interface timings

The required relations between the clock, status and data waveforms is shown

in Figure 12.16.

Key things to note from the diagram and from the data sheet:

• The maximum clock rate is 30 MHz. We typically use a 50 MHz clock on

our Spartan-3 boards and sequence between states at this rate. We can

generate a 25 MHz clock using two 50 MHz states between transitions.
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20114906

Figure 12.16: DAC121S101 D/A converter timing diagram. (From the National

Semiconductor DAC121S101 data sheet.)

• The data bits are sampled by the DAC on the falling edges of the clock. The

data bits should be settled and stable at the time the DAC samples.

• The sync waveform expected to make its transitions on clock rising edges.

• The D/A clock expects 16 periods of the D/A clock starting on the falling

edge of the sync.

• The sync should be kept low the full 16 tics. Can then go high or stay low.

Needs to be high for no less than one DAC clock period.

• The first two bit clocked in are don’t cares. The next two bits are for con-

trol. If both are zero then “normal” operation results. The 12-bits to be

loaded into the DAC follow, most significant to least significant.

• The falling edge of the clock following the loading of the 16-th bit transfers

the shifted in value into the D/A output register.

12.2.3.4 A bit-serial D/A interface implementation

12.2.4 Connecting via a UCF file

12.2.5 Changing sample rates

Can use counters.

Can use DCMs.

Can use direct digital synthesis (DDS) to synthesize a clock. More on this in

Chapter 13.

12.3 Snap together projects

Work in progress. Not for this semester.
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This section is new this semester. Might be required, optional, or simply

a show and tell exercise. Would like to have this section included starting in

exercises 3 (2?) and on. Of course some planning will be needed so that the

pieces do pretty much “snap” together.

12.3.1 Project 1

Basic idea is to implement a data flow from the TI to the PC via the S3SB. Use

the TI to generate a DTMF waveform with one line lower than the other. Samples

sent over the McBSP to the S3SB. There they are used to multiply samples of a

carrier generated in the S3 using a DDS. Have to interpolate samples somehow.

The samples of the modulated carrier are sent to the PMod DA2. There they are

sampled using PMod AD1 using bandpass sampling to lower the sample rate.

The samples are then sent via USB to a file on the PC. There the spectrum can be

examined off-line (not realtime) using MATLAB.

12.3.2 Project 2

Listening tests to demonstrate effects of reducing the number of A/D and D/A

bits and the sample rate. How bad does 4000 Hz, one bit sampling sound. Simple

Delta/Sigma DAC demonstration.
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13 : Direct Digital Waveform Synthesis

The focus of this chapter is the basic understanding and implementation of a

specific method of digital waveform synthesis called Direct Digital Synthesis,

DDS.

The advantages of digital techniques for waveform generation as compared

to analog methods include:

• repeatability of operation,

• repeatability from unit to unit,

• greater versatility (features),

• greater changeability (programmable),

• increased reliability,

• low sensitivity due to changes in temperature and aging,

• lower component costs,

• lower manufacturing costs.

Today’s technology makes possible the use of digital techniques in a vast

range of applications resulting in high performance low cost.

Although it is true that with digital systems there are inherent errors due

to finite word length, aliasing and imaging these errors can be guaranteed to

remain below certain levels by careful system design. Some of the highest quality

waveform generators available today use digital waveform synthesis techniques

to generate analog waveforms.

Arbitrary waveform generation is exclusively in the realm of digital signal

processing because it is extremely difficult (if not impossible) to synthesize ar-

bitrary waveforms using analog circuitry.

The most obvious limits on digital waveform synthesis are those imposed by

the speeds at which the digital logic can be clocked and by the performance of

the D/A converter.

Attainable digital processor/hardware operating speeds place an upper limit

on the analog frequencies that can be created using DDS. This limit has been

steadily increasing year-by-year. Analog Devices recently introduced a pair of

DDS chips (AD9910 and AD9912) that can generate sine waves at frequencies up

to 400 MHz. The analog output is accomplished using a on-chip 14-bit D/A con-

verter. The quantity 1000 price, as of July 2007, was slightly under $35. Higher

frequencies remain in the domain of analog techniques. One way to effectively
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extend a DDS device’s output frequency is to combine with an analog oscillator

and an analog frequency mixer. The combination is used to frequency shift the

DDS output to higher frequency bands.

13.1 References

Analog Devices DDS device data sheets

Analog Devices DDS handbook

Analog Devices web site, http://www.analog.com/ .

Books about DDS methods

Some journal articles.

13.2 Basic DDS operation

The basic steps involved in the direct digital synthesis (DDS) of a waveform are

readily stated:

• Program samples of the waveform to be generated into a read-only-memory

(ROM).

• Use a binary counter connected to the ROM address lines to generate se-

quential addresses.

• Clock the counter at a fixed rate.

• Connect the ROM output lines to a digital-to-analog (D/A) converter.

ÅçìåíÉê olj aL^
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Figure 13.1: Basic direct digital synthesizer block diagram.

As almost always there are a few details that need to be worried about. Figure

13.1 illustrates the basic hardware involved. The D/A output will generally be

followed by an anti-image filter (not shown).

If the waveform being generated is aperiodic (e.g., a burst) then some means

is needed to turn the D/A off once all of the samples have been converted.
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If the waveform is to be periodic (e.g., a sine wave) then it is reasonable to

program one period’s worth of samples into the ROM and design the counter so

that it resets once the samples for one period have been D/A converter. Often a

binary counter is used over its full numeric range giving the modulo-one period

effect for free.

We will focus on generating a periodic waveform, generally a sinusoid.

There many ways one can implement a DDS. We will use binary word sizes

and binary arithmetic. There are (or more accurately were) available commercial

waveform generators that based on the use of BCD arithmetic. The Rockland

Model 5100 was one.

Write the number of ROM address lines as Na. This supports 2Na ROM mem-

ory locations.

Let Nd be the number of ROM output bits. This supports 2Nd output levels.

The values programmed in the ROM are assumed to have been rounded.

The number of input bits possessed by the DAC is assumed to equal this. If a

ROM is used that has more bits than does the DAC that follows it the extra bits

can be ignored or used for some other task.

The sample clock frequency will be written as fs and is assumed to be non

time-varying.

The counter counts from zero to its maximum value of 2Na − 1 and then, in

effect, resets to zero and repeats. It is a reasonably simple matter to check ROM

addresses and make them modulo some value other than an integer power of

two.

For the case at hand, there are 2Na counts per period. The period of the

analog output waveform is

Tp =
2Na

fs

with the resulting frequency being

fp =
1

Tp
=
fs

2Na
.

As an example, let NA = 10 and fs = 50 MHz. If the ROM is programmed with

samples of sine function then the resulting analog output is a sinusoid, sampled

1024 times per period and is at a frequency of 50,000,000/1024 = 48,828.125

Hz.
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The only controls of the analog output frequency are the the sample clock

and the number of address bits. The sample clock frequency is typically fixed

set and so is the ROM size.

What can be done to increase the number of choices?
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Figure 13.2: Counter block diagram.

Looking at the logic typically used to implement a counter logic contained in

Figure 13.2 some ideas come to mind:

• Add logic to shorten the counter cycle.

• Add bits to the low end of the counter. For example, adding two bits means

that it will take four clock tics in order to cause a change in the ROM ad-

dress. The D/A is effectively operated at a four times lower clock rate. The

output frequency is thus four times lower.

• Instead of having a clock tic advance the counter by one, advance it by

some other number.

• Do two or more of the above.

In the spirit of “there is no such thing as a free lunch”, there is going to be

price which generally paid in a change in the quality of the output waveform.

Consider changing the counter increment from 1 to NFTV. The counter, on

the average, will cycle through its count cycle NFTV times faster. As long the

waveform in the ROM is sampled at least times twice per cycle things are likely

OK. At least the possibility of OK exists.

On the average, the frequency of the analog output waveform will be

fp = NFTV
fs

2Na
Hz.
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NFTV is sometimes referred to as the frequency tuning value.

The quantity

fFTF =
fs

2Na

is termed the fundamental tuning frequency (FTF).

Next consider increasing the number of bits in the counter register and adder

from Na to Nc . The ROM address bits will now connect to the top most Na
counter bits. These are the most significant bits in the count value. The frequen-

cies that can now be generated are

fp = NFTV
fs
2Nc

Hz.

and fFTF becomes

fFTF =
fs

2Nc
.

The DDS block diagram is now as shown in Figure 13.3.
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Figure 13.3: Enhanced DDS block diagram.

The counter register essentially implements a phase accumulator. The values

added into it advance the ROM address which corresponds to changing the phase

of the output waveform.

Increasing the number of bits in the adder/register combination has the effect

of lowering the lowest frequency that can be generated as well as decreasing the

step size between the values that can be generated (i.e., increasing resolution).

The number of ROM address bits can be increased accordingly or left connected

to the top Na bits of the accumulator register.

Note that fp is the average frequency of the waveform that is generated. On

a sample by sample basis there is going to be some deviation between the exact

desired output values and what is produced, effectively time jitter.
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There are two issues that are of most concern at this point. The first is the

accuracy at which a given frequency be generated and the other is jitter in the

sample times used in the synthesis.

First consider the accuracy issue:

Using a step value other than one has significantly increased the num-

ber of frequencies that can be easily generated. However, the set of

frequencies that can be generated still has limits. For example, as-

sume fs = 48000, Nc = 8, and that a value of fp = 1000 Hz is desired.

Solving for NFTV gives

NFTV ≈
256× 1000

48000
≈ 5.333 · · · .

Using a value of 5 gives an error of 62.5 Hz. This is an error of about

6.3%.

For a given desired fp the maximum error in NFTV caused by rounding

will be ±0.5. This amount of error produces a frequency error in the

output of magnitude

fe =
fs

2Nc+1
Hz.

Increasing Nc increases the resolution with which fp can be set. How-

ever making Nc large relative to the value of Na causes a more stair-

step like analog output which gives rise to (likely) unwanted frequency

components. A similar situation exists with using too few bits in the

D/A converter word size. As is common, pushing down on one prob-

lem pops up another.

Now an example (with a bit of hand waving). Low cost crystal oscilla-

tors typically have a frequency accuracy of 0.01%. Assume that a DDS

is desired that has an accuracy of about that order. A typical clock

frequency might be 10 MHz. Assume that a nominal 1000.0000 Hz

frequency is desired.

fe = 10−4 =
106

2Nc+1
.

The phase accumulator should use at least Nc = 32 bits.

Next consider the jitter issue:
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Again, an example. Consider the situation where Na = Nc = 8 and

the values of fs and fp are such that NFTV = 3, precisely. This cor-

responds to a value of fp = 3fs/256. The ROM is programmed with

samples of one period of the sine function. The counter is started

with an initial value of zero. The desired zero crossings of the output

analog waveform locations are at clock tics 85 1/3, 170 2/3, and 256.

Only the last is possible. The ROM addresses selected at these sam-

ple times are 255, 254, and 0. The first two periods each have a zero

crossing slightly later than that of an ideal waveform. The amount of

error at the end of the third period is zero. This pattern repeats every

three cycles of the output waveform.

This jitter of the zero crossing times is in effect a phase/frequency

modulation that gives rise to artifacts in the spectrum of the synthe-

sized waveform. In many situations these are not of concern, how-

ever, there are applications (e.g., RF communications) where these

artifacts can interfere with signals significantly far away in frequency

from the one being generated.

There is much more to the topic of DDS generation than we can deal with

here. However one should be aware that for many applications one needs to

carefully select word sizes and sample rates. It might be necessary to even mod-

ify the design of the DDS hardware in order to reduce the amounts of artifacts

in the resulting output spectrum. There was a recent article in the IEEE Signal

Processing Magazine’s DSP Tips and Tricks column illustrating measures that

one can take in order to reduce waveform artifacts. The issue was volume 24,

number 4, July 2007.

Recapping:

• Nc is the number of bits in the phase accumulator. The accumulator has

2Nc states.

• NFTV is the frequency tuning value. This is a Nc-bit integer that is used to

set the frequency of the output sinewave.

• fs is the rate at which the contents of the phase accumulator are updated.

• Na is the number of bits used to address the sinewave table. There are

2Na values in the table. If Nc > Na, and very often this is the case, the top

most Na bits of the phase accumulator are used. In this situation the least

significant accumulator bits are not being used as address bits however

they do have an effect on the generated frequency.

• Nd is the number of bits used by the D/A converter to generate analog

values. There are 2Nd D/A output voltage levels.
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The smallest usable FTV value is 1. If this value is added to the contents of

the phase accumulator at the fs clock rate then the rate at which the accumulator

cycles is

fFTF =
fs
2Nc

. (13.1)

which is called the fundamental tuning frequency. (FTF).

For a desired output frequency, fp, the required frequency tuning value, NFTV

is

NFTV =
fp2Nc

fs
.

This is usually rounded to the nearest integer.

The DDS method of generating waveforms is approximate. The more bits

used, the larger the waveform table. The faster the counter is clocked the better

desired waveform can be approximated. Sources of waveform distortion include:

• The skipping of states in the phase accumulator. The frequency is as ad-

vertised being correct on the average.

• The use of a limited number address bits in the sine table.

• The use of a limited number of bits to represent sine values.

The designer of a DDS system must balance effects of these distortion sources

when deciding on the number of bits to be used by each component and update

frequency, fs to be used.

13.3 Modulating a DDS generated waveform

To amplitude modulate multiply the ROM contents by samples of the moduating

waveform with the result going to the D/A.

To accomplish phase modulation add samples of the modulating signal to

the counter output after the feedback and prior to the D/A.

To frequency modulate add samples of the modulating signal to the FTV.

As always, one must think carefully about the scalings and rates involved.

There is little substitute for knowing what you are doing.

13.4 Implementing a DDS in the C5510

In order to implement a DDS we need a table of sine values, an accumulator, a

clock source and a way to send values to the D/A converter. We have the choice

to work either in C or assembler.

The size of sine table is one of the major limiting factors in quality of the

analog output of the DDS waveform generator. The effective accuracy of the

sine table can be increased in a number of ways. These include:
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• increasing the table size,

• use a table containing only one quarter of a sine wave and use the symme-

tries of the sine function to use this table to generate values that a four

times longer full period table would hold,

• interpolating values between values in the table,

• not using a table and computing values directly.

13.5 Implementing a DDS in the Spartan-3

To be added

13.6 Measuring DDS artifact performance

In many communication system applications it is important that the spectrum

of the DDS output does not have significant energy at frequencies other than the

one being generated. “Significant” generally means “very low” relative to that of

the desired waveform. A system designer has to decide what “low” is. This most

likely based on conditions set down by a regulating agency such as the Federal

Communications Commission.

DDS units find application as generators of samples of a sine wave (as sub-

system component in a larger system) and as direct generators of analog wave-

forms. In the latter case the D/A converter can, and likely does, add artifacts of

its own.

There has been a significant amount of theoretical work done attempting pre-

dict the levels of the spectral contributions, termed artifacts or spurious lines,

by the number of bits used to quantize the waveform, the number samples per

period, the phase accumulator size, and synthesis jitter. (Give a reference or

two.)

The evaluation of the effects of generating a sine wave using the DDS method

is typically done in the frequency domain using DFTs. For this method to be

valid (i.e., work as hoped for) the number of values used in forming the DFT

must be chosen so that the waveform being analyzed is periodic. This is very

important!

Mathematically a data set containing N infinite precision samples from an

integer number of periods of a periodic waveform has non-zero values from

only the fundamental and possibly the harmonics.

If there are not a precisely integer number of periods of the waveform there

will be a phenomenon termed leakage. This is where signal energy leaks from

the signal frequencies into other frequencies. We will talk more about leakage

later in Chapter 23.
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We don’t have infinite precision samples so, from this error source alone, it

is likely that almost all values in the DFT output are non-zero. This is quanti-

zation noise. Using the simple statistics covered Chapter 2 we can estimate the

expected levels. The result can be used as a level at which it probably does not

make sense to require the other artifacts to be below.

Let’s forgo theory and investigate the artifact performance of DDS generators

by simulation and by capturing samples from actual implementations. If the

simulations and the implementations are correct the results should be identical.

A good place to start in planning a artifact hunt is by relating sample rates,

FTV values, output frequencies and DFT size.

Consider the situation where the DDS is implemented the C5510 using the

AIC23 48 kH sample rate. The C5510 works well using 32-bit C longs so the

phase accumulator will use 32 bits.

The attainable frequencies for a 32-bit accumulator direct digital synthesizer

implementation clocked at 48 kHz are

fo =
NFTV × fs

2Nc
=
NFTV × 48000

232
=
NFTV × 3× 53

225
.

The number of samples in M periods for a given value of fo is Mfs times the

waveform period 1/f0 :

Nf0 = fs
M

fo
=

48000M

fo
.

The values of M and f0 have to be chosen so that Nf0 is an integer.

Let’s look at a few examples.

• For f0 = 1000 Hz we have

NFTV = 228/3 ≈ 89478485.33333.

This is not an integer. We cannot synthesize a sine wave at precisely 1000

Hz using these parameters. We can come close but that’s all. If a value

of FTV = 89478485 is used there is a frequency error of 3.725 × 10−6 Hz.

Most commonly encountered frequency sources are not this accurate. This

accuracy if probably good enough for most applications.

To have an integer number samples in Np periods using this value of NFTV

requires

N = Np ×
232

89478485

be integer. The smallest value of Np for which this is so is 89478485. (The

numerator and the denominator are relatively prime.) Use of this value

results in a DFT of 232 values. This is not a very convenient size!

Chapter 13 184 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

• For fo = 1125 = 3 × 3 × 53 Hz we have FTV = 3 × 225. A value of Np is

required such that

NFTV = Np ×
232

3× 225

be integer. A value of Np equal to 3 suffices. The number of sample values

needed for the DFT is then 128 (or an integer multiple of this value). If we

were to have a data set of 1024 samples which is an integer multiple of 128

we would use all 1024 values.

• A value fo = 984.375 = 21 × 3 × 53/23 Hz gives NFTV = 21 × 222 The

required Np needs to be such

N = Np ×
232

21× 222

is integer. A value of Np equal to 21 suffices. The number of sample values

needed for the DFT is then 1024 (or an integer multiple of this value).

13.7 Other digital waveform generation techniques

Other methods of digital waveform generation exist.

• A polynomial approximation to the sine function could be used to calculate

value rather than look them up in a ROM.

• A recursive feedback circuit having its poles on the unit circle in the z-plane

can be used. Guaranteeing its startup and stability is a concern.

• An another method of calculating values of the sine and cosine functions

is via the use of CORDIC rotations.

• There must be other methods that we haven’t touched on.

13.8 Exercises

This chapter’s exercises deal with the implementation of sine wave generators

capable of generating sine waves with (practically) arbitrary frequencies up to a

maximum synthesizable frequency (MSF).

We will use an unsigned long as the phase accumulator. In the C5510 this

is a 32-bit value. The top most bits will be used to address entries in a table of

samples of one period of a sine wave. The AIC23 codec only allows a limited

number of clock rates. The sample values will be sent to the D/A clock at the

rate the D/A clock is programmed for.

Direct digital synthesis is simple in concept and implementation but less

simple in balancing design parameters. The 32-bit phase accumulator used in
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this exercise is representative of those used in practice. Phase accumulators

using 32 to 48 bits are typically found in practice. The update rate dictated by

use of the AIC23 however is much lower than normally used in actual practice.

The D/A used with the S3SB is capable of much higher sample rates but only has

12-bits.

Note: use of an integer power of 2 modulus binary phase accumulator has

been being assumed. By adding a little logic the modulus can be made to any

value less than 2Nc possibly giving more freedom in selecting frequencies. For

example, if the phase accumulator was made to operate using modulo-48000000

frequencies integer multiples of milliHertz could be generated.
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Handwritten work will not be graded. Prelabs are to be done individually and

are to be handed in at the start of the lab period.

14.1 Overview

Serial data links, their implementation and use, are the primary subject of this

exercise. For multiple bit data transfers serial data links use fewer signal lines

than do bit-parallel links. Serial links require fewer pins on component packages

(making possible physically small components) as well as less signal routing ter-

ritory on printed circuit boards than do bit-parallel paths. On the down side

there is a lower data rate throughput than is possible using a multi-line par-

allel path. However, with careful design technique and modern components,

serial data rates in the Gbit/second range are possible (e.g., Xilinx’s Rocket I/O

operates at 3.5 Gb/s). Serial links can be used for many if not most “normal”

applications.

The exercise is superficial in some aspects (it does cover a lot of territory

in three hours) and less so in others. We go for breadth rather than depth in

our treatment. The main goal of the exercise is to acquaint you of the existence,

basic properties and basic operation of bit-serial interfaces and the A/D and D/A

devices available in the lab. It is quite likely that one or more of the team projects

will have need of such data links and will be able to use this exercise’s material

as a starting point. Once one has worked with and/or implemented a few simple

bit-serial interfaces the light bulb goes on and things become relatively straight

forward.

This exercise assumes that the material covered in Chapters 11, 12, and 13

has been read.

The TI manuals associated with this exercise are (include?):

• TMS320VC5510 DSK Technical Reference,

• TMS320VC5510 Fixed-Point Digital Signal Processor Data Manual,

SPRS076E,

• TLV320AIC23 Stereo Audio CODEC, 8- to 96-kHz, With Integrated Head-

phone Amplifier Data Manual, SLWS106C,

• TMS320VC5501/5502/5509/5510 DSP Multichannel Buffered Serial Port

(McBSP) Reference Guide, SPUR592A,

• TMS320C55x Optimizing C/C++ Compiler User’s Guide, SPRU281E.

You are urged to use these documents to fill any gaps in your understanding.

At least look at them before coming to lab.
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14.2 Implementing DDS using the S3SB

A simple DDS dual tone project is used to introduce the use of the PMod DA2

module. A slight detour is made to investigate how to initialize a block ram

(BRAM) in order to serve as a sine table ROM.

14.2.1 Implementing a sine table in a Spartan-3 block RAM

A Spartan-3 block RAMs contain 18432 bits and can be configured in a number

of ways. A BRAM is organized in two parts, data and parity. There is a parity bit

associated with every 8 bits. The parity bits are only parity if they are used that

way. The can also be used as normal memory, perhaps to extend a word size

from 16 bits to 18 bits.

When a BRAM is instantiation it is also initialized. The initiation values are

specified in the instantiation template. See Appendix-F.1 for an example. The

data and parity parts are initialized separately. We will be concerned only with

the data portion.

For initialization purposes the data portion is organized in terms of 32 256-

bit words (16384 bits). The 256-bit words go right to left with increasing bit

index.

In this exercise we will be using the BRAM with a 16-bit word size. A 256-bit

initialization would consist of 16-bits words going from right to left. In this case

a 256-bit word holds 16 16-bit values.

The following list of hex values was generated by a MATLAB program for use

in generating a 256 value sine table in a Spartan-3 FPGA block RAM.

8000
8324
8648
896A
8C8C
8FAB
92C8
95E2
98F9
9C0B
9F1A
A223
A528
A826
AB1F
AE11
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There were used by the same MATLAB program to generate the initialization

line

INIT_00 => X"AE11AB1FA826A528A2239F1A9C0B98F995E292C88FAB8C8C896A864883248000",

All of the punctuation on the above line is needed in order to simplify doing

copy-and-paste. The only (slightly) tricky part of the program design was setting

up the print statement loop to print 16 values on a line going from 16th to 1st

going left to right.

The MATLAB program used for the above was organized as follows:

• An array was generated containing the values that were to be sent to the

D/A converter. The values were rounded and scaled to be between -32767

and +32767. However they remain 64-bit floating point values within MATLAB.

• To make the values into offset binary form 32768 can be added. A check

should be made to insure that values were now in the range 1 through

32767.

• If instead, it is desired to output the sine table as 16-bit two’s complement

integers a different procedure is needed. The positive values map directly

into unsigned 16-bit integer bit patterns. The negative values need to be

mapped into their equivalent unsigned 16-bit values.

The (floating point) value -1 needs to have the same 16-bit pattern as 65535

which is 216 − 1. The value -2 needs to have the unsigned 16-bit equivalent

value of 216 − 2. So, if a value is negative the value in the array needs to

have 65536 added to it. Otherwise it is left unchanged. This generates

a set of values when printed as unsigned 16-bit integers will generate the

desired 2’s complement 16-bit bit patterns.

• A loop was used to print the values mimicking the Xilinx initialization for-

mat. The above line is the one generated for the first 16 values.

• The set of lines were copy-pasted into a copy of the Xilinx template replac-

ing the corresponding zero initialization lines.

The MATLAB script to accomplish this contained 13 non-blank lines (blank

lines were used as white space) including the limit checks and a sanity check on

one value.

The %04X format descriptor was used to print out four uppercase hex digits

with leading zeros.

The above procedure was simple to implement and facilitated a quick and

easy way to incorporate initialization values into the block RAM instantiation

template.
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14.3 Prelab

Handwritten work will not be graded. Prelabs are to be done individually

and are to be handed in at the start of the lab period.

14.3.1 Specific to the AIC23

The CODEC chip used on the C5510 is typically referred to as the AIC23. The full

TI part number for the part used on the DSK is TLV320AIC23PW. The PDF version

of the AIC23 data manual can be found on the class CD. It is also available

through the CCS help system and from TI’s web site.

The schematics of the C5510 DSK are contained in Spectrum Digital’s DSK

documentation. They are also contained in a PDF file accessible either directly

or through the Code Composer Studio help system.

The CCS help system also contains an excellent discussion of the interface

between the C5510 and the AIC23.

Spectrum Digital has supplied a large number code examples located under

\ti\examples. Several of the examples involve the use of the CODEC.

Making a check of the C5510DSK schematics it appears that the USB subsys-

tem is not documented, apparently for proprietary reasons. This subsystem is

of interest here only because it generates the clock for the AIC23.

1. What is the nominal operating analog supply voltage (AVDD)?

2. The AIC23 line inputs connect to variable gain amplifiers. What is the range

of gains that can be programmed and in what size steps (dB)?

3. What are the gain/attentuation settings that can be used with the line out-

puts? Using what size steps?

4. For a AIC23 programmed using the supplied code, what are the default

gain settings on the A/D and D/A converter for line-in and line-out?

5. For 8, 48 sample rates what are the 0.1 dB down frequencies of the input

and output filters. For the 96 kHz sample rate what are the 0.4 dB down

frequencies. How do these gain levers at these frequencies compare to the

gain levels at fs/2?

6. What AIC23 register is used to set the sample rate. What are the values

needed in order to set the 8, 48 and 96 kHz sample rates?

7. Many of the signal generators in the lab are capable of producing wave-

forms having a 20 Volt peak-to-peak amplitude. What is the most probable

result of applying such a waveform to either of the DSK’s input jacks?
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8. In the same vein, what is the most likely result of applying such a voltage

to one of the DSK’s output jacks?

14.3.2 Specific to the DSK & AIC23

1. There are four 3.5 mm phono jacks located on one side of the DSK as shown

in Figure 14.1 and are labeled J1 through J4.

Sketch and label the phone plug arrangement on the DSK used for analog

I/O and label their function (such as: line-in, speaker-out, etc.)��������
Figure 14.1: Side view of the C5510DSK showing the phono jacks.

2. Is the line-in AC or DC coupled? If AC coupled what might be the low

frequency cutoff frequency be? If important, assume the signal source is a

voltage source.

3. Is the line-out AC or DC coupled? If AC coupled what might be the low

frequency cutoff frequency be? If important, assume the signal load is

1000 ohms.

4. For the AIC23 gain/attenuation settings programmed by setup_code.c
what are

(a) the maximum amplitude of analog line input signal that does cause

sample values to clip.

(b) the maximum amplitude of the analog line output signal that can be

generated using 16-bit values.

For the above, if necessary, assume a 1000 Hz sine wave waveform.

14.3.3 Specific to the DDS/DTMF

Part of the exercise consists of generating DTMF frequencies used by a Touch-

Tone telephone. Direct digital synthesis will be used to generate the individual

tone. Pairs of tones will be summed to create the desired DTMF waveforms.

A table containing 256 samples of one period of the function is required by

the exercise. Write or locate a MATLAB script to generate such a table. Because

we will be working with signed 16-bit integer values the numbers returned by
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the MATLAB function need to be scaled . Multiply the sine values by 215 − 1 and

round prior to printing or writing the table to a file.

The following MATLAB fprintf statement will generate a list of values placing

8 signed integer numbers per line.

fprintf(’ %6d, %6d, %6d, %6d, %6d, %6d, %6d, %6d,\n’, samples);

Only minimal editing will be needed to move this table into your C code. The

64 value table used in the tone.c (Section 14.5.3) was generated this way.

Look up on the web the row and column frequencies used by DTMF. It would

be reasonable write the values down and put them into your prelab report.

Section 14.5.5 contains the C source code for a simple DDS. Longs are used

for setting the FTV and for the phase accumulator. The top bits of the phase

accumulator are used to address the sine table. The accumulator update rate is

48 kHz. The program is based on the DDS block diagram in Figure 13.3.

This program can be used as your starting DTMF point. The 64-value ta-

ble used by this program will be replaced by your 256 value table. Notice how

the program determines the table size. Other than replacing the table no other

changes need to be made to the remainder of the program in order to accom-

modate the new table. Well, actually one instruction does have to be changed. A

second synthesizer, consisting of a FTV value and an accumulator, can be readily

included within the existing loop structure.

In your DTMF program use the C5510 dip switches to enter the keypad num-

ber to generate the tones for. Entered binary values 1,2 and 3 correspond to row

1 keys 1,2,3. Entered values 4,5,6 correspond to row 2 keys 4,5,6. And so. Val-

ues of 0, 13,14,15 should produce no output. Sometimes the switches appear set

but are not. In those cases having the switches echoed in the LEDs is extremely

useful. Make this so.

DDS sine wave generation is approximate. The word size, table size and step-

ping frequency can have degrading effects on the resulting waveform. In many

cases there are steps that can be used to improve the quality of the waveform.

Quality, what is quality? Also if one is not careful with their test procedure the

results will more reflect badly on the measurement plan rather than on what is

being evaluated.

We will look at determining the spectra purity of the waveform being gener-

ated just prior to D/A. We don’t have the tools needed to do post D/A, at this

time. The evaluation procedure will to write sets of samples into PC files rather

than to the D/A. MATLAB programs can then be used to process the values and

generate plots of the results. Even this process can have its problems.

Write:

• a MATLAB script to read a list of numbers and print them, one value per

line. Both in and out. There are a number of ways that one can read a list

of numbers. One is to use fscanf statements or the load statement.
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• a C5510 program that writes the 64 value sine table from the tone.c code a

into a text file on the PC. You might consider using the C fopen, fprintf
and fclose functions.

The C program and the MATLAB script are to be executed in the lab to verify

whether or not the procedures as coded function as expected. If so, you have

built confidence. If not, then you have identified a problem and can make a

repair.

An example of the use of the MATLAB load command follows.

• the following text was put into a file named numbers.txt.

1 2 3 4
5 6 7 8
9 10 11 12

• The following test result was obtained:

>> load numbers.txt
>> whos
Name Size Bytes Class Attributes

numbers 3x4 96 double

>> numbers

numbers =

1 2 3 4
5 6 7 8
9 10 11 12

How load works in this situation pretty much should be obvious.

14.3.4 Specific to the PMod AD1 module

• What is the part number of the A/D device used on the module?

• Does the digital output use offset or signed binary?
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14.3.5 Specific to the PMod input op-amp circuit

Design a gain of 1/2 level shifting amplifier. The circuit diagram and analysis

for such can be found in the appendices.

With one exception it should be possible to use only 10 kOhm resistors. The

exception can make use of two 10 kOhm resistors perhaps connected as a serial

or maybe as a parallel pair.

Draw a sketch layout your parts on the white board. Include the power unit

and the dual BNC PMod module.

In your prelab write-up include a diagram (can be a copy of the one in this

document or hand drawn) listing part values along with a copy of your layout

sketch.

In lab you will implement your (or your partner’s) circuit layout and connect

it to the A/D using a Digilent 6-pin cable. You should include this connection in

your drawing as well.

14.3.5.1 Specific to S3SB DDS

Write a MATLAB script to generate a BRAM initialization list. The format of this

list should allow ready cut and paste into a ROM entity. The waveform should

be an increasing ramp going from -32767 to 32767. The table should contain

256 16-bit values. As noted, it should be possible to write a suitable script in 10

lines or so of MATLAB instructions. lines.

In a later exercise this script can be used to convert FIR filter coefficients into

BRAM initialization vectors. So, give modularity and reusability some thought.

Include the script and a listing of what it produces in your pre-lab write-up.

This script and/or the values will be used in the lab exercise.

14.3.6 Specific to the PMod DA2 module

• What is the part number of the D/A device used on the module?

• Does the digital input use offset or signed binary?

14.3.7 Specific to metastability

• Briefly, what is metastability in electronics?

• “Current engineering solutions to this problem are” involve . . . . Finish the

preceding sentence from the Wikipedia.
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14.4 Exercise

The following VHDL related files are provided for this part of the exercise:

• ad_da_01_top.vhd (Top for AD in to DA out.)

• S3DCM.vhd (To change 50 MHz to 40 MHz.)

• DDS0top.vhd (DDS version 0 top.)

• DDS01.vhd (Connects DDS, DA, sine table.)

• DDSduo.vhd (Dual DDS implementation.)

• FTVin.vhd (Supplies two FTV values.)

• led_driver.vhd (Connects to LEDs.)

• pmod_AD1.vhd (Interface to AD PMod.)

• pmod_DA2V2.vhd (Interface to DA PMod.)

• sine_rom.vhd (Sine initialized BRAM.)

• timing.vhd (Simple clock down.)

• spartan.ucf (UCF file for S3.)

14.4.1 Simple tone test

Build and run the supplied simple tone.c program and verify that it does what

you expect. This lets you know whether things are working in general (or not). If

this can’t be made to work there isn’t any sense going on until it does work.

It will be necessary to create and build a tone project first. The following

files should be used:

• tone.c (the main)

• setup_codec.c
• rts.lib (a library)

• EECS452.cmd (linker memory map description)

Depending upon your file organization it might also be necessary to modify

the path to McBSP_452.h.

Modify the code to change the sample rate to 96000 and verify whether or

not the output frequency doubles. Only line one of code needs to be added.

The tone.c program is a simple starter code that can be used to verify that

one can control the hardware sufficiently well to generate a simple tone on the

D/A convert output.

14.4.2 Listening tests

Build the supplied quantization.c program. You will need to include header,

library and AIC23 support when you do this.
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Set the number of bits used to 16 and the sample rate to 48 kH and verify

that everything is working reasonably will. Use the supplied MP3 of Jeff Daniels

reading Lincoln’s Gettysburg Address for testing.

Listen using the following:

• 16 bit samples at fs = 48 kHz.

• 1 bit samples at fs = 48 kHz.

• 1 bit samples at fs = 16 KHz.

• 16 bits at fs = 2 kHz.

• 1 bit samples at fs = 2 kHz.

The lines of code affecting the sample rate and number of bits are:

Bits = 1; // number of bits to use
DivideBy = 3; // sample rate is 48000/DivideBy

This program operates the codec at a 48 kHz sample rate and reduces the

sample rate by discarding samples. This effectively removes the anti-alias and

anti-image filters. What you hear is a worst case. With the filters present the

intelligibility would be improved. However, the AIC23 wasn’t designed with very

low sample rates in mind and we simply have to do with worst case.

Later in the semester we will investigate Delta-Sigma (or is it Sigma-Delta?)

techniques to implement high quality A/D and D/A converters using 1-bit quan-

tized values. A simple Delta-Sigma modulator has been written for you that

generates a 16k bits per second binary waveform that can be listened to with-

out any further processing. Build and run this program, listen to the audio file

and contrast the quality against the “raw” 16-bit second 1-bit quality. You might

have to fiddle a little with the signal levels. But probably not.

There is a significant difference between the needs for high fidelity reproduc-

tion and for intelligible communication. In your report list the trial runs and

comment on the sound quality. Try to rank them.

14.4.3 DDS and DTMF waveform generator

Build and verify proper operation of the DDS32 program using the 256 value

sine table.

Test runs and files are to be made using frequencies of 1000 Hz, 1125 Hz,

and 984.375 Hz (one at a time).

• Run the program generating these frequencies and observe the outputs on

the scope, record the peak-to-peak voltage in each case and verify (as best

can) the frequency. This is to verify that things appear to be working.

• Modify the program to write out 1024 values of the waveform being gener-

ated.
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• For each of the above frequencies store 1024 points of your digital output

onto the PC. These will processed later using MATLAB.

Using your prelab DTMF code verify that it works as desired. The scope can

measure frequency. Indeed it can also show spectra. It might be handy to write

your code that it is easy to test the individual frequencies individually. Don’t

forget to think about what happens when you add two maximum value sine

waves.

Demonstrate your DTMF code to the GSI and convince him that it works. It

would be reasonable to mention how this was accomplished in the report.

The following can be done outside of the lab period.

• Using MATLAB plot the spectra of your data sets labeling the levels in dB re

1 volt RMS and the frequencies in Hz. This is assumes that you have appro-

priately scales the numbers contained in the files. Restrict the displayed dB

range to be on the order of 60 dB. The x-axis should go from −fs/2 to fs/2

in Hz. The DFTs also need to be normalized, FFT(data)/length(data).

If you are not sure about the scaling or what to expect write yourself a

simple MATLAB program to mimic the process and see if you produce what

you feel should be expected.

• Replot the data sets for each frequency using the largest number of points

(less than or equal to 1024) that will result in minimum leakage for that

frequency. Print the FFT sizes on your plots. MATLAB conveniently provides

support for arbitrary size DFTs.

Some of the plots will show a phenomenon termed leakage. Leakage occurs

when the frequency of the sampled sine wave is not a value that is a multiple

one over the duration of the data set.

Include the plots and your MATLAB code in your report. Are the values as

expected? If not, either your expectations or your measurement techniques or

both are in error.

14.4.4 The PMod AD1 level shifting circuit

Using a white block build the level shift op-amp circuit and use the signal gener-

ator and scope to verify that it works as expected. The bandwidth (3 dB) should

be an interesting thing to know. Is it consistent with the sample rates that we

plan to use?

The amplifier will be connected via a 6-pin cable to the PMod AD1 module.

The cable also carries 3.3V and ground. This can (and should be) used to power

your circuit. An external power supply is not needed!
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14.4.5 The PMod A/D–D/A loop

The purpose is to simply take samples and then reconstruct them. A simple

task that if we can’t successfully it makes no sense to move onto more complex

applications.

Using the supplied VHDL files generate a (hopefully working) VHDL entity

and load it into the Spartan-3. This entity simply takes samples and then echoes

them onto the D/A converter. The supplied top file is ad_da_01_top.vhd.

Use the signal generator at 1 kHz to experimentally determine the safe (non-

clipping) input levels.

Set the sample rate to 200 kHz using the switches and look at the quality of

the waveform and run some frequencies to demonstrate aliasing.

Use the level shifting amplifier with the input connected to the PC output.

Use the Gettysburg address as the program source. What problem happens. Try

a shunt resistor at the amplifier input. What would be a reasonable value to use

and why?

14.4.6 DTMF on the Spartan-3 Starter Board

In this part of the exercise you need to built a ISE project to implement the

DTMF function. The file DDS0_top.vhd is the top for this project. You will

need to fill in the missing code/values where you find ???? in the files. Mainly

in FTVin.vhd. The supplied code is set up to generate two single tone direct

digital synthesizers. Each is connected to a PMod DA2 DA converter. The fre-

quencies are determined using the S3SB slide switches. The FTV values used are

determined in FTVin.vhd. Check the frequencies using the oscilloscope.

Next combine the outputs of the two synthesizers into a DTFM waveform

and output this to both D/As. Verify that all is well on both channels using the

oscilloscope.

14.4.7 Use of Block RAM as ROM

Replace the block RAM initialization used in the sin_rom.vhd file with the ini-

tialization text that you generated in the prelab. Create a project to generate this

new output waveform. Observe the output waveform on an oscilloscope. Is the

period of the resulting waveform what you expected?

It should be interesting to listen to and compare the the sound outputs of

this program and the sine version.
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14.4.8 Metastibility of a C5510-S3SB-C5510 loop

In this example the C5510 sends data values via the McBSP to the Spartan-3. The

McBSP is the bus master generating the shift clock and the frame sync signals.

The frame sync is designed to be one McBSP clock period in duration. Also by

design this is much greater than 20 ns (one 50 MHz clock interval). How much

greater you ask? One needs to look at the McBSP setup code to find out.

The Spartan-3 design is divided into two portions, each having its own clock/timing.

The portion connected directly to the McBSP is entirely clocked using the McBSP

clock. Once a frame is received it is placed into a buffer and the have_data is

set high. This stays high until the start of a new data frame.

The second S3 portion monitors the have_data waiting for a transition from

a 0 to a 1. This indicates a new value has been placed into the buffer register

(and stable). The second portion then copies the value into the register used to

return values to the C5510.

The problem comes in detecting the have_data change from a 0 to a 1. The

following code from McBSPS3slave.vhd illustrates how this might be done.

---------------------------------------------------------------------------------
--
--uncomment only one of these two ifs..one works reliably and one doesn’t

if have = "01" then -- test on the saved pair
--if (previous & have_data) = "01" then -- test on previous and current
--
---------------------------------------------------------------------------------

The first if statement uses a two bit shift register to hold successive sampled

values of have_data (50 MHz rate) If the oldest saved value is a 1 and the newest

is a 0 then an edge is declared to have been detected.

The second if statement tries to save one register. The current state of

have_data is compared to the value 20 ns earlier and if the current value is

a 1 and the previous a 0 then a rising edge is declared to have been detected.

The only difference between the two methods is the use of an additional

stage of delay. One method works reliably and the other doesn’t. The use of

extra delay is the standard method used to mitigate metastability problems.

Need to build the C5510 C executable as well as the S3SB VHDL executable

and place them into execution. Run them and verify if the above actually work

as reliably as claimed.

14.5 Listings

14.5.1 McBSP_452.h

Note the use of guard statements that prevent the define statements from being

processed more than once. This is a common C practice and is useful in case
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other include files might themselves include this file.

14.5.2 setup_codec.c

The AIC23 codec is configured using a list of default values. These values are

contained in the array named AIC23_params. There are 10 values in this array,

one value for each control word in the AIC23 to be initialized. The AIC23 data

manual describes how to set the bits. The control words are sent from the C5510

over McBSP channel 1 in 16-bit units. The most significant 7 bits are used to

specify which control register is to be loaded and the low 9 bits are used to

supply the value to be loaded. One simple way to construct these 16-bit words is

to take the register address as an integer, shift this value left 7 bits and then add

the control bit values. For example to set the sample rate (using control register

8) to 48000 Hz any one of the following three forms (out of many possible) can

be used to form the necessary bit pattern:

• 0x1001,
• 8*0x200+0x0001,
• (8«9)+1.

The code supplied in this section uses the middle form.

It may be required to use a control setting that differs from the supplied

default. Sometimes it is necessary to change the operating parameters used by

the AIC23 several times while a program is executing. Because of the way the

AIC23 is interfaced to the C5510 using McBSP port 1 any of the control words

can be changed on the fly (i.e., in real time).

For example, assume that it is desired to set the sample rate to 96 kHz.

Once the AIC has been setup and running the following line of code can be used

change the sample rate to 96000 Hz.

McBSP_send(1, 8*0x200+0x001D);

A good place to place this line code is on the line immediately following the

call to the setup_codec function.

Actually, this call can be executed at any time in a program in order to change

the sample rate. The value of 0x001D would be changed in order to set a sample

rate other than 96000 Hz.

This procedure allows the values contained in the header file to be left un-

changed and eliminates having to create a new header file for each new applica-

tion.
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14.5.3 C5510 tone generator: tone.c

Uses a 64 value table and a 48 kHz sample rate. The output sine wave frequency

is expected to be 48000/64 = 750 Hz.

14.5.4 MATLAB sine table generator

14.5.5 MATLAB Direct Digital Synthesizer

14.5.6 quantization.c

14.5.7 Listing for the C5510 delta/sigma modulator

Demonstrates use of delta/sigma modulation an information encoding method.

The output bit rate is 16 kHz. When nothing is “going on” the waveform looks

like a 8 kHz square wave.

14.5.8 Listing of MATLAB BRAM sine table generator

clear all;
fig = 1;

N = 256;
A = 32767;

sine = round(A*sin(2*pi*[0:N-1]/N));

min(sine) % check most neg value
max(sine) % check most pos value

fprintf(’%04X\n’,sine(5));

for i = [1:length(sine)]
if sine(i) < 0

sine(i) = 65536+sine(i);
end
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end

for ctr = [0:15]
fprintf(’ INIT_%02X => X"’, ctr);
fprintf(’%04X’, sine(ctr*16+[16:-1:1]));
fprintf(’",\n’);

end

14.5.9 Listings for the S3SB AD-DA test

14.5.9.1 Top level

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: Kurt Metzger
--
-- Create Date: 10:53:53 12/24/2006
-- Design Name:
-- Module Name: ad_da_01_top - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ad_da_01_top is
Port ( pmod_c : inout STD_LOGIC_VECTOR (3 downto 0);

pmod_d : out STD_LOGIC_VECTOR (3 downto 0);
led : out STD_LOGIC_VECTOR(7 downto 0);

swt : in STD_LOGIC_VECTOR(7 downto 0);
mclk : in STD_LOGIC);

end ad_da_01_top;

architecture Behavioral of ad_da_01_top is

signal pmod_ad1 : std_logic_vector(3 downto 0);
signal pmod_da2 : std_logic_vector(3 downto 0);
signal ad0, ad1 : std_logic_vector(11 downto 0);
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signal clk : std_logic;
signal strobe : std_logic;
signal ad_rdy_out : std_logic;
signal da_ack_out : std_logic;
signal reset : std_logic;
signal clk40 : std_logic;

begin

pmod_c <= pmod_ad1; -- must be inout
pmod_d <= pmod_da2; -- can be out
reset <= ’0’;

timing_module : entity work.timing
port map(

strobe => strobe,
swt => swt,

clk => clk,
reset => reset);

pmod_AD1_module : entity work.pmod_AD1
port map (

ad0 => ad0,
ad1 => ad1,
rdy => ad_rdy_out,
ack => da_ack_out,
strobe => strobe,
pmod => pmod_ad1,
clk40 => clk40,
clk => clk,
reset => reset);

pmod_DA2_module : entity work.pmod_DA2V2
port map (

da0 => ad0,
da1 => ad1,
req_in => ad_rdy_out,
ack_out => da_ack_out,
strobe => strobe,
pmod => pmod_da2,
clk40 => clk, -- DA2 can use 25 MHz clock
clk => clk,
reset => reset);

drive_leds : entity work.led_driver
port map (

sample => ad0,
leds => led,
clk => clk);

dcm_40MHz : entity work.S3DCM
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port map (
CLKIN_IN => mclk,
CLKFX_OUT => clk40,
CLK0_OUT => clk) ;

end Behavioral;

14.5.9.2 AD1 PMod support

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 15:42:43 12/24/2006
-- Design Name:
-- Module Name: pmod_AD1 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Revision 0.02 - Modified sync to eliminate jitter KM 1-26-2007
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity pmod_AD1 is
Port ( ad0 : out STD_LOGIC_VECTOR (11 downto 0); -- two’s complement

ad1 : out STD_LOGIC_VECTOR (11 downto 0); -- two’s complement
rdy : out STD_LOGIC;
ack : in STD_LOGIC;
strobe : in STD_LOGIC;
pmod : inout STD_LOGIC_VECTOR (3 downto 0);
clk40 : in STD_LOGIC;
clk : in STD_LOGIC;
reset : in STD_LOGIC);

end pmod_AD1;

architecture Behavioral of pmod_AD1 is
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signal ad0r, ad1r : std_logic_vector(11 downto 0);
signal ad0b, ad1b : std_logic_vector(11 downto 0);
signal ctr : std_logic_vector(3 downto 0);
signal sw_start : std_logic := ’0’;
signal ad_active : std_logic := ’0’;
signal ad_csa : std_logic := ’0’;
signal ad_csb : std_logic := ’0’;
signal ad_cs : std_logic;
signal ad_clk : std_logic := ’1’;
signal ad0_in, ad1_in : std_logic;

type t_state_conv is (conv_idle, start_bit, up_going);
type t_state_sync is (sync_idle, sync_wait);
signal state_sync : t_state_sync := sync_idle;
signal state_conv : t_state_conv := conv_idle;

begin

ad0 <= (not ad0b(11)) & ad0b(10 downto 0); -- make 2’s complement
ad1 <= (not ad1b(11)) & ad1b(10 downto 0); -- make 2’s complement
pmod <= ad_clk & ’Z’ & ’Z’ & ad_cs;
ad0_in <= pmod(1);
ad1_in <= pmod(2);
ad_cs <= not (ad_csa or ad_csb);

process(ack, strobe, ad_active, ad_csb, clk, reset)
begin

if reset = ’1’ then
rdy <= ’0’;
sw_start <= ’0’;
ad_csa <= ’0’;
state_sync <= sync_idle;

elsif rising_edge(clk) then
if ack = ’1’ then

rdy <= ’0’;
end if;
case state_sync is
when sync_idle =>

if strobe = ’1’ then
ad0b <= ad0r; -- move sample to output
ad1b <= ad1r; -- both a/d channels
rdy <= ’1’; -- set ready
sw_start <= ’1’; -- start next a/d cycle
ad_csa <= ’1’; -- cause a/d to go into hold
state_sync <= sync_wait;

end if;
when sync_wait =>

if ad_csb = ’1’ then -- if cycle holding cs
ad_csa <= ’0’; -- then this part can stop

end if;
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if ad_active = ’1’ then -- if a/d being clocked
sw_start <= ’0’; -- then local handshake
state_sync <= sync_idle; -- and wait for next strobe

end if;
end case;

end if;
end process;

process(sw_start, clk40, reset)
begin

if reset = ’1’ then
ad0r <= X"000";
ad1r <= X"000";
ad_csb <= ’0’;
ad_clk <= ’1’;
ad_active <= ’0’;
state_conv <= conv_idle;

elsif rising_edge(clk40) then
case state_conv is
when conv_idle =>

if sw_start = ’1’ then
ad_csb <= ’1’;
ad_clk <= ’1’;
ctr <= "0000";
ad_active <= ’1’;
state_conv <= start_bit;

end if;
when start_bit =>

ad0r <= ad0r(10 downto 0) & ad0_in;
ad1r <= ad1r(10 downto 0) & ad1_in;
ad_clk <= ’0’;
state_conv <= up_going;

when up_going =>
ctr <= ctr+1;
ad_clk <= ’1’;
if ctr = 15 then

ad_active <= ’0’;
ad_csb <= ’0’;
state_conv <= conv_idle;

else
state_conv <= start_bit;

end if;
end case;

end if;
end process;

end Behavioral;
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14.5.9.3 DA2 PMod support

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: Kurt Metzger
--
-- Create Date: 12:41:54 12/24/2006
-- Design Name:
-- Module Name: pmod_DA2V2 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- pmod_DA2 pmodule driver
--
-- Expects 40 MHz input clock and uses this
-- to tic the DA converter clock at 20 MHz.
--
-- Illustrates single segment finite state machine.

entity pmod_DA2V2 is
Port ( da0 : in STD_LOGIC_VECTOR (11 downto 0); -- two’s complement

da1 : in STD_LOGIC_VECTOR (11 downto 0); -- two’s complement
req_in : in STD_LOGIC;
ack_out : out STD_LOGIC;
strobe : in STD_LOGIC;
pmod : out STD_LOGIC_VECTOR (3 downto 0);
clk40 : in STD_LOGIC;
clk : in STD_LOGIC;
reset : in STD_LOGIC);

end pmod_DA2V2;

architecture Behavioral of pmod_DA2V2 is

signal d0r : std_logic_vector(11 downto 0) := X"000";
signal d1r : std_logic_vector(11 downto 0) := X"000";
signal d0 : std_logic_vector(15 downto 0) := X"0000";
signal d1 : std_logic_vector(15 downto 0) := X"0000";
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signal da_active : std_logic := ’0’;
signal da_clk : std_logic := ’1’;
signal da_sync : std_logic := ’0’;
signal ctr : std_logic_vector(3 downto 0);
signal go_go : std_logic := ’0’;

type t_state_load is (idle_l, starta, startb, dobita, dobitb);
type t_state_sync is (idle_s, wait_for_strobe, wait_for_active);
signal state_load_da : t_state_load := idle_l;
signal state_sync : t_state_sync := idle_s;

begin

pmod <= da_clk & d1(15) & d0(15) & da_sync; -- generate pmod signals for DA2 module

process(req_in, da_active, clk40, clk, reset)
begin

if reset = ’1’ then -- initialize what needs to be initialized
ack_out <= ’0’;
go_go <= ’0’;
state_sync <= idle_s;

elsif rising_edge(clk) then
if req_in = ’0’ then

ack_out <= ’0’;
end if;
case state_sync is
when idle_s =>

if req_in = ’1’ then
d0r <= da0; -- save value to send to da 0
d1r <= da1; -- save value to send to da 1
ack_out <= ’1’; -- tell that values have been taken
state_sync <= wait_for_strobe;

end if;
when wait_for_strobe =>

if strobe = ’1’ then -- tic that starts loading da’s
go_go <= ’1’; -- start loading the da’s
state_sync <= wait_for_active;

end if;
when wait_for_active =>

if da_active = ’1’ then
go_go <= ’0’; -- loading has started .. clear
state_sync <= idle_s;

end if;
end case;

end if;
end process;

process(go_go, clk40, reset)
begin

if reset = ’1’ then
da_active <= ’0’;
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da_clk <= ’1’;
da_sync <= ’0’;
state_load_da <= idle_l;

elsif rising_edge(clk40) then
case state_load_da is
when idle_l =>

if go_go = ’1’ then
d0 <= X"0" & (not d0r(11)) & d0r(10 downto 0) ; -- save value to send to da
d1 <= X"0" & (not d1r(11)) & d1r(10 downto 0) ; -- save value to send to da
da_active <= ’1’; -- signal conversion start
da_sync <= ’1’; -- set da sync high
ctr <= "0000"; -- use to send 16 bits
state_load_da <= starta;

end if;
when starta =>

da_clk <= ’0’; -- falling edge will sample sync
state_load_da <= startb;

when startb =>
da_sync <= ’0’; -- set da sync low and leave it there
da_clk <= ’1’; -- set da clk high again
state_load_da <= dobita;

when dobita =>
da_clk <= ’0’; -- generate falling edge on da clk
state_load_da <= dobitb;

when dobitb =>
da_clk <= ’1’; -- make da clk go high again
d0 <= d0(14 downto 0) & ’0’; -- shift da 0’s value
d1 <= d1(14 downto 0) & ’0’; -- shift da 1’s value
ctr <= ctr+1; -- count this iteration on next tic
if ctr = 15 then -- if at 15 loading is done

da_active <= ’0’; -- no longer active
state_load_da <= idle_l;

else
state_load_da <= dobita; -- else keep looping

end if;
end case;

end if;
end process;

end Behavioral;

14.5.9.4 LED driver

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 13:59:38 01/27/2007
-- Design Name:
-- Module Name: led_driver - Behavioral
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-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity led_driver is
Port ( sample : in STD_LOGIC_VECTOR (11 downto 0);

leds : out STD_LOGIC_VECTOR (7 downto 0);
clk : in STD_LOGIC);

end led_driver;

architecture Behavioral of led_driver is

signal samp : std_logic_vector(7 downto 0);

begin

process(clk, sample)
begin

if rising_edge(clk) then
if sample(11) = ’1’ then

samp <= not sample(11 downto 4);
leds <= samp+1;

else
leds <= sample(11 downto 4);

end if;
end if;

end process;

end Behavioral;
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14.5.9.5 Sample timing support

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 21:43:01 12/25/2006
-- Design Name:
-- Module Name: timing - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity timing is
Port ( strobe : out STD_LOGIC;

swt : in STD_LOGIC_VECTOR(7 downto 0);
clk : in STD_LOGIC;

reset : in STD_LOGIC);
end timing;

architecture Behavioral of timing is

signal ctr : std_logic_vector(7 downto 0) := (0=>’1’, others =>’0’);
signal local_strobe : std_logic;

begin

strobe <= local_strobe;

process(clk)
begin

if rising_edge(clk) then
ctr <= ctr+1;
local_strobe <= ’0’;
if ctr = swt then

ctr <= (0=>’1’, others=>’0’ );
local_strobe <= ’1’;

end if;
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end if;
end process;

end Behavioral;

14.5.9.6 DCM support

This is a “work-in-progress” DCM entity that is to work on either the S3SB (S3 chip) or the Basys

(S3e chip). The multiply and divide factors can be changed using a generic port specification.
It accepts the normal clock input and “cleans-it-up”, insures that it has a 50% duty cycle and

connects it into the clk network. There is a second output which is also connected into the
network. This clock is generated by a frequency synthesizer using the supplied/default multi-

ply and divide factors. The default synthesized frequency is 40 MHz assuming an input clock

of 50 MHz. The 40 MHz clock is needed in order to run the PMod AD1 module at its maximum
rate.

The XVGA support requires a 75 MHz clock. The existing XVGA support can run entirely
at 75 MHz. It remains to investigate how to set up 75 MHz clocking and 40 MHz clocking. It

looks like the global network can support at least three clocks perhaps allowing 40, 50, and 75

Hz clocks to co-exist. "The proof of the pudding is the eating."

--------------------------------------------------------------------------------
-- Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.
--------------------------------------------------------------------------------
-- ____ ____
-- / /\/ /
-- /___/ \ / Vendor: Xilinx
-- \ \ \/ Version : 9.2.03i
-- \ \ Application : xaw2vhdl
-- / / Filename : S3DCM.vhd
-- /___/ /\ Timestamp : 09/20/2007 18:43:25
-- \ \ / \
-- \___\/\___\
--
--Command: xaw2vhdl-st C:\Xilinx92i\S3DCM.xaw C:\Xilinx92i\S3DCM
--Design Name: S3DCM
--Device: xc3s1000-ft256-4
--
-- Module S3DCM
-- Generated by Xilinx Architecture Wizard
-- Written for synthesis tool: XST
-- Period Jitter (unit interval) for block DCM_INST = 0.04 UI
-- Period Jitter (Peak-to-Peak) for block DCM_INST = 0.92 ns

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;
library UNISIM;
use UNISIM.Vcomponents.ALL;

entity S3DCM is
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port ( CLKIN_IN : in std_logic;
CLKFX_OUT : out std_logic;
CLKIN_IBUFG_OUT : out std_logic;
CLK0_OUT : out std_logic);

end S3DCM;

architecture BEHAVIORAL of S3DCM is
signal CLKFB_IN : std_logic;
signal CLKFX_BUF : std_logic;
signal CLKIN_IBUFG : std_logic;
signal CLK0_BUF : std_logic;
signal GND_BIT : std_logic;

begin
GND_BIT <= ’0’;
CLKIN_IBUFG_OUT <= CLKIN_IBUFG;
CLK0_OUT <= CLKFB_IN;
CLKFX_BUFG_INST : BUFG

port map (I=>CLKFX_BUF,
O=>CLKFX_OUT);

CLKIN_IBUFG_INST : IBUFG
port map (I=>CLKIN_IN,

O=>CLKIN_IBUFG);

CLK0_BUFG_INST : BUFG
port map (I=>CLK0_BUF,

O=>CLKFB_IN);

DCM_INST : DCM
generic map( CLK_FEEDBACK => "1X",

CLKDV_DIVIDE => 2.0,
CLKFX_DIVIDE => 5,
CLKFX_MULTIPLY => 4,
CLKIN_DIVIDE_BY_2 => FALSE,
CLKIN_PERIOD => 20.000,
CLKOUT_PHASE_SHIFT => "NONE",
DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS",
DFS_FREQUENCY_MODE => "LOW",
DLL_FREQUENCY_MODE => "LOW",
DUTY_CYCLE_CORRECTION => TRUE,
FACTORY_JF => x"8080",
PHASE_SHIFT => 0,
STARTUP_WAIT => FALSE)

port map (CLKFB=>CLKFB_IN,
CLKIN=>CLKIN_IBUFG,
DSSEN=>GND_BIT,
PSCLK=>GND_BIT,
PSEN=>GND_BIT,
PSINCDEC=>GND_BIT,
RST=>GND_BIT,
CLKDV=>open,
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CLKFX=>CLKFX_BUF,
CLKFX180=>open,
CLK0=>CLK0_BUF,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLK180=>open,
CLK270=>open,
LOCKED=>open,
PSDONE=>open,
STATUS=>open);

end BEHAVIORAL;

14.5.10 Metastability demonstration C and VHDL

14.5.10.1 Metastability demonstration C5510 main

14.5.10.2 Metastability C5510 codec setup

14.5.10.3 Metastability demonstration top

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: Kurt Metzger
--
-- Create Date: 10:25:49 08/04/2007
-- Design Name:
-- Module Name: metastabletop - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
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use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity metastabletop is
Port ( fsx0 : in STD_LOGIC;

clkx0 : in STD_LOGIC;
dx0 : in STD_LOGIC;
fsr0 : out STD_LOGIC;
clkr0 : out STD_LOGIC;
dr0 : out STD_LOGIC;
pmod_a : out STD_LOGIC_VECTOR (3 downto 0);
swt : in STD_LOGIC_VECTOR (7 downto 0);
ssg : out STD_LOGIC_VECTOR (7 downto 0);
an : inout STD_LOGIC_VECTOR (3 downto 0);
led : out STD_LOGIC_VECTOR (7 downto 0);
mclk : in STD_LOGIC);

end metastabletop;

architecture Behavioral of metastabletop is

signal clk : std_logic;
signal reset : std_logic := ’0’;
signal req_out : std_logic;
signal ack_in : std_logic;
signal data_rcvd : std_logic_vector(15 downto 0);
signal data_send : std_logic_vector(15 downto 0);
signal pmod_McB : std_logic_vector(3 downto 0);
signal display_value : std_logic_vector(15 downto 0);
type t_state is (s_idle, s_wait);
signal state : t_state := s_idle;

begin

clk <= mclk;
led <= data_rcvd(7 downto 0); -- flashing lights are neat
display_value <= data_rcvd;

-- connect to 40 pin cable McBSP lines

pmod_McB(0) <= fsx0; -- McBSP transmitter frame sync
fsr0 <= fsx0; -- McBSP receiver frame sync
pmod_McB(3) <= clkx0; -- McBSP transmitter shift clock
clkr0 <= clkx0; -- McBSP receiver shift clock
pmod_McB(1) <= dx0; -- McBSP transmitter output to FPGA
dr0 <= pmod_McB(2); -- McBSP receiver input from FPGA
pmod_a <= pmod_McB; -- to allow using scope to watch

McB : entity work.McBSPS3slave
port map ( data_send => data_send, -- data to McBSP

data_rcvd => data_rcvd, -- data from McBSP
req_out => req_out, -- high when have value from McBSP
ack_in => ack_in, -- acknowledge data received
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pmod => pmod_McB, -- connect to PMod connecting FPGA/DSK
clk => clk,
reset => reset);

process(req_out, clk) -- send when ever you can
begin

if rising_edge(clk) then
if req_out = ’1’ then -- data received

data_send <= data_rcvd; -- echo it back
ack_in <= ’1’; -- did it

else
ack_in <= ’0’;

end if;
end if;

end process;

-- Chih-Wei’s seven segment support

SSD02_unit : entity work.SSD02
port map ( ssd0 => display_value(3 downto 0),

ssd1 => display_value(7 downto 4),
ssd2 => display_value(11 downto 8),
ssd3 => display_value(15 downto 12),
ssd => ssg,
dp => "0000",
sel => "1111",
an => an,
clk => clk);

end Behavioral;

14.5.10.4 Metastability demonstration main VHDL

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: Kurt Metzger
--
-- Create Date: 10:28:21 08/04/2007
-- Design Name:
-- Module Name: McBSPS3slave - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--

Chapter 14 218 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity McBSPS3slave is
Port ( data_send : in STD_LOGIC_VECTOR (15 downto 0);

data_rcvd : out STD_LOGIC_VECTOR (15 downto 0);
req_out : out STD_LOGIC;
ack_in : in STD_LOGIC;
pmod : inout STD_LOGIC_VECTOR (3 downto 0);
clk : in STD_LOGIC;
reset : in STD_LOGIC);

end McBSPS3slave;

architecture Behavioral of McBSPS3slave is

signal sr_rcv, sr_out, temp_send : std_logic_vector(15 downto 0);
signal have_data : std_logic := ’0’;
signal previous : std_logic := ’0’;
signal have : std_logic_vector(1 downto 0);
signal counter_r : std_logic_vector(3 downto 0);
signal fsync, sclk, input : std_logic;
signal frame_start : std_logic := ’0’;

type t_state_r is (idle_r, receive_r);
signal state_r : t_state_r := idle_r;

begin

fsync <= pmod(0); -- McBSP fsx0
input <= pmod(1); -- serial data from McBSP
pmod(2) <= sr_out(15); -- serial data to McBSP
sclk <= pmod(3); -- McBSP clkx

-- receive value from the McBSP

process(fsync, sclk)
begin

if falling_edge(sclk) then -- this example’s data changes on rising
sr_rcv <= sr_rcv(14 downto 0) & input;
case state_r is

when idle_r =>
if fsync = ’1’ then -- frame is starting

have_data <= ’0’;
counter_r <= (others=>’0’);
state_r <= receive_r;

end if;
when receive_r =>

counter_r <= counter_r+1;
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if counter_r = 15 then
data_rcvd <= sr_rcv(14 downto 0) & input;
have_data <= ’1’;
temp_send <= data_send; -- syncs receiving and sending
state_r <= idle_r;

end if;
end case;

end if;
end process;

-- handle the handshake with the user

process(have_data, clk)
begin

if rising_edge(clk) then
---------------------------------------------------------------------------------
--
-- uncomment only one of these two ifs..one works reliably and one doesn’t

if have = "01" then -- test on the saved pair
-- if (previous & have_data) = "01" then -- test on previous and current
--
---------------------------------------------------------------------------------

req_out <= ’1’;
end if;
if ack_in = ’1’ then

req_out <= ’0’;
end if;
previous <= have_data; -- save only previous value
have <= have(0) & have_data; -- save two previous values

end if;

end process;

-- send value to McBSP

process(sclk)
begin

if falling_edge(sclk) then
if fsync = ’1’ then

frame_start <= ’1’;
else

frame_start <= ’0’;
end if;

end if;

if rising_edge(sclk) then
if frame_start = ’1’ then

sr_out <= temp_send;
else
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sr_out <= sr_out(14 downto 0) & ’0’;
end if;

end if;
end process;

end Behavioral;

14.5.10.5 Metastability demonstration UCF file

# Spartan-3 User Constraints File: spartan3.ucf
#
# 11Jan2007
#

# oscillator clock (in)
#
NET "mclk" PERIOD = 20 ns HIGH 40 %;
NET "mclk" LOC = "T9" | IOSTANDARD = LVCMOS33;

# push buttons
#
#NET "btn<0>" LOC = "M13" | IOSTANDARD = LVCMOS33;
#NET "btn<1>" LOC = "M14" | IOSTANDARD = LVCMOS33;
#NET "btn<2>" LOC = "L13" | IOSTANDARD = LVCMOS33;
#NET "btn<3>" LOC = "L14" | IOSTANDARD = LVCMOS33;

# light emitting diodes
#
NET "led<0>" LOC = "K12" | IOSTANDARD = LVCMOS33;
NET "led<1>" LOC = "P14" | IOSTANDARD = LVCMOS33;
NET "led<2>" LOC = "L12" | IOSTANDARD = LVCMOS33;
NET "led<3>" LOC = "N14" | IOSTANDARD = LVCMOS33;
NET "led<4>" LOC = "P13" | IOSTANDARD = LVCMOS33;
NET "led<5>" LOC = "N12" | IOSTANDARD = LVCMOS33;
NET "led<6>" LOC = "P12" | IOSTANDARD = LVCMOS33;
NET "led<7>" LOC = "P11" | IOSTANDARD = LVCMOS33;

# seven segment digit anodes
#
NET "an<0>" LOC = "D14" | IOSTANDARD = LVCMOS33;
NET "an<1>" LOC = "G14" | IOSTANDARD = LVCMOS33;
NET "an<2>" LOC = "F14" | IOSTANDARD = LVCMOS33;
NET "an<3>" LOC = "E13" | IOSTANDARD = LVCMOS33;

# seven segment digit cathodes
#
NET "ssg<0>" LOC = "N16" | IOSTANDARD = LVCMOS33; # segment G
NET "ssg<1>" LOC = "F13" | IOSTANDARD = LVCMOS33; # segment F
NET "ssg<2>" LOC = "R16" | IOSTANDARD = LVCMOS33; # segment E
NET "ssg<3>" LOC = "P15" | IOSTANDARD = LVCMOS33; # segment D
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NET "ssg<4>" LOC = "N15" | IOSTANDARD = LVCMOS33; # segment C
NET "ssg<5>" LOC = "G13" | IOSTANDARD = LVCMOS33; # segment B
NET "ssg<6>" LOC = "E14" | IOSTANDARD = LVCMOS33; # segment A
NET "ssg<7>" LOC = "P16" | IOSTANDARD = LVCMOS33; # dp(decimal point)

# slide switches
#
#NET "swt<0>" LOC = "F12" | IOSTANDARD = LVCMOS33;
#NET "swt<1>" LOC = "G12" | IOSTANDARD = LVCMOS33;
#NET "swt<2>" LOC = "H14" | IOSTANDARD = LVCMOS33;
#NET "swt<3>" LOC = "H13" | IOSTANDARD = LVCMOS33;
#NET "swt<4>" LOC = "J14" | IOSTANDARD = LVCMOS33;
#NET "swt<5>" LOC = "J13" | IOSTANDARD = LVCMOS33;
#NET "swt<6>" LOC = "K14" | IOSTANDARD = LVCMOS33;
#NET "swt<7>" LOC = "K13" | IOSTANDARD = LVCMOS33;

# DB15 video connector
#
#NET "blu" LOC = "R11" | IOSTANDARD = LVCMOS33;
#NET "grn" LOC = "T12" | IOSTANDARD = LVCMOS33;
#NET "red" LOC = "R12" | IOSTANDARD = LVCMOS33;
#NET "hs" LOC = "R9" | IOSTANDARD = LVCMOS33;
#NET "vs" LOC = "T10" | IOSTANDARD = LVCMOS33;

# MIB sockets on B1 names compatible with Nexys and Basys

# Pmod A : J1 on MIB to B1
#
NET "pmod_a<0>" LOC = "C10" | IOSTANDARD = LVCMOS33;
NET "pmod_a<1>" LOC = "E10" | IOSTANDARD = LVCMOS33;
NET "pmod_a<2>" LOC = "T3" | IOSTANDARD = LVCMOS33;
NET "pmod_a<3>" LOC = "C11" | IOSTANDARD = LVCMOS33;

# Pmod B : J3 on MIB to B1
#
#NET "pmod_b<0>" LOC = "R10" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<1>" LOC = "D12" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<2>" LOC = "T7" | IOSTANDARD = LVCMOS33;
#NET "pmod_b<3>" LOC = "E11" | IOSTANDARD = LVCMOS33;

# Pmod C : J5 on MIB to B1
#
#NET "pmod_c<0>" LOC = "M6" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<1>" LOC = "C16" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<2>" LOC = "C15" | IOSTANDARD = LVCMOS33;
#NET "pmod_c<3>" LOC = "D16" | IOSTANDARD = LVCMOS33;

# Pmod D : J7 on MIB to B1
#
#NET "pmod_d<0>" LOC = "F15" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<1>" LOC = "H15" | IOSTANDARD = LVCMOS33;
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#NET "pmod_d<2>" LOC = "G16" | IOSTANDARD = LVCMOS33;
#NET "pmod_d<3>" LOC = "J16" | IOSTANDARD = LVCMOS33;

# Alternate naming for MIB on B1 .. 15July2007KM

# MIB J1 using B1
#
#NET "mib_j1_b1<0>" LOC = "C10" | IOSTANDARD = LVCMOS33;
#NET "mib_j1_b1<1>" LOC = "E10" | IOSTANDARD = LVCMOS33;
#NET "mib_j1_b1<2>" LOC = "T3" | IOSTANDARD = LVCMOS33;
#NET "mib_j1_b1<3>" LOC = "C11" | IOSTANDARD = LVCMOS33;

# MIB J2 using B1
#
#NET "mib_j2_b1<0>" LOC = "N11" | IOSTANDARD = LVCMOS33;
#NET "mib_j2_b1<1>" LOC = "D11" | IOSTANDARD = LVCMOS33;
#NET "mib_j2_b1<2>" LOC = "P10" | IOSTANDARD = LVCMOS33;
#NET "mib_j2_b1<3>" LOC = "C12" | IOSTANDARD = LVCMOS33;

# MIB J3 using B1
#
#NET "mib_j3_b1<0>" LOC = "R10" | IOSTANDARD = LVCMOS33;
#NET "mib_j3_b1<1>" LOC = "D12" | IOSTANDARD = LVCMOS33;
#NET "mib_j3_b1<2>" LOC = "T7" | IOSTANDARD = LVCMOS33;
#NET "mib_j3_b1<3>" LOC = "E11" | IOSTANDARD = LVCMOS33;

# MIB J4 using B1
#
#NET "mib_j4_b1<0>" LOC = "R7" | IOSTANDARD = LVCMOS33;
#NET "mib_j4_b1<1>" LOC = "B16" | IOSTANDARD = LVCMOS33;
#NET "mib_j4_b1<2>" LOC = "N6" | IOSTANDARD = LVCMOS33;
#NET "mib_j4_b1<3>" LOC = "R3" | IOSTANDARD = LVCMOS33;

# MIB J5 using B1
#
#NET "mib_j5_b1<0>" LOC = "M6" | IOSTANDARD = LVCMOS33;
#NET "mib_j5_b1<1>" LOC = "C16" | IOSTANDARD = LVCMOS33;
#NET "mib_j5_b1<2>" LOC = "C15" | IOSTANDARD = LVCMOS33;
#NET "mib_j5_b1<3>" LOC = "D16" | IOSTANDARD = LVCMOS33;

# MIB J6 using B1
#
#NET "mib_j6_b1<0>" LOC = "D15" | IOSTANDARD = LVCMOS33;
#NET "mib_j6_b1<1>" LOC = "E16" | IOSTANDARD = LVCMOS33;
#NET "mib_j6_b1<2>" LOC = "E15" | IOSTANDARD = LVCMOS33;
#NET "mib_j6_b1<3>" LOC = "G15" | IOSTANDARD = LVCMOS33;

# MIB J7 using B1
#
#NET "mib_j7_b1<0>" LOC = "F15" | IOSTANDARD = LVCMOS33;
#NET "mib_j7_b1<1>" LOC = "H15" | IOSTANDARD = LVCMOS33;
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#NET "mib_j7_b1<2>" LOC = "G16" | IOSTANDARD = LVCMOS33;
#NET "mib_j7_b1<3>" LOC = "J16" | IOSTANDARD = LVCMOS33;

# MIB J8 using B1
#
#NET "mib_j8_b1<0>" LOC = "H16" | IOSTANDARD = LVCMOS33;
#NET "mib_j8_b1<1>" LOC = "K15" | IOSTANDARD = LVCMOS33;
#NET "mib_j8_b1<2>" LOC = "K16" | IOSTANDARD = LVCMOS33;
#NET "mib_j8_b1<3>" LOC = "L15" | IOSTANDARD = LVCMOS33;

# UART connections to female DB9 connector J2
#
#NET "tx_a" LOC = "R13" | IOSTANDARD = LVCMOS33;
#NET "rx_a" LOC = "T13" | IOSTANDARD = LVCMOS33;

# McBSP0 connection using A2 connector
#
NET "fsx0" LOC = "C5" | IOSTANDARD = LVCMOS33;
NET "clkx0" LOC = "D5" | IOSTANDARD = LVCMOS33;
NET "dx0" LOC = "D6" | IOSTANDARD = LVCMOS33;
NET "fsr0" LOC = "E7" | IOSTANDARD = LVCMOS33;
NET "clkr0" LOC = "C6" | IOSTANDARD = LVCMOS33;
NET "dr0" LOC = "C7" | IOSTANDARD = LVCMOS33;

# McBSP1 connection using A2 connector
#
# to be added

# RAM
#
#NET "ram_addr<0>" LOC = "L5" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<1>" LOC = "N3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<2>" LOC = "M4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<3>" LOC = "M3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<4>" LOC = "L4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<5>" LOC = "G4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<6>" LOC = "F3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<7>" LOC = "F4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<8>" LOC = "E3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<9>" LOC = "E4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<10>" LOC = "G5" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<11>" LOC = "H3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<12>" LOC = "H4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<13>" LOC = "J4" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<14>" LOC = "J3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<15>" LOC = "K3" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<16>" LOC = "K5" | IOSTANDARD = LVCMOS33;
#NET "ram_addr<17>" LOC = "L3" | IOSTANDARD = LVCMOS33;
#
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#NET "ram_we" LOC = "G3" | IOSTANDARD = LVCMOS33;
#NET "ram_oe" LOC = "K4" | IOSTANDARD = LVCMOS33;
#
#NET "ram_a_data<0>" LOC = "N7" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<1>" LOC = "T8" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<2>" LOC = "R6" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<3>" LOC = "T5" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<4>" LOC = "R5" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<5>" LOC = "C2" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<6>" LOC = "C1" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<7>" LOC = "B1" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<9>" LOC = "P8" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<10>" LOC = "F2" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<11>" LOC = "H1" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<12>" LOC = "J2" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<13>" LOC = "L2" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<14>" LOC = "P1" | IOSTANDARD = LVCMOS33;
#NET "ram_a_data<15>" LOC = "R1" | IOSTANDARD = LVCMOS33;
#
#NET "ram_a_ce" LOC = "P7" | IOSTANDARD = LVCMOS33;
#NET "ram_a_lb" LOC = "P6" | IOSTANDARD = LVCMOS33;
#NET "ram_a_ub" LOC = "T4" | IOSTANDARD = LVCMOS33;
#
#NET "ram_b_data<0>" LOC = "P2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<1>" LOC = "N2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<2>" LOC = "M2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<3>" LOC = "K1" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<4>" LOC = "J1" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<5>" LOC = "G2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<6>" LOC = "E1" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<7>" LOC = "D1" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<8>" LOC = "D2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<9>" LOC = "E2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<10>" LOC = "G1" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<11>" LOC = "F5" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<12>" LOC = "C3" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<13>" LOC = "K2" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<14>" LOC = "M1" | IOSTANDARD = LVCMOS33;
#NET "ram_b_data<15>" LOC = "N1" | IOSTANDARD = LVCMOS33;
#
#NET "ram_b_ce" LOC = "N5" | IOSTANDARD = LVCMOS33;
#NET "ram_b_lb" LOC = "P5" | IOSTANDARD = LVCMOS33;
#NET "ram_b_ub" LOC = "R4" | IOSTANDARD = LVCMOS33;
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15 : XVGA Display System

A relatively simple, small FPGA footprint, display unit implemented on the S3SB

for use easy visualization of data. Interfaced via a McBSP channel to the C5510.

Illustrates need and effective use of a handshake signal and FIFOs. Uses approx-

imately 8% of the S3-1000 fabric.

This is not intended to be a part of the structured portion of the course.. It

is included because the display system will be used in the exercises that follow

this chapter. The material contained here also serves as an example of a medium

size project.

Perhaps more importantly, a section is included that discusses how to use

the display system in conjunction with the C5510 DSK.

15.1 Introduction

A Spartan-3 Starter Board FPGA based display system for use in EECS 452 lab

exercises and projects has been created. A 16-bit SPI interface is used to connect

it to the C5510 via a McBSP channel (normally 0). The display device can either be

a display connected to one of the lab machines via the analog input or a separate

display. Figure 15.1 shows a test display made during development.

Displays are vector generated and support is provided for automatically draw-

ing the standard 96 ASCII printing characters using various colors, magnifica-

tions and rotations. Figure 15.2 magnifies the top set of characters in Figure

15.1. The characters are quite serviceable.

The character patterns used in the XVGA support are based on the X-Windows

fixed 6× 13 dot matrix font. See

http://www.chiark.greenend.org.uk/~sgtatham/fonts/.

The dot-matrix patterns were hand converted into vector form allowing ready

scaling. Only the 96 normal printing characters, 0x20 through 0x5F, are sup-

ported. The patterns use 5 column and 13 rows. After drawing a character the

controller updates current x0 and y0 values depending upon the rotation.The
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Figure 15.1: Screen shot made of test display.

increment between characters is (step × 7/2), truncated step, defined below, is

interpreted as an integer here).

The screen is 1024 pixels in the horizontal direction and 768 in the vertical.

The coordinate system is such that the lower left corner corresponds to (0,0).

The top right corner is at (1023,767).

Two display pages are implemented in RAM-B. One is used to generate the

active display, the other is hidden and is termed the working page. This allows

updating a display frame by frame. The same page can serve as both the display

and working page.

Two-bit pixels are used in order to conserve memory. The colors currently

supported are:

002 blank

012 red

102 blue

112 black.
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Figure 15.2: Expanded screen shot emphasizing the character outlines. Top

group is for step=2, middle group is for step=3, bottom group is for step=4.

The last write to a given pixel wins.

This is a work in progress. Minimal to non-existent error checking has been

implemented.

15.2 Commands

15.2.1 Line drawing commands

Lines are drawn from (x0,y0) to (x1, y1). Coordinates are always placed into x1

and y1. The contents are updated from (x1,y1) by command or automatically

after a line is drawn.

Bit 15 = 0.

Bits 14-13 determine the operation to be executed. Bits 12-11 determine the

line color. Bit 10 determine whether x1 (bit 10 = 0) or y1 (bit 10 = 1) is affected.

Bits 9-0 specify the associated x1 or y1 screen coordinate.

15.2.1.1 Bits 14-13 equal to 00

The current value of x1 or y1 is loaded depending upon bit 10. The color bits

(12-11) are ignored.

15.2.1.2 Bits 14-13 equal to 01

Loads x1 or y1 depending upon bit 10. Next, copies (x1,y1) into (x0,y0). This

corresponds to moving, drawing pen up, to (x0,y0). The color bits (12-11) are
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ignored.

15.2.1.3 Bits 14-13 equal to 10

Loads x1 or y1 depending upon bit 10. Next, draws the line between (x0,y0) and

(x1,y1) (moving with pen down). After the line has been drawn (x1,y1) is copied

into (x0,y0).

Bits 12 through 11 determine the line color.

15.2.1.4 Bits 14-13 equal to 11

Not used.

15.2.2 Control and character drawing commands

Bit 15 = 1.

15.2.2.1 Bits 14-8 equal to 0000001

Clear the current working page.

15.2.2.2 Bits 14-8 equal to 0000010

Selects the current working and display pages.

Bit 0 selects the working page. Bit 1 selects the display page.

15.2.2.3 Bits 14-8 equal to 0000011

Sets the current character attributes.

Bits 6-5: Set the rotation.

Bits 4-3: Set the color.

Bits 2-1: Set the pixel spacing (step) between points on the character grid.

The three bits are interpreted as a Q1 value.

Rotation values are relative to the lower left corner of the character. A value

of 002 gives normal horizontal orientation. A value of 012 rotates 90◦ counter

clockwise. A value of 102 rotates 180◦. A value of 112 rotates 90◦ clockwise.
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The step value adjusts the number of pixels between the points on the origi-

nal character grid. A value of 0102 results in a step of one pixel. This results in

a smallish character on the screen. A value of 0112 results in a nominal step of

1.5 pixels. This is results in a nicely sized character. A value of 1002 results in a

step size of 2 pixels. Etc.

15.2.3 Bits 14-8 equal to 0000100

Draws the character whose ASCII code is contained in bits 6 through 0.

15.3 In the C5510

The following code snippets are from the C5510 program used to develop and

test the XVGA display system.

15.3.1 Setting working and display pages

The following is called to switch between the working and display pages. After

the switch the new working page (the old display page) is cleared.

unsigned pages = 0x0001;

void XVGAinit()
{

TX_Put(0x8200+pages); // set work and display pages
pages = 0x0003&(pages^0x0003); // switch which is which
TX_Put(0x8100); // clear working page
return;

}

15.3.2 Drawing lines

void GoTo(int x, int y)
{

TX_Put(x&0x03FF);
TX_Put(0x2000|0x0400|(y&0x03FF));
return;

}

void Draw(int color, int x, int y)
{

TX_Put(x&0x03FF);
TX_Put(0x4000|0x0400|((color&0x3)<<11)|(y&0x03FF));
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return;
}

15.3.3 Drawing characters

The following C code is used to print strings. To print a single character, use a

single character string.

rotation = 0;
step = 2;
xt = (1024-len)/2; yt = 700;
print_string(xt, yt, step, rotation, BLUE, " !\"#$%&\’()*+,-./0123456789:;<=>?");
yt-=step*7;
print_string(xt, yt, step, rotation, RED, "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_");
yt-=step*7;
print_string(xt, yt, step, rotation, BLACK, "‘abcdefghijklmnopqrstuvwxyz{|}~");

The function used to issue commands to the XVGA system to draw the char-

acters in the specified string. The characters start at the current position, (x0,y0).

void print_string2(int x, int y, int step, int rotation, int color, char *cp)
{

char ch;

GoTo(x, y);
TX_Put(0x8300 | ((rotation&0x0003)<<5) | ((color&0x0003)<<3)| step&0x0007);
while((ch=*cp++) != NULL) {

TX_Put(0x8400 | (ch&0x00FF));
}

}

15.3.4 Configuring and using the C5510 McBSP channel

Example set up code is contained in Figure 15.3. Figure 15.4 contains example

user and lower level output routines. These were intended for use in a non-

interrupt environment.

15.4 Working with the VHDL

Uses approximately 8% of the gates in a 1M gate Spartan-3 and one block RAM.

A bit over half of the block RAM is available for other use.

The display is 1024×768 pixels and is refreshed at 70 Hz. This requires a 75

MHz pixel clock. A DCM is used to generate this clock from the Starter Board 50

MHz clock. It is suggested any other VHDL used in parallel that interacts with

the XVGA also use 75 MHz.
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/* Function to set up both the McBSP ports and the AIC23.

*
* Returns with the data flowing between the C5510 and the AIC23.

*
*/

void setup_McBSP_plot(int port)
{

/* set up specified McBSP port for SPI */

McBSP_reg(port, McBSP_SPCR2) = 0x0000; // stop xmtr
McBSP_reg(port, McBSP_SPCR1) = 0x1800; // clock stop mode, half cycle delay
McBSP_reg(port, McBSP_RCR1) = 0x0000;
McBSP_reg(port, McBSP_RCR2) = 0x0000;
McBSP_reg(port, McBSP_XCR1) = 0x0040; // 16-bit words
McBSP_reg(port, McBSP_XCR2) = 0x0000;
McBSP_reg(port, McBSP_SRGR1) = 0x0004; // low 8 bits is clock divide
McBSP_reg(port, McBSP_SRGR2) = 0x2011;
McBSP_reg(port, McBSP_MCR1) = 0x0000;
McBSP_reg(port, McBSP_MCR2) = 0x0000;
McBSP_reg(port, McBSP_PCR) = 0x1A08; // rcv as gpio in
McBSP_reg(port, McBSP_SPCR2) = 0x00C1; // start xmtr

}

Figure 15.3: C used in tests to configure a McBSP channel for use with the XVGA

display.

void McBSP_plot(unsigned port, unsigned value)
{

while( ((McBSP_reg(port, McBSP_PCR))&0x0010)!=0 ); // wait on FPGA ready
while((McBSP_reg(port, McBSP_SPCR2)&0x0002) == 0); // wait on McBSP xmtr ready
McBSP_reg(port, McBSP_DXR1) = value; // send value to McBSP xmtr

}

void TX_Put(unsigned code)
{
McBSP_plot(0, code);
return;
}

Figure 15.4: Support for outputting 16-bit values to the XVGA VHDL. Tx_Put is

called by the output routines. McBSP_plot is normally called only by Tx_Put
and handles the handshaking between the C5510 and the FPGA.
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16 : Modulation and Demodulation

Moving information from one place in the spectrum to another. Uses DDS and

multiplier. Direct application of the Fourier Shifting Theorem.

Complex valued waveforms are simply pairs of real valued waveforms along

with a set of rules for working with them.
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17 : Measuring Magnitude and Phase

Phase is always relative to something. So is magnitude, especially when ex-

pressed in decibels.

Includes material on arctangent approximations, quick-and-dirty (but how

dirty) magnitude approximations. Finishes with the CORDIC algorithm.
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18 : Finite Impulse Response Filtering

Handling data movement (or minimizing it) is a key to successful implementa-

tion. The multiply-and-add operation is important as well. Will investigate FIR

implementation on the TI using parallel arithmetic and FIR implementation on

the S3SB using bit-serial arithmetic. Will also consider sample rate conversion

issues.Transfer function and group delay measurement.
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19 : Lab exercise 5 – C5510 FIR filter

design and implementation
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19.1 Introduction

This exercise has three basic parts:

• The generation (or more accurately, the completion) of a C-level FIR func-

tion and the comparison of its execution time to that of the TI DSPlib as-

sembly language equivalent.

• The combining of a DDS generator and the arctangent function into a pre-

liminary version of a transfer function (magnitude and phase) measure-

ment program.

• The planning and execution of a group delay measurement using the FIR

filter used in the first part and the transfer function code used in the sec-

ond.

The filter program used in this exercise uses the basic AIC23 codec support

sampling at a 48,000 Hz rate and sending values to the D/A at the same rate.

The development of a transfer function measurement program is started in

this exercise.Amplitude and phase are measured. Estimates of group delay can

be generated from the phase measurements.

Filters affect the amplitude and phase of applied waveforms. The most com-

mon use of a filter is to pass the energy in a given band of frequencies, essentially

unchanged, while at other frequencies energy is rejected.

If we filter sine waves at various frequencies and measure the relative phases

between the input and the output it is seen that this phase is frequency depen-

dent. If we filter a square wave using a relatively broadband filter we observe

that the transitions in the output waveform are (unsurprisingly) delayed from

those at the input of the filter. If the filtered wave shape is to be reasonably pre-

served it seems reasonable that each frequency component should be delayed

by the same amount. Changes in phase as a function of frequency can be related

to a quantity termed group delay. Filters having constant group delay as a func-

tion of frequency distort waveforms less than filters not having constant (as a

function of frequency) group delay.

Making a group delay measurement requires some thought and analysis or

problems will be encountered. It is easy to accidentally make a measurement

that gives the appearance of having negative delay through a filter. Some past

EECS 452 students, not realizing that negative delay is anomalous, have been

known to decide that there was some sort of a sign error and turn in the resulting

value anyway. If your expectation and a measurement differ significantly either

or both must be in error. When this happens it is educational to determine which

is in error and why.
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Nonconstant group delay as a function of frequency causes the bits in a

data communication to smear into each other. This smearing is termed inter-

symbol-interference (ISI). Most digital communication systems incorportate some

method of equalizing the delay in order to reduce ISI.

The group delay of a filter is an important concern when designing feedback

control systems. Too much delay can destabilize the system and lead to uncon-

trolled oscillation.

We will be measuring group delay in this exercise in order to gain experience

in understanding, planning and making a measurement and to test whether or

not our programs work as desired.

Exercise overview

• For a given filter specification use MATLAB’s fdatool to design a FIR filter.

• Capture the fdatool magnitude, phase and group delay plots.

• Save the filter coefficient values into a C header file.

• Use MATLAB to verify that the coefficients indeed give ripple levels that

reasonably closely match the desired levels.

• Modify the header file so that it can be “included” into FIRlab.c.

• Use the TI fir function to verify that the coefficients indeed produce a filter

as expected. Use signal generator and scope.

• Using timer or probe points determine the execution time per sample of

the TI fir code.

• Complete the inner loop of the myFIR and compile using O1 optimization.

Check the execution time required per sample. Repeat the check using O3

optimization.

• Verify the myFIR filter is working properly.

• Modify myFIR to use intrinsics. Time it and check if the filter is working

properly.

• Use TFmark1 to acquire transfer measurement data in a PC file.

• Complete the TFmark1 program group delay plot support and verify.

• Use the captured data to plot magnitude, phase group delay and compare

with values from fdatool.

19.2 Finite impulse response filters

The equation describing the operation of a finite impulse response (FIR) filter is

y[n] =
M
∑

i=0

b[i]x[n − i].
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For an M-th order FIR filter there are M + 1 coefficient values.

A FIR filter uses the current sample, x[n], and the previous M values to

calculate the current output value, y[n]. At time n+1 a new sample is acquired

and the oldest can be discarded. This process is illustrated below.

output input values

y[n] x[n] x[n− 1] x[n− 2] · · · x[n −M + 1] x[n−M]
y[n+ 1] x[n + 1] x[n] x[n− 1] · · · x[n −M + 2] x[n−M + 1]

y[n+ 2] x[n + 2] x[n+ 1] x[n] · · · x[x −M + 3] x[n−M + 2]

y[n+ 3] x[n + 3] x[n+ 2] x[n+ 1] · · · x[x −M + 4] x[n−M + 3]

The primary task when implementing a FIR filter is not so much doing the

multiply-and-add operations but rather the management of the memory used

for the holding previous sample values.

One approach for managing the x values is to use an array of size M + 1

values in the following fashion:

• Initialize the array with zeros.

• Acquire a sample and place it into the 0-th location

• Multiply and sum the coefficient values against the array.

• Move the first M values in the array up one location. This has to be done

from top down to avoid overwriting values.

• Acquire a sample.

• And so on.

A pseudo-C loop that implements this is shown in Figure 19.1.

while (forever) {
x[0] = GetSample(); // for now assume this exist
y=0;
for (i=0; i < M+1; i++) { // loop nh = M+1 times

y += *(b+i) * *(x+i); // mac
}
for (i = M; i > 0; i--) { // move nh - 1 = M values

*(x+i) = *(x+i-1); // (i-1)-th replaces i-th
}

}

Figure 19.1: Loop simulating a delay line FIR filter implementation.

This requires moving M values every time a new sample has been processed.

This needs to be done even though only one new sample value was added and
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only one old sample needed to be discarded. This can be very execution time

inefficient.

In general, the rule is “move pointers not data.” We will next look at using a

memory array to hold the sample values needed by a FIR filter.

The data structure most commonly used to implement the sample memory

needed by a FIR filter is the circular buffer (or array).

// The delay buffer array, db, contains nh+2 locations. Location
// db[0] is used to hold the index-1 of the oldest sample present.
// Initialize db[0] to 0.

#define DATA int

unsigned myFIR(DATA *x, // points to array of input values
DATA *h, // points to coefficient values
DATA *y, // points to where to put output values
DATA *db, // points to the input delay buffer
unsigned nx, // number of input values, n can equal 1
unsigned nh) // number of coefficients

{
int i;
DATA *ptr_d, *ptr_h;
long LSum;

ptr_d = db + (*db + 1); // start at oldest in db array
while (nx--) {

*ptr_d = *x++; // replace oldest with newest
LSum=0L; // set sum to zero
ptr_h = h; // initialize coefficient pointer
for (i=0; i < nh; i++) { // loop nh times

LSum += *ptr_h++ * *ptr_d++; // use a mac type intrinsic????
if (ptr_d > &db[nh+1]) ptr_d = &db[1];

}

*y++ = LSum>>15; // Q15 * Q15 => Q30 make Q15 .. intrinsic
// may require changing this as well.

}

*db = ptr_d-db-1; // update db[0]
return (0);

}

Figure 19.2: Straight forward circular buffer FIR implementation. Matches the

operation of the TI fir function. Looks good but some details need attending

to before it will work as intended.

The code in Figure 19.2 uses a circular buffer and isn’t very complex. It does

contain some program statements that need to be completed.
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This code is intended to mimic the TI fir function and thus uses the same

data organization and calling sequence.

In lecture we matched the delay buffer size to the number of coefficient val-

ues. The TI fir function uses a data buffer that contains NH+2 integers. NH is

the number of coefficient values in the FIR filter. The first location in the data

buffer array is used to hold the index-1 of the oldest value present in the delay

buffer. This allows the data buffer to serve as the memory of all of the relevant

information about of the state of the filter. Making the delay buffer one value

longer than the size of the filter is a clever thought. Doing this eliminates the

need for any special adjustment of the data pointer at the end of the calculation

loop.

The line

if (ptr_d > &db[nh+1]) ptr_d = &db[1];

checks to see if the ptr_d has gone beyond the array and, if it has, resets the

value to the first working location in the array. The line

LSum += *ptr_h++ * *ptr_d++;

gives the flavor of what needs to be done here but actually won’t work as writ-

ten (see corrective hint below). An alternative implementation is to use TI C5510

intrinsic functions for 16-bit fractional arithmetic. If this is done the shift by 15

positions might have to be changed to 16 or might be eliminated altogether.

Working at the C level, intrinsic functions can be used for the multiply and

add type operations. The end y value is required to be in Q15 format. Both the

sample values and filter coefficient values are expected to be Q15.

Here is a hint in case you want to do the math without intrinsics. The h and

d multiplication, as written above, needs to have one of the values cast to be

a long. This is necessary to have the product be a full 32 bit value. Doing so

generate a 32 bit result in Q30 form. There is no need to shift values to Q31

form. Just sum them. When the sum has been formed add a suitable value to

simulate doing two’s complement rounding and then shift the result to the right

by 15 bits. One should check the compiler output to make sure this works as

advertised. Though, it might be easier to just try it and see what happens.

19.3 Transfer function measurement

The basic system being implemented in this exercise is shown in Figure 19.3

Chapter 19 246 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

iqf
arq

ÅçëEO⁄ÑíF ^ÅçëEO⁄ÑíH”F
imc

imc

ÅçëEO⁄ÑíF
JëáåEO⁄ÑíF

ñ

ó

Figure 19.3: Measuring amplitude and phase of a sinusoid. The conversion from

cartesian to polar coordinates is not shown.

A sinusoid is applied to a device under test (DUT). The output is a sinusoid

whose amplitude and phase relative to the input are determined by the DUT’s

transfer function at the frequency of the sinusoid.

Denote the waveforms entering the LPF filters as xd(t) and yd(t). Using

standard trig identities we can write xd(t) and yd(t) as

xd(t) = A cos(2πft + θ) cos(2πft) =
A

2
[cos(θ)+ cos(2π2ft + θ)]

yd(t) = −A cos(2πft + θ) sin(2πft) =
A

2
[sin(θ)− sin(2π2ft + θ)] .

The terms at 2f can easily be filtered out using a simple sliding average filter.

If the number of samples used by this filter correspond to an integer number of

cycles of the input frequency then this filter will have a spectral zero at 2f . The

filter output for this case is

x(t) =
A

2
cos(θ),

y(t) =
A

2
sin(θ).

Although not indicated, keep in mind that for a filter A and θ are functions

of frequency.

In this exercise and the next we will be developing a program for use in mak-

ing transfer function measurements. In order to make amplitude and phase

measurements we will make use of complex valued waveforms. Because we are

interested in magnitude and phase the final step in the processing involves de-

termining the magnitude and phase of a complex number.
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In the earlier homework and labs we looked at writing an arctangent function

to determine angle phase associated with a complex number. In the immediately

previous lab we looked at the use of direct digital synthesis for the generation

of a sinusoid. In this lab we combine these tools to make transfer function

measurements.

The program in Section 19.6.6 was developed in stages with testing done at

each stage. The final stage uses a DDS to generate sine values that are sent

to the fir function. The filtered values are then multiplied by sine and cosine

values also generated using the same DDS code. The products are filtered and

converted into magnitude and phase values. We haven’t investigated fixed point

magnitude calculations yet so this part is done using floating point. Our fixed

point atan2 is used to determine the angle values.

The program in Section 19.6.6 does not operate in real time. This will come

later. In the next exercise we will use a D/A converter to generate an analog

waveform that is supplied to the filter whose transfer function is to be mea-

sured. The filtered results will be digitized and have their magnitude and phase

determined. Care will be needed to make sure that the measurement system

itself does not influence the measured values.

19.4 Group delay

19.4.1 Theory

The theory given here is more motivational than rigorous.

Group delay is defined as

τg(f ) = −
1

2π

dθ(f)

df
seconds

where the phase is in radians and the frequency is in Hz. Recall, there are 2π

radians per cycle.

The group delay may vary as a function of frequency. This quantity describes

the amounts of delay that are encountered by a waveform at different frequen-

cies as it is filtered.

Where does this come from?

Consider a waveform having Fourier transform

S(f ) =
1

2π

∫∞

−∞
s(t)e−j2πftdt.
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If s(t) is delayed to become s(t − τ) then

Sτ(f ) =
1

2π

∫∞

−∞
s(t − τ)e−j2πftdt =

1

2π

∫∞

−∞
s(t)e−j2πfte−j2πfτdt

If we filter s(t) using a filter with impulse response h(t) we have

sh(t) =
∫ t

−∞
s(τ)h(t − τ)dτ.

As you well know the Fourier transform of this expression is

Sh(f ) = S(f )H(f).

The filter transfer function H(f) can be written in terms of its magnitude and

phase

H(f) =
∣

∣H(f)
∣

∣ ejθh(f ).

If the phase relationship between the frequency components of the signal are to

be preserved meaning pure delay then we must have

θh(f ) = −2πfτ

Differentiating gives

dθh(f )

df
= 2πτ.

In general dθh(f )/df will not be constant and will represent a frequency

dependent delay

τg(f ) = −
1

2π

dθh(f )

df
.

When dθh(f )/df is not constant then the filtered wave suffers phase distor-

tion.

The quantity

τg(f ) = −
1

2π

dθh(f )

df

is referred to as being the filter’s group delay. If this quantity is independent of

frequency (constant) then the filter has a linear phase response.
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19.4.2 Moving theory into practice

The FIR filter to be designed using MATLAB for this exercise will be a linear phase

filter and thus will have constant group delay over its pass band. The frequency

region around the pass band is a good place to make a group delay measurement.

One should start by estimating the amount of delay to be expected in the

measurement. The most significant contributor is the FIR filter. There may be

other sources e.g., input or output buffering of values. If so their contributions

should be estimated and added with the FIR’s delay to obtain a value to use in

designing your measurement.

One needs to realize that the TF test program measures amplitude and phase

at specific frequencies. It is given a frequency range and the number of points at

which to make measurements. The TF program produces a simple output whose

results can be displayed using MATLAB. The program writes its measurement

values into a MATLAB compatible files that can be read using the MATLAB load

command. These values can then be further processed. Processing of TF test

program produced data is presently done as a post processing activity.

From freshman calculus we know that one can approximate derivatives using

small differences:

τg(f ) = −
1

2π

dθ(f)

df
≈ −

1

2π

∆θ

∆f
.

When working with data one must be very careful about what units the data

is in and what units are required by the above equation.

For example:

τg(f ) = −
dθr (ω)

dω

where θ is in radians and ω is radian frequency (ω = 2πf ). Changing units so

that θ is in degrees and the frequency is in Hz gives

τg(f ) = −
1

360

dθd(f )

df

If we instead measure phase in terms of cycles rather than degrees and mea-

sure frequency in Hz then

τg(f ) = −
dθc(f )

df

In planning the measurement, i.e., before making it, the frequency range

needs to be selected and the number of values to be acquired chosen. The phase

is a periodic waveform and when sampling it one needs to worry about aliasing

the measurement.

Chapter 19 250 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

The delay is made up of components associated with the input buffering, the

FIR filter itself, and the output buffering. Because the codec uses sigma-delta

A/D and D/A converters there is very some delay involved there as well. In

order to get a ballpark estimate assume 2 samples of delay due to the input

buffering, 73 samples of delay for the filter and 2 samples of delay due to the

output buffering. A better estimate would include codec delays as well.

For a 48,000 Hz sample rate the guessed delay is 77/48000, about 1.6 milli-

seconds. Assume we make a measurement near mid band at about 1500 Hz. If

we use a ∆f of 500 Hz (frequency range from 1250 to 1750 Hz) then we expect

to see a phase change in the vicinity of about

∆θd/360 = 0.0016× 500 = 0.8 cycles.

This a manageable number of cycles.

The key item that one needs to worry about is having a sufficient number

of frequency samples per cycle of phase so that the phase measurement is not

aliased. At least two samples per phase cycles are needed and good practice is

to use significantly more.

19.5 C5510 exercise

19.5.1 Prelab

Prelabs are to be done individually and are to be handed in at the

start of the lab period. Handwritten work will not be graded.

19.5.1.1 FIR filter

Using MATLAB’s FDATool (fdatool) design an equiripple FIR filter meeting the

following specification:

• sample rate of 48000 Hz,

• low pass transfer function,

• ripple in the pass band limited to 0.1 dB,

• low pass cutoff frequency of 3100 Hz,

• transition region from 3100 Hz to 4000 Hz,

• minimum attenuation in the stop band of 60 dB relative to the pass band,

• let FDATool determine the minimum number filter order.

The FIR filter order that FDATool finds should be somewhere near 145 (146

coefficient values). The number appears to vary slightly depending upon MATLAB

version being used.
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Enter the Full View Analysis mode using the white sheet icon located just

below (or nearly so) Window. Print copies of the Magnitude Response (dB),

Phase Response, Group Delay and Impulse Response for your prelab.

Print Preview allows control over the aspect ratio of the plot. I size the

displayed plot to have the proportions that I find pleasing and then use the

Print Preview Fix aspect ratio button to use this ratio for the printed out-

put. Export allows a plot to saved into a file using any one of a number of file

formats.

Poke around a bit in FDATool in order to develop a feel for it’s capabilities.

The Help system contains a lot of information.

FDATool used to be able to export coefficient values as Q15 (Fractional length:

15) 16-bit signed integer values. This was an easy way to get the coefficients into

the form needed for this exercise. However MATLAB features seem to come and

go and support for Q15 output no longer appears to be available. So we are on

our own.

Targets can be used to export the filter coefficient values in the form of a

C header file. Exporting as signed 16-bit integers makes the most sense for our

application. Do so using the file name: FIR145.h. The values are claimed to

have Fractional length: 15 which would make them Q15 in our parlance.

Before using this file it needs to be edited. Comment out the include state-

ment and change type int16_T to int. These two changes should be all the

changes needed for our use, however . . . . This file will be read using an include

statement by the FIRlab.c program.

The warning statement is a bit of worry. It claims that the coefficient values

have been truncated rather than rounded. The fix is stated to be to use the Filter

Design & Analysis Tool to design more accurate values. The FDATool is what we

are using. If we were doing this “for real” it would be reasonable to output the

coefficient values using a 32 bit format and round them (correctly) ourself. (Or

maybe figure out what we should have done this time.)

Make a copy of the coefficients file and edit so that is can be read into MATLAB

using the load command. The load command requires that all input lines contain

the same number of values. Add as many zero values as needed to make this so.

See Figure 19.4 for coaching on using load and converting the two dimensional

array into a vector.

Using coefficient values produce two plots One showing the ripple in the pass

band and the other showing the magnitude of the ripple in the stop band. This

will verify whether or not the truncated Q15 coefficient values produce a filter
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clear all;
fig=1;

load data.txt; % load header b values
[r,c] = size(data);
b = reshape(data’,1,r*c); % transpose first
b = b(1:length(b)-7); % remove extra zeros

figure(fig); clf; fig=fig+1;
subplot(3,1,1);
plot(b); % plot coefficients

H = freqz(b,1,200); % calculate TF values
subplot(3,1,2);
plot(abs(H)); % plot transfer function

Figure 19.4: Example/starter MATLAB script for reading coefficient values. The

two plots are only meant as initial sanity checks.

having the desired pass and stop band ripple levels. If, not counting annotation,

it is taking much more than about ten lines of MATLAB to generate the plots, stop

and think. (MATLAB’s axis is very useful here.) It is assumed that the plots will

be included in the prelab write-up, maybe with some comments.

Modify the myFIR function contained in Figure 19.2. Use TI C intrinsics. Do

not attempt to check for an overflow. Simply return a value of 0 regardless

whether or not there was an overflow. See if you can see any ways that might

minimize the execution time. The definitions of the TI intrinsic functions con-

tained in TI’s C documentation are reproduced in the sections near the end of

this write-up.

The _smac intrinsic might be used to reasonably mimic the operation of

fir.asm. An alternative method of using standard C operations and applying

the cast that was suggested earlier. This may or may not be faster than using

the intrinsics. Both approaches will be investigated.

In your prelab write-up include: a listing of the source code for your myFIR
functions (one version using intrinsics and the other version using an appropri-

ate cast), and a listing of your coefficient values.

19.5.1.2 The TF test program

The TF test program in Section 19.6.6 was developed in stages. Each stage built

on the previous. Each stage was written to verify understanding some aspect of
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system being designed. These were left in place in order to illustrate how one

might work one’s way into developing such an application.

• Test one looked at calculation the FTV values for given values of frequency

and sample rate and a 32-bit accumulator.

• Test two looked at accessing the sine table located in the C5510 ROM.

• Test three tested the use of a DDS to generate cosine/sine phased sinu-

soids. This was visually checked using the D/As to generate analog wave-

forms and using an oscilloscope view them.

• Test four used a 45-degree shifted sinusoid to verify understanding of how

to program the frequency shifting and integration. The frequency range

tested was from 10 Hz to 10 kHz in 10 Hz steps. The integration time was

0.1 seconds matching the use of the 10 Hz step size.

• Test five adds the myatan2 function for determining phase. The test trans-

fer function generated using the TI DSPlib fir function. Each output line is

of the output consists of frequency in Hz, magnitude in fraction form, and

phase from -1 to 1 half cycles. This format allows the file to be easily read

into a MATLAB program and plotted.

The author had to tease out from the TI documentation a lot of information

needed to write the program. In your prelab answer the following two questions.

• What is the memory address in bytes at which the C5510 ROM based sine

table is located?

• What bit in what status register is used to enable the accessing of the sine

table contained in the on-chip ROM?

The DDS used in this exercise makes use of a 32-bit accumulator. The DDS

update frequency, fs is 48000 Hz and contained in an unsigned long. The desired

frequency values, f , are in terms of Hz and are contained in an unsigned long.

The FTV value needed to generate a given frequency f is

FTV = 232 f

fs
.

The ComputeFTV function is used to calculate FTV given fs and f . This function

illustrates how one can calculate FTV using simple (no division or multiplication)

operations. Take a look at the code and see if you can figure out how it does its

task. No response needed, just invest some time.

19.5.1.3 Group delay

• From your MATLAB efforts you should already know the theoretical group

delay of your filter.
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• List any other potential sources of delay that would affect your measure-

ment and give estimates of the associated delay. Check the AIC23 data

sheet to see if there are any significant delays associated with the A/D and

D/A converter (Hint: there are and the numbers are difficult to find, but

they do exist.)

• determine a measurement plan. This consists of the frequency range the

measurement is to be made over and the number of frequencies to be used.

Plan to make the measurement in the vicinity of 1 kHz.

19.5.2 Exercise

19.5.2.1 FIR function testing

You will be provided the source code for C test program shown in Appendix

19.6.3 to be used to test and time your FIR function and the FIR function from

the DSPlib.

Use profile points or the C5510 timer or both for measuring the function

execution times.

Do you know what clock rate your DSK is using? This is not an idle concern.

In the past there have been cases where the clock was changed as part of an

earlier lab and not reset. Does it matter when using the profiler? Does it matter

when using the timer?

• Place your filter coefficient values into a file named FIR145.h. The file con-

tents should be edited to place the values into an appropriately named

array.

• Test both of your C myFIR versions to make sure they are working properly.

Use the sinewave generator and oscilloscope for initial testing.

Test with the optimization level set to the -o3 level and debug support

turned off. The program does not have sufficient time to keep up with the

input data when not optimized and using a 48 kHz sample rate. Indeed

it would be educational to observe what the output waveform looks like

when the compilation is not optimized.

• Measure the execution time of both of your myFIR versions. (Your choice

how.) Measure the execution time both when compiled without any opti-

mization and when compiled using level -o3 optimization (along with de-

bug support off).

• Measure the execution time required by the DSPlib fir function.
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The operation of the assembly language fir function can be sped up by al-

most a factor of two by exploiting the filter symmetry and the special instruc-

tions included in the C5510 for this use. The energy consumed by the C5510

depends linearly on the CPU clock frequency. If you were implementing a sys-

tem to be powered using batteries you would like to run the processor as slow

as possible. Which filter would you recommend? The C versions or the assembly

language version?

19.5.2.2 Measuring a transfer function

Using Test 5 of the program in Section 19.6.6 generate output files for the fol-

lowing cases:

1. For the program as supplied.

2. Because the ripple in the filter transfer function can cause the filter output

to go above one the program uses a half amplitude cosine test signal. In

this step we look at whether or not this caution was justified.

The amplitude of the filter input is divided by 2 by the statement

data = cosine_value>>1;.

Eliminate this shift operation. This replaces the 1/2 amplitude input with

a unit amplitude input. The scaled factor used to normalize the magnitude

values

sf = 2.0*8192.0/((float)Nint*32768.0*32768.0);

needs to be reduced by a factor of two to compensate.

Generate a transfer function measurement file for this also.

The program takes a few minutes to make a run.

The name of the file used to hold the transfer function measurement is

Mark_I. After each run you should rename this using a suitable name for that

run. This file is generated in the directory that contains the executable. You may

have to hunt a bit to locate it.

Each line in this file contains three values. These values are the frequency

of the measurement in Hz, the amplitude normalized to unity for a unit input

sinusoid, and a phase angle in the range [-1/2, 1/2) cycle (a value of -1 corre-

sponds to a radian phase of −π radians). The file can be read using the MATLAB

statement

load ’myfilename’;
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where myfilename is the name of the file that you are processing. This result

in an array of the same name as your file. This can be copied into a fixed name

such as data which can then be used through out the script. This reduces the

amount of code that needs to be changed when changing between files.

Using subplot(4,1,n) produce a plot for each run.

1. For n = 1 plot the transfer function amplitude as a function of frequency

in Hz.

2. For n = 2 plot the transfer functions using dB. The plot y range should be

from -80 to 5 dB.

3. For n = 3 plot the phase as in the file as a function of frequency.

4. For n = 4 convert the phase to the range [−π,π) and unwrap it (use the

MATLAB function, unwrap) and plot as a function of frequency.

Include the plots and some relevant comments in your report.

19.5.2.3 Group delay

Use the transfer function measurement data set that you generated using the

half-amplitude sinewave to calculate the group delay of your filter design. Com-

pare this with the value found by MATLAB. Generally group delay is only of inter-

est over a filter’s passband(s). How close did your prediction come to measure-

ment? If warranted, rationalize a bit.

19.5.3 Report

Report on what you did, how you did it, and what the results were. Include

supporting documentation such as plots, program listings, etc. Give the grader

something on which to judge the quality of your work. Insightful observations

and discussion are a definite plus.

Include your execution time measurements including those of the DSPlib

function, the measured delay and with a plot of measured magnitude and phase,

and your program listings (myFIR, MATLAB, etc.).

19.6 Support documents and listings

19.6.1 TI DSPlib manual pages

See Figures 19.5, 19.6, 19.7 and 19.8. There are some inconsistencies between

the text and the illustrations.
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fir

4-49 Function Descriptions

Implementation Notes Computes the exponent of elements of vector x. It uses the following Taylor
series:

exp(x) � c0 � (c1 * x) � (c2 * x2) � (c3 * x3) � (c4 * x4) � (c5 * x5)

where
c0 = 1.0000
c1 = 1.0001
c2 = 0.4990
c3 = 0.1705
c4 = 0.0348
c5 = 0.0139

Example See examples/expn subdirectory

Benchmarks (preliminary)

Cycles† Core: 11 * nx
Overhead: 18

Code size
(in bytes)

57

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

FIR Filterfir

Function ushort oflag = fir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh)

Arguments

x[nx] Pointer to input vector of nx real elements.

h[nh] � Pointer to coefficient vector of size nh in normal order.
For example, if nh=6, then h[nh] = {h0, h1, h2, h3, h4,
h5} where h0 resides at the lowest memory address in
the array.

� This array must be located in internal memory since it
is accessed by the C55x coefficient bus.

r[nx] Pointer to output vector of nx real elements. In-place
computation (r = x) is allowed.

Figure 19.5: First page of the DSPlib FIR function description. (From SPRU422F.)
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fir

4-50  

dbuffer[nh+2] Pointer to delay buffer of length nh = nh + 2

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first filter block only. Be-
tween consecutive blocks, the delay buffer preserves
the previous r output elements needed.

� The first element in this array is special in that it con-
tains the array index-1 of the oldest input entry in the
delay buffer. This is needed for multiple-buffering
schemes, and should be initialized to 0 (like all the oth-
er array entries) for the first block only.

nx Number of input samples

nh The number of coefficients of the filter. For example, if
the filter coefficients are {h0, h1, h2, h3, h4, h5}, then nh
= 6. Must be a minimum value of 3. For smaller filters,
zero pad the coefficients to meet the minimum value.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an inter-
mediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes a real FIR filter (direct-form) using the coefficients stored in vector
h. The real input data is stored in vector x. The filter output result is stored in
vector r. This function maintains the array dbuffer containing the previous
delayed input values to allow consecutive processing of input data blocks. This
function can be used for both block-by-block (nx ≥ 2) and sample-by-sample
filtering (nx = 1). In place computation (r = x) is allowed.

Algorithm r [j] � �
nh�1

k�0

h [k] x [j � k] 0 � j � nx

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

Implementation Notes The first element in the dbuffer array (index = 0) is the entry index for the input
history. It is treated as an unsigned 16-bit value by the function even though
it has been declared as signed in C. The value of the entry index is equal to
the index - 1 of the oldest input entry in the array. The remaining elements
make up the input history. Figure 4-16 shows the array in memory with an
entry index of 2. The newest entry in the dbuffer is denoted by x(j-0), which
in this case would occupy index = 3 in the array. The next newest entry is
x(j-1),  and so on. It is assumed that all x() entries were placed into the array
by the previous invocation of the function in a multiple-buffering scheme.

Figure 19.6: Second page of the DSPlib FIR function description. (From

SPRU422F.)
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fir

4-51 Function Descriptions

The dbuffer array actually contains one more history value than is needed to
implement this filter. The value x(j-nh) does not enter into the calculations for
for the output r(j). However, this value is required in other DSPLIB filter func-
tions that utilize the dual-MAC units on the C55x, such as FIR2. Including this
extra location ensures compatibility across all filter functions in the C55x
DSPLIB.

Figure 4-16, Figure 4-17, and Figure 4-18 show the dbuffer, x, and r arrays
as they appear in memory.

Figure 4-16. dbuffer Array in Memory at Time j

•
•
•

x(j-nh-5)

lowest memory address

highest memory address

oldest x( ) entry

entry index = 2

x(j-nh-2)

x(j-nh-1)

x(j-nh-1)

x(j-nh)

x(j-0)

x(j-1)

x(j-2)

x(j-nh-4)

x(j-nh-3)

newest x( ) entry

Figure 4-17. x Array in Memory

•
•
•

x(0)

x(nx-2)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry x(nx-1)

x(1)

Figure 19.7: Third page of the DSPlib FIR function description. (From SPRU422F.)
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fir2

4-52  

Figure 4-18. r Array in Memory

•
•
•

r(nx-1)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

r(0)

r(nx-2)

r(1)

Example See examples/fir subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (2 + nh)
Overhead: 25

Code size
(in bytes)

107

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

Block FIR Filter (fast)fir2

Function ushort oflag = fir2 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh)

Arguments

x[nx] Pointer to input vector of nx real elements.

r[nx] Pointer to output vector of nx real elements. In-place
computation (r = x) is allowed.

h[nh] � Pointer to coefficient vector of size nh in normal order.
For example, if nh=6, then h[nh] = {h0, h1, h2, h3, h4,
h5} where h0 resides at the lowest memory address in
the array.

� This array must be located in internal memory since it
is accessed by the C55x coefficient bus.

Figure 19.8: Fourth page of the DSPlib FIR function description. (From

SPRU422F.)
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19.6.2 Intrinsics information

The material in this section is from the C55x C/C++ manual, SPRU281E.
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Interfacing C/C++ With Assembly Language

 6-24

Example 6-6. Accessing an Assembly Language Constant From C

(a) Assembly language program

_table_size .set 10000 ; define the constant
.global _table_size ; make it global

(b) C program

extern int table_size; /*external ref */

#define TABLE_SIZE ((int) (&table_size))

. /* use cast to hide address-of */

.

.

for (i-0; i<TABLE_SIZE; ++i)

/* use like normal symbol */

Since you are referencing only the symbol’s value as stored in the symbol
table, the symbol’s declared type is unimportant. In Example 6-6, int is used.
You can reference linker-defined symbols in a similar manner.

6.5.3 Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line
of assembly language into the assembly language file created by the compiler.
A series of asm statements places sequential lines of assembly language into
the compiler output with no intervening code. For more information, see sec-
tion 5.6, The asm Statement, on page 5-16.

The asm statement is useful for inserting comments in the compiler output.
Simply start the assembly code string with a semicolon (;) as shown below:

asm(” ;*** this is an assembly language comment ”);

Figure 19.9: Page from C/C++ manual dealing with in-line and intrinsic assembly

language support. (From SPRU281E.)
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Interfacing C/C++ With Assembly Language

6-25Run-Time Environment

Note: Using the asm Statement

Keep the following in mind when using the asm statement:

� Be extremely careful not to disrupt the C/C++ environment. The compiler
does not check or analyze the inserted instructions.

� Inserting jumps or labels into C/C++ code can produce unpredictable re-
sults by confusing the register-tracking algorithms that the code genera-
tor uses.

� Do not change the value of a C/C++ variable when using an asm state-
ment.

� Do not use the asm statement to insert assembler directives that change
the assembly environment.

6.5.4 Using Intrinsics to Access Assembly Language Statements

The compiler recognizes a number of intrinsic operators. Intrinsics are used
like functions and produce assembly language statements that would other-
wise be inexpressible in C/C++. You can use C/C++ variables with these intrin-
sics, just as you would with any normal function. The intrinsics are specified
with a leading underscore, and are accessed by calling them as you do a func-
tion. For example:

int x1, x2, y;
y = _sadd(x1, x2);

Many of the intrinsic operators support saturation. During saturating arithme-
tic, every expression which overflows is given a reasonable extremum value,
either the maximum or the minimum value the expression can hold. For
instance, in the above example, if x1==x2==INT_MAX, the expression over-
flows and saturates, and y is given the value INT_MAX. Saturation is controlled
by setting the saturation bit, ST1_SATD, by using these instructions:

BSET ST1_SATD
BCLR ST1_SATD

The compiler must turn this bit on and off to mix saturating and non-saturating
arithmetic; however, it minimizes the number of such bit changing instructions
by recognizing blocks of instructions with the same behavior. For maximum
efficiency, use saturating intrinsic operators for exactly those operations where
you need saturated values in case of overflow, and where overflow can occur.
Do not use them for loop iteration counters.

Figure 19.10: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)

Chapter 19 264 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

Interfacing C/C++ With Assembly Language

 6-26

The compiler supports “associative” versions for some of the addition and mul-
tiply-and-accumulate intrinsics. These associative intrinsics are prefixed with
“_a_”. The compiler is able to reorder arithmetic computations involving
associative intrinsics, which may produce more efficient code.

For example:

int x1, x2, x3, y;
y = _a_sadd(x1, _a_sadd(x2, x3)); /* version 1 */

can be reordered inside the compiler as:

y = _a_sadd(_a_sadd(x1, x2), x3); /* version 2 */

However, this reordering may affect the value of the expression if saturation
occurs at different points in the new ordering. For instance, if x1==INT_MAX,
x2==INT_MAX, and x3==INT_MIN, version 1 of the expression will not satu-
rate, and y will be equal to (INT_MAX-1); however, version 2 will saturate, and
y will be equal to -1. A rule of thumb is that if all your data have the same sign,
you may safely use associative intrinsics.

Most of the multiplicative intrinsic operators operate in fractional-mode arith-
metic. Conceptually, the operands are Q15 fixed-point values, and the result
is a Q31 value. Operationally, this means that the result of the normal multi-
plication is left shifted by one to normalize to a Q31 value. This mode is con-
trolled by the fractional mode bit, ST1_FRCT.

The intrinsics in Table 6-7 on page 6-30 are special in that they accept pointers
and references to values; the arguments are passed “by reference” rather than
“by value.” These values must be modifiable values (for example, variables but
not constants, nor arithmetic expressions). These intrinsics do not return a val-
ue; they create results by modifing the values that were passed “by reference.”
These intrinsics depend on the C++ reference syntax, but are still available in
C code with the C++ semantics.

No declaration of the intrinsic functions is necessary, but declarations are pro-
vided in the header file, c55x.h, included with the compiler.

Many of the intrinsic operators are useful for implementing basic DSP func-
tions described in the Global System for Moble Communications (GSM) stan-
dard of the European Telecommunications Standards Institute (ETSI). These
functions have been implemented in the header file, gsm.h, included with the
compiler. Additional support for ETSI GSM functions is described in section
6.5.4.1 on page 6-32.

Figure 19.11: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Table 6-4 on page 6-27 through Table 6-8 on page 6-32 list all of the intrinsic
operators in the TMS320C55x C/C++ compiler. A “function” prototype is pre-
sented for each intrinsic that shows the expected type for each parameter. If
the argument type does not match the parameter, type conversions are per-
formed on the argument. Where argument order matters, the order of the in-
trinsic’s input arguments matches that of the underlying hardware instruction.
The resulting assembly language mnemonic is given for each instruction; for
some instructions, such as MPY, an alternate instruction such as SQR (which
is a specialized MPY) may be generated if it is more efficient. A brief descrip-
tion is provided for each intrinsic. For a precise definition of the underlying in-
struction, see the TMS320C55x DSP Mnemonic Instruction Set Reference
Guide (SPRU374) and TMS320C55x DSP Algebraic Instruction Set Refer-
ence Guide (SPRU375).

Table 6-4. TMS320C55x C/C++ Compiler Intrinsics (Addition, Subtraction, Negation,
Absolute Value)

Compiler Intrinsic
Assembly 
Instruction Description

int _sadd(int src1, int src2);
int _a_sadd(int src1, int src2);
long _lsadd(long src1, long src2);
long _a_lsadd(long src1, long src2);
long long _llsadd(long long src1, long long src2);
long long _a_llsadd(long long src1, long long src2);

ADD Returns the saturated sum of its oper-
ands.

int _ssub(int src1, int src2);
long _lssub(long src1, long src2);
long long _llssub(long long src1, long long src2);

SUB Returns the saturated value of the ex-
pression (src1 - src2).

int _sneg(int src);
long _lsneg(long src);
long long _llsneg(long long src);

NEG Returns the saturated value of the ex-
pression (0 - src).

int _abss(int src);
long _labss(long src);
long long _llabss(long long src);

ABS Returns the saturated absolute value
of its operands.

Figure 19.12: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)

Chapter 19 266 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

Interfacing C/C++ With Assembly Language

 6-28

Table 6-5. TMS320C55x C/C++ Compiler Intrinsics (Multiplication, Shifting)

Compiler Intrinsic
Assembly 
Instruction Description

int _smpy(int src1, int src2);
long _lsmpy(int src1, int src2);

MPY Returns the saturated fractional-mode
product of its operands.

long _lsmpyr(int src1, int src2); MPYR Returns the saturated fractional-mode
product of its operands, rounded as if
the instrinsic _sround were used.

long _smac(long src1, int src2, int src3);
long _a_smac(long src1, int src2, int src3);

MAC Returns the saturated sum of src1 and
the fractional-mode product of src2 and
src3. Mode bit SMUL is also set.

long _smacr(long src1, int src2, int src3);
long _a_smacr(long src1, int src2, int src3);

MACR Returns the saturated sum of src1 and
the fractional-mode product of src2 and
src3. The sum is rounded as if the
instrinsic _sround were used. Mode bit
SMUL is also set.

long _smas(long src1, int src2, int src3);
long _a_smas(long src1, int src2, int src3);

MAS Returns the saturated difference of src1
and the fractional-mode product of src2
and src3. Mode bit SMUL is also set.

long _smasr(long src1, int src2, int src3);
long _a_smasr(long src1, int src2, int src3);

MASR Returns the saturated difference of src1
and the fractional-mode product of src2
and src3. The sum is rounded as if the
instrinsic _sround were used. Mode bit
SMUL is also set.

int _sshl(int src1, int src2);
long _lsshl(long src1, int src2);

SFTS Returns the saturated value of the ex-
pression (src1<<src2). If src2 is nega-
tive, a right shift is performed instead.

int _shrs(int src1, int src2);
long _lshrs(long src1, int src2);

SFTS Returns the saturated value of the ex-
pression (src1>>src2). If src2 is nega-
tive, a left shift is performed instead.

int _shl(int src1, int src2);
long _lshl(long src1, int src2);
long long _llshl(long long src1, int src2);

SFTS Returns the expression (src1<<src2). If
src2 is negative, a right shift is per-
formed instead. No saturation is per-
formed.

Figure 19.13: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Table 6-6. TMS320C55x C/C++ Compiler Intrinsics (Rounding, Saturation, Bitcount,
Extremum)

Compiler Intrinsic
Assembly 
Instruction Description

long _round(long src); ROUND Returns the value src rounded by adding
2^15 using unsaturating arithmetic (biased
round to positive infinity) and clearing the low-
er 16 bits. The upper 16 bits of the Q31 result
can be treated as a Q15 value.

long _sround(long src);
long _rnd(long src);

ROUND Returns the value src rounded by adding
2^15 using saturating arithmetic (biased
round to positive infinity) and clearing the low-
er 16 bits. The upper 16 bits of the Q31 result
can be treated as a Q15 value.

long _roundn(long src); ROUND Returns the value src rounded to the nearest
multiple of 2^16 using unsaturating arithmetic
and clearing the lower 16 bits. Ties are bro-
ken by rounding to even. The upper 16 bits of
the Q31 result can be treated as a Q15 value.

long _sroundn(long src); ROUND Returns the value src rounded to the nearest
multiple of 2^16 using saturating arithmetic
and clearing the lower 16 bits. Ties are bro-
ken by rounding to even. The upper 16 bits of
the Q31 result can be treated as a Q15 value.

int _norm(int src);
int _lnorm(long src);

EXP Returns the left shift count needed to normal-
ize src to a 32-bit long value. This count may
be negative.

long _lsat(long long src); SAT Returns src saturated to a 32-bit long value. If
src was already within the range allowed by
long, the value does not change; otherwise,
the value returned is either LONG_MIN or
LONG_MAX.

int _count(unsigned long long src1, 
               unsigned long long src2);

BCNT Returns the number of bits set in the expres-
sion (src1 & src2).

int _max(int src1, int src2);
long _lmax(long src1, long src2);
long long _llmax(long long src1, long long 

src2);

MAX Returns the maximum of src1 and src2.

int _min(int src1, int src2);
long _lmin(long src1, long src2);
long long _llmin(long long src1, long long 

src2);

MIN Returns the minimum of src1 and src2.

Figure 19.14: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Table 6-7. TMS320C55x C/C++ Compiler Intrinsics (Arithmetic With Side
Effects) 

Compiler Intrinsic
Assembly 
Instruction Description

void _firs(int *, int *, int *, int&, long&);
void _firsn(int *, int *, int *, int&, long&);

FIRSADD
FIRSSUB

Perform the corresponding instruction as fol-
lows:

int *p1, *p2, *p3, srcdst1;
long srcdst2;
...
_firs(p1, p2, p3, srcdst1, srcdst2);
_firsn(p1, p2, p3, srcdst1, srcdst2);

Which become (respectively):

FIRSADD *p1, *p2, *p3, srcdst1, srcdst2
FIRSSUB *p1, *p2, *p3, srcdst1, srcdst2

Mode bits SATD, FRCT, and M40 are 0.

void _lms(int *, int *, int&, long&); LMS Perform the LMS instruction as follows:

int *p1, *p2, srcdst1;
long srcdst2;
...
_lms (p1, p2, srcdst1, srcdst2);

Which becomes:

LMS *p1, *p2, srcdst1, srcdst2

Mode bits SATD, FRCT, RDM, and M40 are
0.

Figure 19.15: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Table 6-7. TMS320C55x C/C++ Compiler Intrinsics (Arithmetic With Side
Effects) (Continued)

Compiler Intrinsic Description
Assembly 
Instruction

void _abdst(int *, int *, int&, long&);
void _sqdst(int *, int *, int&, long&);

ABDST
SQDST

Perform the corresponding instruction as fol-
lows:

int *p1, *p2, srcdst1;
long srcdst2;
...
_abdst(p1, p2, srcdst1, dst);
_sqdst(p1, p2, srcdst1, dst);

Which become (respectively):

ABDST *p1, *p2, srcdst1, srcdst2
SQDST *p1, *p2, srcdst1, srcdst2

Mode bits SATD, FRCT, and M40 are 0.

int _exp_mant(long, long&); MANT::
NEXP

Performs the MANT::NEXP instruction pair, as
follows:

int src, dst2;
long dst1;
...
dst2 = _exp_mant(src, dst1);

Which becomes:

MANT src, dst1 :: NEXP src, dst2

void _max_diff_dbl(long, long, 
                             long&, long&, 
                            unsigned &);
void _min_diff_dbl(long, long, 
                            long&, long&, 
                           unsigned &);

DMAXDIFF
DMINDIFF

Perform the corresponding instruction, as fol-
lows:

long src1, src2, dst1, dst2;
int dst3;
...
_max_diff_dbl(src1, src2, dst1, dst2, dst3);
_min_diff_dbl(src1, src2, dst1, dst2, dst3);

Which become (respectively):

DMAXDIFF src1, src2, dst1, dst2, dst3
DMINDIFF src1, src2, dst1, dst2, dst3

Figure 19.16: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Table 6-8. TMS320C55x C/C++ Compiler Intrinsics (Non-Arithmetic)

Compiler Intrinsic Assembly 
Instruction

Description

void _enable_interrupts(void);
void _disable_interrupts(void);

BCLR ST1_INTM
BSET ST1_INTM

Enable or disable interrupts and ensure
enough cycles are consumed that the
change takes effect before anything else
happens.

6.5.4.1 Intrinsics and ETSI functions

The functions in Table 6-9 provide additional support for ETSI GSM functions.
Functions L_add_c, L_sub_c, and L_sat map to GSM inline macros. The other
functions in the table are run-time functions.

Table 6-9. ETSI Support Functions

Compiler Intrinsic Description

long L_add_c(long src1, long
src2);

Adds src1, src2, and Carry bit. This function does not map to a single
assembly instruction, but to an inline function.

long L_sub_c(long src1, long
src2);

Subtracts src2 and logical inverse of sign bit from src1. This function
does not map to a single assembly instruction, but to an inline function.

long L_sat(long src1); Saturates any result after L_add_c or L_sub_c if Overflow is set.

int   crshft_r(int x, int y); Shifts x right by y, rounding the result with saturation.

long L_crshft_r(long x, int y); Shifts x right by y, rounding the result with saturation.

int divs(int x, int y); Divides x by y with saturation.

Figure 19.17: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Figure 6-2. Intrinsics Header File, gsm.h

#ifndef _GSMHDR
#define _GSMHDR
#include <linkage.h>
#define MAX_16 0x7fff
#define MIN_16 -32768
#define MAX_32 0x7fffffff
#define MIN_32 0x80000000

extern int Overflow;
extern int Carry;

#define L_add(a,b) (_lsadd((a),(b)))          
#define L_sub(a,b) (_lssub((a),(b)))          
#define L_negate(a) (_lsneg(a))              
#define L_deposit_h(a) ((long)a<<16)         
#define L_deposit_l(a) ((long)a)                   
#define L_abs(a) (_labss((a)))               
#define L_mult(a,b) (_lsmpy((a),(b)))         
#define L_mac(a,b,c) (_smac((a),(b),(c)))     
#define L_macNs(a,b,c) (L_add_c((a),L_mult((b),(c))))      
#define L_msu(a,b,c) (_smas((a),(b),(c)))       
#define L_msuNs(a,b,c) (L_sub_c((a),L_mult((b),(c))))                   
#define L_shl(a,b) _lsshl((a),(b))    
#define L_shr(a,b) _lshrs((a),(b))    
#define L_shr_r(a,b) (L_crshft_r((a),(b)))    
#define L_shift_r(a,b) (L_shr_r((a),-(b)))     

#define abs_s(a) (_abss((a)))                
#define add(a,b) (_sadd((a),(b)))             
#define sub(a,b) (_ssub((a),(b)))             
#define extract_h(a) ((unsigned)((a)>>16))           
#define extract_l(a) ((int)a)                 
#define round(a) (short)(_rnd(a)>>16)                  
#define mac_r(a,b,c) (short)(_smacr((a),(b),(c))>>16)          
#define msu_r(a,b,c) (short)(_smasr((a),(b),(c))>>16)         
#define mult_r(a,b) (short)(_smpyr((a),(b))>>16)        
#define mult(a,b) (_smpy((a),(b)))            
#define norm_l(a) (_lnorm(a))                
#define norm_s(a) (_norm(a))                 
#define negate(a) (_sneg(a))                 
#define shl(a,b) _sshl((a),(b))        
#define shr(a,b) _shrs((a),(b))       
#define shr_r(a,b) (crshft_r((a),(b)))       
#define shift_r(a,b) (shr_r(a,-(b)))       
#define div_s(a,b) (divs(a,b))

Figure 19.18: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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Figure 6-2. Intrinsics Header File, gsm.h (Continued)

#ifdef __cplusplus
extern ”C”
{
#endif /* __cplusplus */

int crshft_r(int x, int y);
long L_crshft_r(long x, int y);
int divs(int x, int y);
_IDECL long L_add_c(long, long);
_IDECL long L_sub_c(long, long);
_IDECL long L_sat(long);

#ifdef _INLINE
static inline long L_add_c (long L_var1, long L_var2)
{

unsigned long uv1 = L_var1;
unsigned long uv2 = L_var2;
int cin = Carry;
unsigned long result = uv1 + uv2 + cin;

Carry = ((~result & (uv1 | uv2)) | (uv1 & uv2)) >> 31;
Overflow = ((~(uv1 ^ uv2)) & (uv1 ^ result)) >> 31;

if (cin && result == 0x80000000) Overflow = 1;
return (long)result;

}

static inline long L_sub_c (long L_var1, long L_var2)
{

unsigned long uv1 = L_var1;
unsigned long uv2 = L_var2;
int cin = Carry;
unsigned long result = uv1 + ~uv2 + cin;

Carry = ((~result & (uv1 | ~uv2)) | (uv1 & ~uv2)) >> 31;
Overflow = ((uv1 ^ uv2) & (uv1 ^ result)) >> 31;

if (!cin && result == 0x7fffffff) Overflow = 1;
return (long)result;

}

static inline long L_sat (long L_var1)
{

int cin = Carry;
return !Overflow ? L_var1 : (Carry = Overflow = 0, 0x7fffffff+cin);

}
#endif /* !_INLINE */

#ifdef __cplusplus
} /* extern ”C”  */
#endif /* __cplusplus */
#endif /* !_GSMHDR */

Figure 19.19: Page from C/C++ manual dealing with in-line and intrinsic assem-

bly language support. (From SPRU281E.)
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19.6.3 FIR function test program

// File name: FIRlab.c

#include ".\support\McBSP_452.h"
#include "FIR145.h"

#define NH (sizeof(B)/sizeof(int))

void setup_codec(void);
void AIC23_IO(unsigned, int, int);

unsigned forever=1;
unsigned port = 2;
int LeftInput, RightInput;
int y_out;
int db[NH+2];

void main(void)
{

int idx;

for (idx = 0; idx < NH+2; idx++) *(db+idx)=0; // zero buffer

setup_codec();

while(forever) {
AIC23_IO(port, y_out, LeftInput); // get sample
myFIR(&LeftInput, &B[0], &y_out, &db[0], 1, NH); // filter

}
}

19.6.4 myFIR.c starter code

// The delay buffer array, db, contains nh+2 locations. Location
// db[0] is used to hold the index-1 of the oldest sample present.
// Initialize db[0] to 0.

#define DATA int

unsigned myFIR(DATA *x, // points to array of input values
DATA *h, // points to coefficient values
DATA *y, // points to where to put output values
DATA *db, // points to the input delay buffer
unsigned nx, // number of input values, n can equal 1
unsigned nh) // number of coefficients

{
int i;
DATA *ptr_d, *ptr_h;
long LSum;
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ptr_d = db + (*db + 1); // start at oldest in db array
while (nx--) {

*ptr_d = *x++; // replace oldest with newest
LSum=0L; // set sum to zero
ptr_h = h; // initialize coefficient pointer
for (i=0; i < nh; i++) { // loop nh times

LSum += *ptr_h++ * *ptr_d++; // use a mac type intrinsic????
if (ptr_d > &db[nh+1]) ptr_d = &db[1];

}

*y++ = LSum>>15; // Q15 * Q15 => Q30 make Q15 .. intrinsic
// may require changing this as well.

}

*db = ptr_d-db-1; // update db[0]
return (0);

}

19.6.5 Source code for the DSPlib FIR function

This is the final arbiter as to what the FIR function is actually programmed to do

and how it expects the arrays to be organized.

;***********************************************************
; Version 2.10.03
;***********************************************************
; Function: fir
; Processor: C55xx
; Description: Implements finite impulse response filter using
; single-MAC approach. C-callable.
;
; Useage: ushort oflag = firs(DATA *x,
; DATA *h,
; DATA *r,
; DATA *dbuffer,
; ushort nx,
; ushort nh)
;
;
; Copyright Texas instruments Inc, 2000
;****************************************************************

.ARMS_off ;enable assembler for ARMS=0

.CPL_on ;enable assembler for CPL=1

.mmregs ;enable mem mapped register names

; Stack frame
; -----------
RET_ADDR_SZ .set 1 ;return address
REG_SAVE_SZ .set 0 ;save-on-entry registers saved
FRAME_SZ .set 0 ;local variables
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ARG_BLK_SZ .set 0 ;argument block

PARAM_OFFSET .set ARG_BLK_SZ + FRAME_SZ + REG_SAVE_SZ + RET_ADDR_SZ

; Register usage
; --------------

.asg AR0, x_ptr ;linear pointer

.asg AR1, h_ptr ;circular pointer

.asg AR2, r_ptr ;linear pointer

.asg AR4, db_ptr ;circular pointer

.asg BSA45, db_base ;base addr for db_ptr

.asg XAR4, xdb_base ;extended base addr for db_ptr

.asg BK47, db_sz ;circ buffer size for db_ptr

.asg BK47_L, db_sz_L ;for memory mapped access

.asg BSA01, h_base ;base addr for h_ptr

.asg BK03, h_sz ;circ buffer size for h_sz

.asg CSR, inner_cnt ;inner loop count

.asg BRC0, outer_cnt ;outer loop count

.asg T0, oflag ;returned value

ST2mask .set 0000000000010010b ;circular/linear pointers

.global _fir

.text
_fir:

;
; Allocate the local frame and argument block
;----------------------------------------------------------------
; SP = SP - #(ARG_BLK_SZ + FRAME_SZ + REG_SAVE_SZ)
; - not necessary for this function (the above is zero)

;
; Save any save-on-entry registers that are used
;----------------------------------------------------------------
; - nothing to save for this function

;
; Configure the status registers as needed.
;----------------------------------------------------------------

AND #001FFh, mmap(ST0_55) ;clear all ACOVx, TC1, TC2, C

OR #04140h, mmap(ST1_55) ;set CPL, SXMD, FRCT
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AND #0F9DFh, mmap(ST1_55) ;clear M40, SATD, 54CM

AND #07A00h, mmap(ST2_55) ;clear ARMS, RDM, CDPLC, AR[0-7]LC

AND #0FFDDh, mmap(ST3_55) ;clear SATA, SMUL

;
; Setup passed parameters in their destination registers
; Setup circular/linear CDP/ARx behavior
;----------------------------------------------------------------

; x pointer - passed in its destination register, need do nothing

; h pointer

MOV mmap(AR1), h_base ;base address of coefficients

MOV #0, h_ptr ;point to first coefficient

MOV mmap(T1), h_sz ;coefficient array size

; r pointer - passed in its destination register, need do nothing

; db pointer

MOV XAR3, xdb_base ;db array address
MOV *AR3+, db_ptr ;index of oldest db entry

MOV mmap(AR3), db_base ;base address for db_ptr

MOV mmap(T1), db_sz ;db_sz = nh

ADD #1, mmap(db_sz) ;db_sz = nh+1

; Set circular/linear ARx behavior

OR #ST2mask, mmap(ST2_55) ;config circ/linear pointers

;
; Setup loop counts
;----------------------------------------------------------------

SUB #1, T0 ;T0 = nx-1
MOV T0, outer_cnt ;outer loop executes nx times
SUB #3, T1, T0 ;T0 = nh-3
MOV T0, inner_cnt ;inner loop executes nh-2 times

;
; Compute last iteration input pointer offsets
;----------------------------------------------------------------
; - computation not needed since T1 still contains nh
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;
; Start of outer loop
;----------------------------------------------------------------

||RPTBLOCAL loop1-1 ;start the outer loop

MOV *x_ptr+, *db_ptr ;get next input value

;ist iteration
MPYM *h_ptr+, *db_ptr+, AC0

;inner loop
||RPT inner_cnt
MACM *h_ptr+, *db_ptr+, AC0

;last iteration has different pointer adjustment and rounding
MACMR *h_ptr+, *(db_ptr-T1), AC0

;store result to memory
MOV HI(AC0), *r_ptr+ ;store Q15 value to memory

loop1: ;end of outer loop

;
; Update the db entry point
;----------------------------------------------------------------

MOV db_ptr, *-AR3 ;update 1st element of db array

;
; Check if overflow occurred, and setup return value
;----------------------------------------------------------------

||MOV #0, oflag ;clear oflag

XCCPART check1, overflow(AC0) ;clears ACOV0
||MOV #1, oflag ;overflow occurred

check1:

;
; Restore status regs to expected C-convention values as needed
;----------------------------------------------------------------

BCLR FRCT ;clear FRCT

AND #0FE00h, mmap(ST2_55) ;clear CDPLC and AR[7-0]LC

BSET ARMS ;set ARMS
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;
; Restore any save-on-entry registers that are used
;----------------------------------------------------------------
; - nothing to restore for this function

;
; Deallocate the local frame and argument block
;----------------------------------------------------------------
; SP = SP + #(ARG_BLK_SZ + FRAME_SZ + REG_SAVE_SZ)
; - not necessary for this function (the above is zero)

;
; Return to calling function
;----------------------------------------------------------------

||RET

;----------------------------------------------------------------
;End of file

19.6.6 Source code for the TF test program

/* File name: TFMark1.c

Test studies for the transfer function measurment program.

12Feb2004 .. initial version .. K.M

*/

#include <stdio.h>
#include <math.h>
#include "./support/McBSP_452.h"

//**********************************

#define FTV_CNT 33
#define MPNMC 0x0040
#define SINE_TABLE (0xFFFA00>>1)
#define ST3_55 0x0004
#define FOREVER 1
#define C_OFFSET 64
#define S_OFFSET 0

//**********************************

#define FS 48000

unsigned long ComputeFTV(unsigned long, unsigned long);
int FarPeek(unsigned long);
void FarPoke(unsigned long, unsigned);
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void AIC23_IO(unsigned port, int LeftValue, int RightValue);
int LeftInput, RightInput;

#include "FIR145.h"

#define NH (sizeof(B)/sizeof(int))
int db[NH+2];

unsigned long fs = FS;
unsigned long ftv;
unsigned long sine_ptr;
double pi=3.14159265;
unsigned long ac;
unsigned Nint = FS/10; // integrate for 0.1 seconds
unsigned Nstart = (NH+2); // dependent on filter size!!
long x32, y32;

int sin_tab[256];

unsigned int test = 5; // select which test to execute

void main(void)
{

unsigned st3_55;
int idx, table, sine, data;
int frac, value, value2;
unsigned cosine_adr, sine_adr, sig_adr;
int cosine_value, sine_value, sig_value;
unsigned long f, utemp;
double xflt, yflt, rflt, ang, sf;
FILE *out;

for (idx = 0; idx < 256; idx++) {
sin_tab[idx] = (int)(32766*sin(2*pi*idx/256)+0.5);

}

/*****************************************************************************/

if (test == 1) {

// test the generation of the FTV value

while (FOREVER) {
printf("enter f: ");
scanf("%lu", &f);
ftv = ComputeFTV(f, fs);

Chapter 19 280 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

printf("f: %6lu fs: %6lu ftv: %9lu\n", f, fs, ftv);
}

}

/******************************************************************************/

if (test == 2) {

// test accessing the ROM based sine table

st3_55 = FarPeek(ST3_55); // read status register 3
FarPoke(ST3_55, st3_55&(~MPNMC)); // enable the ROM in program space

sine_ptr = SINE_TABLE;
for (idx = 0; idx < 128; idx++) {

table = FarPeek(sine_ptr++);
sine = (int)(32768*sin(2*pi*idx/256)+0.5);
printf("idx: %6d sine: %6d table: %6d\n", idx, sine, table);

}
exit (0);

}

/*******************************************************************************/

if (test == 3) {

// test DDS quadrature oscillator

printf("enter f: ");
scanf("%lu", &f);
ftv = ComputeFTV(f, fs);
printf("f: %6lu fs: %6lu ftv: %9lu\n", f, fs, ftv);
st3_55 = FarPeek(ST3_55); // read status register 3
FarPoke(ST3_55, st3_55&(~MPNMC)); // enable the ROM in program space

// place cosine on left D/A and sine on right D/A

setup_codec();

ac = 0; // initialize the phase accumulator

while (FOREVER) {
cosine_adr = ((ac >> (32-8))+C_OFFSET)&0xFF;
sine_adr = ((ac >> (32-8))+S_OFFSET)&0xFF;
cosine_value = FarPeek(SINE_TABLE+cosine_adr);
sine_value = FarPeek(SINE_TABLE+sine_adr);
AIC23_IO(2, cosine_value, sine_value);
ac += ftv; // advance the phase accumulator

}

}
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/*******************************************************************************/

if (test == 4) {

// first cut TF analyzer .. no filter .. set up for 0.25 cycle phase shift

// From 10 Hz to 10000 Hz in 10 Hz steps
// Integration time is determined by Nint and FS.

ac = 0; // initialize phase accumulator
sf = 8192.0/((float)Nint*32768.0*32768.0);

for (f = 10; f <= 10000; f+=10) {
ftv = ComputeFTV(f,fs);
x32 = y32 = 0L; // initialize integrators
for (idx = 0; idx < Nint; idx++) {

cosine_adr = ((ac >> (32-8))+C_OFFSET)&0xFF;
sine_adr = ((ac >> (32-8))+S_OFFSET)&0xFF;
cosine_value = FarPeek(SINE_TABLE+cosine_adr);
sine_value = FarPeek(SINE_TABLE+sine_adr);

// signal at 45 degrees

sig_adr = ((ac >> (32-8))+C_OFFSET+32)&0xFF; // at 45 degrees
sig_value = FarPeek(SINE_TABLE+sig_adr);

ac += ftv; // advance the phase accumulator

x32 += (_lsmpy(cosine_value, sig_value)>>(13+1));
y32 -= (_lsmpy(sine_value, sig_value)>>(13+1));

}
xflt = x32; yflt = y32;
xflt *= sf; yflt *= sf;
rflt = sqrt(xflt*xflt+yflt*yflt);

// ang = atan2(yflt, xflt)/pi; // easiest first test

while ((labs(x32) > 32767)|(labs(y32) > 32767)) {
x32 >>= 1; y32 >>= 1;

}

// ang = atan2((float)y32, (float)x32)/pi; // test normaling code

ang = myatan2((int)y32, (int)x32)/32768.0; // make fp for common usage testing

printf("f: %6lu R: %8.6f theta: %8.6f \n", f, rflt, ang);
}

}
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/********************************************************************************/

if (test == 5) {

// now for a complete transfer function analyzer .. testing myfir function

// From 10 Hz to 6000 Hz in 10 Hz steps
// Integration time is determined by Nint and FS.

// Floating point R calculation to be eliminated in later standalone version.

ac = 0; // initialize phase accumulator
sf = 2.0*8192.0/((float)Nint*32768.0*32768.0);

out = fopen("Mark_I", "w");
if (out == NULL) {

printf("can’t open output file\n");
exit (1);

}
printf("Measurement started.\n");

for (f = 10; f <= 6000; f+=10) {
ftv = ComputeFTV(f,fs);
x32 = y32 = 0L; // initialize integrators
for (idx = 0; idx < Nint+Nstart; idx++) {

cosine_adr = ((ac >> (32-8))+C_OFFSET)&0xFF;
sine_adr = ((ac >> (32-8))+S_OFFSET)&0xFF;

// Use local sine table with interpolation

utemp = (ac>>(32-8)); // get table index
frac = (ac>>9)&0x7FFF; // get fractional part
value = *(sin_tab+utemp); // get selected value
value2 = *(sin_tab+(0xFF&(utemp+1))); // get next value
value += (((long)(value2-value))*frac)>>15; // and interpolate
sine_value = value;

utemp = ((ac+0x40000000)>>(32-8)); // get table index
frac = (ac>>9)&0x7FFF; // get fractional part
value = *(sin_tab+utemp); // get selected value
value2 = *(sin_tab+(0xFF&(utemp+1))); // get next value
value += (((long)(value2-value))*frac)>>15; // and interpolate
cosine_value = value;

// Use the ROM table straight

// cosine_value = FarPeek(SINE_TABLE+cosine_adr);
// sine_value = FarPeek(SINE_TABLE+sine_adr);

ac += ftv; // advance the phase accumulator
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data = cosine_value>>1; // set effective max level to 0.5

myFIR(&data, &B[0], &sig_value, &db[0], 1, NH); // FIR filter

if (idx < Nstart) continue; // wait until filter memory is filled

x32 += (_lsmpy(cosine_value, sig_value) >> 13);
y32 -= (_lsmpy(sine_value, sig_value) >> 13);

}
xflt = x32; yflt = y32;
xflt *= sf; yflt *= sf;
rflt = sqrt(xflt*xflt+yflt*yflt); // later make fixed point!!!

// Need to make x and y values 16 bit for myatan2

while ((labs(x32) > 32767)||(labs(y32) > 32767)) {
x32 >>= 1; y32 >>= 1;

}

ang = myatan2((int)y32, (int)x32)/32768.0; // make fp for common usage testing

if ((f-200*(f/200)) == 0) {
printf("%6ld\n",f);

}
// printf("f: %6lu R: %8.6f theta: %8.6f \n", f, rflt, ang);

fprintf(out, " %6lu %8.6f %8.6f\n", f, rflt, ang); // used for file output only

}
fclose(out);
printf("\n Done!\n");

}
}

/*****************************************************************************/

// Function to compute 32 bit unsigned FTV value give f and fs

unsigned long ComputeFTV(unsigned long f, unsigned long fs)
{

unsigned idx;
unsigned long ftv;

ftv = 0;

for (idx = 0; idx < FTV_CNT; idx++) {
if (f >= fs) {

ftv = (ftv<<1)+1;
f -= fs;

}
else ftv <<= 1;
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f <<= 1;
}
if (f >= fs) ftv += 1;

return (ftv);
}

/****************************************************************************/

// Function used to send values to the D/A

/*
* places the two calling values into the McBSP transmitter buffer

* waits for a new sample to arrive

* places the sample value into LeftInput and RightInput

* then returns

*/

void AIC23_IO(unsigned port, int LeftValue, int RightValue)
{

McBSP_reg(port, McBSP_DXR2) = LeftValue;
McBSP_reg(port, McBSP_DXR1) = RightValue;

while((McBSP_reg(port, McBSP_SPCR1)&0x0002) == 0); // wait for sample

LeftInput = McBSP_reg(2, McBSP_DRR2);
RightInput = McBSP_reg(2, McBSP_DRR1);

}
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20.1 Introduction

This is the write-up for the VHDL portion of Lab Exercise 5.
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Figure 20.1: Signed serial-parallel multiplier MAC entity block diagram (4-bit

word size shown).

The VHDL exercise is in two parts. In the first part the task is to implement

abit-serial 8-bit multiply-and-accumulate (MAC) entity. This is to be based on

the block diagram contained in Figure 20.1. The second part of the exercise

adds rounding and truncation support to the MAC entity.

The multiplier portion of the design is based on On a Bit-Serial Input and

Bit-Serial Output Multiplier, R. Gnanasekaran, IEEE Transactions on Computers,

Vol. C-32, No. 9, September 1983.

Lab exercise 5 is planned to combine the MAC using from this exercise with

parts of the Lab Exercise 4 VHDL (the A/D and D/A support along with a direct

digital synthesizer) to implement a finite impulse response (FIR) filter. The 8 bit

word size will be upgraded to 16 bits, so plan ahead.

20.1.1 Bit-serial multiplier

The bit-serial multiplier shown in the left side of Figure 20.1 is of the serial-

parallel form discussed in lecture. The a value is the multiplicand and the b

value is the multiplier. The unit does signed multiplication. Only four bits are

shown, this exercise implements 8, and in lab exercise 5 it expected that either

12 or 16 bits will be used.
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20.1.2 Bit-serial accumulator

The logic for the bit-serial accumulator is on the right side of 20.1. The output

of the multiplier is bit-serial, least significant bit first. This is added bit serial

wise to the shifted contents of the accumulator register. A single full adder with

a delay in the carry is sufficient to do the addition. The extra delay in between

the adder output and the accumulator is present for use when rounding (to be

added). With this delay present it requires 17 clock tics to add the multiplier

output to the accumulator.

The adder and accumulator require minimal logic making minimal demands

on use of FPGA fabric. The cost is higher execution time compared to a parallel

implementation. However, if the time is available the use of bit-serial logic can

allow use of smaller FPGA devices or increased computational ability for a given

size as compared to parallel logic.

20.2 The MAC test entity and its use

This section documents the expected MAC entity port signals and the use of

the Spartan-3 board switches and display. A Digilent 4 switch Pmod module is

expected to be attached to PMod port C.

20.2.1 MAC entity port signals

entity SP_MAC is
Port ( a : in STD_LOGIC_VECTOR (7 downto 0);

b : in STD_LOGIC_VECTOR (7 downto 0);
go : in STD_LOGIC;
clear : in STD_LOGIC;
round : in STD_LOGIC;
ready : out STD_LOGIC;
ac : out STD_LOGIC_VECTOR (15 downto 0);
reset : in STD_LOGIC := ’0’;
clk : in STD_LOGIC);

end SP_MAC;

Signal a is the multiplicand. b is the multiplier. go is a one clock period pulse

which triggers the operation of the MAC. clear is a one period pulse which sets

the MAC accumulator to zero, round is a level indicating whether or not the

current mac operation is to have its result rounded.

Signal ready is a one when the MAC entity is not working, a zero otherwise.

There is no need for this application to check the ready. Operation is very fast
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and we, as observers, are, relatively speaking, glacially slow. The ac lines connect

to the accumulator. The reset and clk are as normally.

20.2.2 Spartan-3 board device usage

Eight bit values are entered via the 8 slide switches. Sixteen bit values are shown

on the seven-segment display.

Push button function:

PB 0 do a MAC operation.

PB 1 load slide switch value into a-register.

PB 2 load slide switch value into b-register.

PB 3 clear the MAC accumulator.

PMod slide switch functions:

SW 1 show a-register in seven-segment display.

SW 2 show b-register in seven-segment display.

SW 3 round and truncate 16-bit MAC retaining the top 8-bits

on PB0 operations.

SW 4 not used.

The contents of the MAC are shown in the seven-segment display when all

switches are in the down position. The truncation step may or may not (the

more likely implementation) zero the low 8 bits of the MAC accumulator.

20.3 Discarding bits and rounding

Many DSP calculations involve using 16-bit (or some other word size) multi-

plications and additions. Multiplications result in word size bit growth. Gen-

erally somewhere during or at the end of a series of operations it is neces-

sary/desireable to store a 32-bit (or whatever) value back into a 16-bit word.

An example of the need to round in real life is when paying school and prop-

erty taxes. These are typically figured in terms of mils, i.e., one thousandths of

a dollar. Our coinage and banking system works in units that are a multiple of

one-hundredths of a dollar, commonly referred to as a cent or penny.

Figuring interest payments is another real-life application where the rounding

and discarding of digits is done.
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In grade/high school we have been taught that when throwing digits away

one should round first. We can round to the nearest cent, or the nearest dime,

or the nearest quarter, etc. Lots of options. Whatever we and whoever we are

dealing with are willing to agree to.

When computing there are times where it is decided that bits have more

significance that others. Then we can discard the less significant ones and round

based on what is discarded what’s left.

There are a quite of number of ways one can when rounding. The choice

among them migh be conditioned on the statistical properties of the data values

to be rounded. The two rounding methods that we will consider in EECS 452 are

referred to as two’s complement and convergent rounding (aka rounding to the

nearest even, . . . ).

Two’s complement rounding is relatively easy to implement but does result

in a small DC bias in the data. In many applications this bias is not important.

Deciding whether this bias is important or not is the system designer’s decision.

Convergent rounding is more complicated than is two’s complement but gener-

ally results a unbiased result. There are DSP applications (e.g., when working

with CIC filters in high factor sample rate conversions) where convergent round-

ing is considered necessary.

First a quick review of rounding.

Consider an 8-bit value held in two 4-bit words, xxxxxxxx where the x are

arbitrary bit values. It is desired to discard the low 4 bits. Before doing so we

round the value by adding 00001000. then truncating by retaining only the top

four bits of the result.

It is reasonable to ask that any two values that added to zero prior to round-

ing and truncation (or chopping) add to zero afterwards. This is claimed to be

the case except for values of the form xxxx1000.

For example, 01101000 and 10011000 add to zero. Their two’s comple-

mented truncated bit patterns are easily seen to be 0111 and 1010 which do

not sum to zero.

A rule than can be used in this case that if the right most bit just left of the

cut is a 0 then no value is added prior to discarding bits. If the right most bit

just left of the cut is a 1 then then 00001000 is added. The effect is to round to

the nearest remaining even value. This is also called convergent rounding.

Using the example from above we see the convergent rounded values are

0110 and 1010 which add to zero.
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Given a bit pattern xxxxx|xxxxxxxwhere | indicates the cut point (where the

bits to the right of the | are to be discarded) it can be established that we can

do convergent rounding followed by cutting by adding 00000|1000000 and dis-

carding the low 7 bits, unless we have a bit pattern of the form xxxx0|x000000.

In this situation, simply cut and discard. It should be clear how to generalize

this procedure to any word size and cut position.
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Figure 20.2: Suggested logic for implementing convergent rounding. (4-bit word

size shown).

Convergent rounding can be thought of as being two’s complement rounding

followed by truncation where there a single special case to be dealt with. .

Figure 20.2 illustrates a logic that can be used to add convergent rounding to

Figure 20.1.

The detection of the low bit all zero string could have been accomplished by

anding high bits in the accumulator. The shown zero string detector works inde-

pendent of the number of bits being checked. This allows easy later modification

of where to round.

The round_now signal is a one only when the bit to be rounded is contained

in the delay immediately following the left most adder.

20.4 The exercise

The de-bounced push button, slide switch input and seven-segment VHDL en-

tities were documented in Lab Exercise 2 and are simply being reused in this

exercise.
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The PMod slide switches are read in as std_logic_vector(3 downto 0). A

zero is read when a switch is in the down position and one is read when a switch

is in the up position.

20.4.1 The MAC entity

You will be supplied with a non-rounding version of the MAC entity VHDL along

with the associated support files. The full adder entity needs completing but

otherwise all modules are operational.

Create a project using the supplied files and generate the bit file.

Load the bit file into the Spartan-3 board. Use a set of values that are sort of

the limits. As might be expected successive runs sum into the accumulator. As

noted above push button 3 can be used to clear the accumulator. The basic idea

is to run a few numbers through in order to gain familiarity with the buttons

and switches as well as build confidence.

20.4.2 Adding convergent rounding

Copy your MAC project into a different folder and use that as your starting point

for adding the convergent rounding logic. Modify the MAC VHDL so that when

the round line is high the value being shifted into the accumulator is convergent

rounded. The rounding is to be accomplished by, in effect, adding (or not) a one

in bit 7 of the accumulator. Because this a bit serial adder is being used the to

be added needs to occur at the right time.

Convergent rounding was discussed both in lecture and in the main Exercise

3 write-up. Basically one wants to place small amount of logic just prior to the

msb input of the accumulator shift register.

One possible logic design is shown in Figure 20.2.

Your GSI can give you some test cases to use for verifying correct operation.

Note that the way the supplied logic works only the bits at the bit position to be

rounded are modified. All of the bits to the right are unchanged. In the TI these

would also be zeroed. Generally this is not necessary if only the bits to the left

of the bit being rounded up are retained.

Once you have your Spartan-3 correctly rounding, demonstrate to your GSI.

Include your source code in you lab report. Also document the test cases that

you used and explain why you choose as you did, what the expected results were

and what your implementation produced.
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20.4.3 Extending the unit

If you have time and the inclination we expect to be using either a 12-bit or a 16-

bit MAC entity in lab 5 exercise. Can you produce a generic MAC with rounding

for arbitrary word sizes? Another feature that one might consider is to supply

the index of the MAC bit where the rounding 1 is being added just to its right.

In our case the rounding position was bit 8. The rounding one was added into

bit position 7.

The input values are saved in registers. The round control like should be

saved as well. Doing so would allow operation to proceed without requiring the

input data lines being held fixed. Something to do on the next revision iteration.

The design included here does not have any overflow detection support nor

the ability to saturate. The need for these abilities will be application dependent.

Adding their support adds to the complexity of the logic. The more general a

design, the more complex it is likely to be and the more difficult to understand

and use.

Xilinx has a MAC logic core available. It is available to us via the Core Gener-

ator included in WebPACK. The documentation is available on Xilinx’s web site.

Having done this exercise studying Xilinx’s MAC implementation should be in-

formative.

20.5 Listings

20.5.1 MAC test entity source code

This entity uses the two process state machine approach.

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: K.Metzger
--
-- Create Date: 16:59:22 10/16/2006
-- Design Name:
-- Module Name: SP_MAC_test - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
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-- Revision:
-- Revision 0.01 - File Created
-- 1.00 - Modified multiplier01 into SP_MAC_test 20Jan2007 KM
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity SP_MAC_test is
Port ( btn : in STD_LOGIC_VECTOR (3 downto 0);

-- led : out STD_LOGIC_VECTOR (7 downto 0);
swt : in std_logic_vector(7 downto 0);
pmod_c : in std_logic_vector(3 downto 0);
ssg : out std_logic_vector(6 downto 0);
an : inout std_logic_vector(3 downto 0);
mclk : in STD_LOGIC);

end SP_MAC_test;

architecture Behavioral of SP_MAC_test is

signal a : std_logic_vector(7 downto 0);
signal b : std_logic_vector(7 downto 0);
signal ac : std_logic_vector(15 downto 0);
signal display : std_logic_vector(15 downto 0);
signal go : std_logic;

signal next_a : std_logic_vector(7 downto 0);
signal next_b : std_logic_vector(7 downto 0);
signal next_go : std_logic;
signal ready : std_logic;
signal reset : std_logic :=’0’;

signal pb_db : std_logic_vector(3 downto 0);
signal pb_clear : std_logic_vector(3 downto 0);
signal next_pb_clear : std_logic_vector(3 downto 0);

type t_state is (s_idle, s_go, s_done);
signal state : t_state := s_idle;
signal next_state : t_state := s_idle;
signal sel : std_logic_vector(3 downto 0);
signal clk : std_logic;

begin
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clk <= mclk;
sel <= "1111"; -- make active selected seven segment digits

process (clk, reset) -- state machine updating
begin

if reset = ’1’ then
elsif rising_edge(clk) then -- the actual updates

pb_clear <= next_pb_clear;
a <= next_a;
b <= next_b;
go <= next_go;
state <= next_state;

end if;
end process;

process(state, pb_db) -- state machine sequencer
begin

next_pb_clear <= "0000"; -- reset the pb clears
next_a <= a; -- otherwise just hold register values
next_b <= b;
next_go <= go;
next_state <= state;

case state is -- implements the state logic
when s_idle =>

if pb_db(0) = ’1’ then -- pb0 causes p to be calculated
next_pb_clear <= "0001";
next_state <= s_go;

elsif pb_db(1) = ’1’ then -- pb1 loads a from the switches
next_pb_clear <= "0010";
next_a <= swt;
next_state <= s_idle;

elsif pb_db(2) = ’1’ then -- pb2 loads b from the switches
next_pb_clear <= "0100";
next_b <= swt;
next_state <= s_idle;

elsif pb_db(3) = ’1’ then
next_pb_clear <= "1000";

end if;
when s_go => -- state to initiate multiply

next_go <= ’1’;
next_state <= s_done;

when s_done => -- doesn’t bother to wait for ready
next_go <= ’0’; -- the human is glacial
next_state <= s_idle; -- so go back to start

end case;
end process;

multiplier : entity work.SP_MAC -- preliminary version -- signed
port map ( -- p = a*b
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a => a,
b => b,
ac => ac,
go => go, -- pulse to start
clear => pb_clear(3),
ready => ready, -- ready also means done
reset => reset,
clk => clk

);

push_buttons : entity work.pb_debounce -- push button debouncer
port map (

pb_in => btn, -- input actual push buttons
pb_out => pb_db, -- debounced push button
pb_clear => pb_clear, -- clears the button state
reset => ’0’,
clk => clk

);

display <= ("00000000" & a) when pmod_c = "0001" else
("00000000" & b) when pmod_c = "0010" else
ac;

SSD01_unit : entity work.SSD01 -- Chih-Wei’s seven segment support
port map ( ssd0 => display(3 downto 0),

ssd1 => display(7 downto 4),
ssd2 => display(11 downto 8),
ssd3 => display(15 downto 12),
ssd => ssg,
sel => sel,
an => an,
clk => clk);

end Behavioral;

20.5.2 The MAC entity VHDL

This unit uses the one-process state machine approach. Required combinational

logic can be added in the location where the line

sum_rounded <= sum_delayed;

is located. The two signals used here bridge the place where the rounding logic is

to go. The signal input to the rounding is sum_delayed and the signal generated

by the rounding logic is sum_rounded.

----------------------------------------------------------------------------------
-- Company: EECS 452
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-- Engineer: Kurt Metzger
--
-- Create Date: 08:54:13 01/20/2007
-- Design Name:
-- Module Name: SP_MAC - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity SP_MAC is
Port ( a : in STD_LOGIC_VECTOR (7 downto 0);

b : in STD_LOGIC_VECTOR (7 downto 0);
go : in STD_LOGIC;
clear : in STD_LOGIC;
round : in STD_LOGIC;
ready : out STD_LOGIC;
ac : out STD_LOGIC_VECTOR (15 downto 0);
reset : in STD_LOGIC := ’0’;
clk : in STD_LOGIC);

end SP_MAC;

architecture Behavioral of SP_MAC is

signal acc : std_logic_vector(15 downto 0);
signal ar : std_logic_vector(7 downto 0);
signal br : std_logic_vector(7 downto 0);
signal pbit : std_logic;
signal sum_carry_delay : std_logic := ’0’;
signal sum_carry_out : std_logic;
signal sum_out : std_logic;
signal sum_delayed : std_logic;
signal sum_rounded : std_logic;
signal counter : std_logic_vector(4 downto 0);
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signal spm_go : std_logic := ’0’;
signal spm_reset : std_logic :=’0’;
signal my_ready : std_logic :=’1’;

type t_state is (idle, start, running, done);
signal state : t_state := idle;

begin

ac <= acc;
ready <= my_ready;

spmult : entity work.SP_Mult
port map (a=>ar(0), b=>br, p=>pbit, go=>spm_go,

reset=>spm_reset, clk=>clk);

psum : entity work.FullAdder01
port map (a=>acc(0), b=>pbit, sum=>sum_out, cin=>sum_carry_delay, cout=>sum_carry_o

sum_rounded <= sum_delayed; -- remove when adding rounding support

controller : process(go, reset, clk)
begin

if reset = ’1’ then
my_ready <= ’1’;
acc <=(others=>’0’);
spm_go <= ’0’;
state <= idle;

elsif rising_edge(clk) then
case state is

when idle =>
if clear =’1’ then

acc <=(others=>’0’);
end if;
if go = ’1’ then

my_ready <= ’0’;
spm_reset <= ’1’;
ar <= a; -- copy multiplicand
br <= b; -- copy multiplier
sum_delayed <= ’0’; -- initialize extra mac adder delay
sum_carry_delay <= ’0’; -- initialize mac adder carry
counter <= "00000"; -- initialize loop counter
state <= start;

end if;
when start =>

spm_reset <= ’0’;
spm_go <= ’1’;
state <= running;

when running =>
sum_carry_delay <= sum_carry_out; -- update sum carry
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sum_delayed <= sum_out; -- update delay after adder
acc <= sum_rounded & acc(15 downto 1); -- update the accumulator
ar <= ar(7) & ar(7 downto 1); -- sign extend right shift
counter <= counter+1; -- are we cheating using + ?
if counter = 16 then

spm_go <= ’0’;
state <= done;

end if;
when done =>

my_ready <= ’1’;
state <= idle;

end case;

end if;

end process;

end Behavioral;

20.5.3 The serial-parallel multiplier entity VHDL

This module can be customized to the required word size by specifying the value

of N in the instantiation call. The default size is 8 bits. Generate statements were

used to generate the necessary VHDL statements. The generic keyword was used

to make the module parameterizable.

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: Kurt Metzger
--
-- Create Date: 16:20:46 01/19/2007
-- Design Name:
-- Module Name: SP_Mult - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
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use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity SP_Mult is
Generic ( N : integer := 8);
Port ( a : in STD_LOGIC;

b : in STD_LOGIC_VECTOR (N-1 downto 0);
p : out STD_LOGIC;
go : in STD_LOGIC;
reset : in STD_LOGIC;
clk : in STD_LOGIC);

end SP_Mult;

architecture Behavioral of SP_Mult is

signal asr : std_logic_vector(N-1 downto 0);
signal delayin : std_logic_vector(N-1 downto 1);
signal delayout : std_logic_vector(N-1 downto 1);
signal carryin : std_logic_vector(N-1 downto 0);
signal carryout : std_logic_vector(N-1 downto 0);
signal ab : std_logic_vector(N-1 downto 0);

begin

ab <= b when a = ’1’ else (others=>’0’);

sp_mul: for i in 0 to N-1 generate
begin

right : if i = 0 generate
sr : entity work.FullAdder01

port map (a=>delayout(i+1), b=>ab(i),
cin=>carryout(i), cout=>carryin(i), sum=>p);

end generate right;

mid : if (0 < i) and (i < N-1) generate
sr : entity work.FullAdder01

port map (a=>delayout(i+1), b=>ab(i),
cin=>carryout(i), cout=>carryin(i), sum=>delayin(i));

end generate mid;

left : if i = N-1 generate
sr : entity work.FullAdder01

port map (a=>delayout(i), b=>ab(i),
cin=>carryout(i), cout=>carryin(i), sum=>delayin(i));

end generate left;
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end generate sp_mul;

process(clk, go)
begin

if reset = ’1’ then
delayout <= (others=>’0’);
carryout <= (others=>’0’);

elsif rising_edge(clk) and go = ’1’ then
delayout <= delayin;
carryout <= carryin;

end if;
end process;

end Behavioral;

20.5.4 One-bit full adder entity VHDL

It was found easiest to work with the full adder directly and not use an entity

specifically written for a one-bit serial adder (full adder with a register between

the carry out and the carry in).

----------------------------------------------------------------------------------
-- Company: EECS 452
-- Engineer: One-bit full adder
--
-- Create Date: 14:54:05 01/19/2007
-- Design Name:
-- Module Name: FullAdder01 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
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--use UNISIM.VComponents.all;

entity FullAdder01 is
Port ( a : in STD_LOGIC;

b : in STD_LOGIC;
cin : in STD_LOGIC;
sum : out STD_LOGIC;
cout : out STD_LOGIC);

end FullAdder01;

architecture Behavioral of FullAdder01 is

begin

-- your code goes here

end Behavioral;
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21 : Infinite Impulse Response

Filtering

Use of biquad stages. Range of coefficient values. Elliptic filters require mini-

mal resources. Limit cycles. Transfer function and group delay measurement.

Recursive oscillators. single output—why stable? Sine/cosine output.
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22.1 Introduction

This exercise develops:

• the programming of a function to implement an IIR filter as a cascade of

biquad sections,

• the programming of a recursive frequency synthesizer (rather than a DDS)

that simultaneously generates sine and cosine phase sinusoids,

• the transfer function measurement code introduced in lab exercise 5. Use is

made of the interrupt system. With little or minor modification the updated

program can be used to make measurements on filters external to the DSK

(though not used in this way in the actual exercise).

Infinite impulse response filters were discussed extensively in lecture. The

purpose of the first portion of this exercise is to gain practical experience imple-

menting an IIR filter using a cascade of transposed direct form 2 biquad sections.

The use of a biquad section as a sinewave generator was discussed in lec-

ture. Basically an IIR filter is designed with its poles located on the unit circle,

implemented in software and started running by providing initial conditions.

The second part of the lab looks at a two delay stage circuit configuration that

simultaneously generates sine and cosine waveforms at the same frequency.

The Mark 1 transfer function program (used in lab exercise 5) was evolved

(into the Mark 2 version) for use in this exercise. The changes include:

• Interactive support for selection of the filter whose transfer function is to

be measured.

• Use of the D/A and A/D converters to generate the waveforms to be fil-

tered. This more closely represents the operation of a stand alone instru-

ment such as the National Instruments LabView system or the SigLab sys-

tem.

• Use of interrupts. The right channel output dedicated to the generation of

a cosine waveform using an interrupt driven direct digital synthesizer. This

frees up the application program from having dealing with the updating of

the DDS’s accumulator.

The Mark 2 program lacks graphic capability and relies on off-line processing

and plotting by MATLAB.

Many of the source files for this exercise can be found on the EECS 452 hand-

outs web page.
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22.2 Infinite impulse response filters

22.2.1 Theory

The equation describing the operation of an IIR filter is

y[n] =
M
∑

i=0

b[i]x[n − i]−
N
∑

k=1

a[k]y[n − k].

()*()* ()*()*
+,

-./ -0/ 123
45 54 +67686126

123 +373
+,+6+383 83 126737686

Figure 22.1: (a) direct form 2 biquad section, (b) transposed direct form 2 biquad

section.

The z-transform of the associated transfer function is

H(z) =
b0 + b1z

−2 + b2z
−2 + · · · + bMz−M

a0 + a1z−1 + a2z−2 + · · · + aNz−N

The coefficient values are assumed to be real valued and N and M are equal and

even. With these assumptions the transfer function can then be expressed in

terms of quadratic factors.

H(z) =
N/2−1
∏

r=0

br ,0 + br ,1z−1 + br ,2z−2

1+ ar ,1z−1 + br ,2z−2
.

Each quadratic factor is assumed to be formed by pairs of complex roots

of the numerator and denominator polynomials. A significant portion of the

design effort is to best pair up zeros and poles and to order the resulting biquad

sections to obtain the best performance.

Figure 22.1 shows the filter structures most commonly used to implement

biquadratic filter sections. A biquadratic filter section has a transfer function of

the form

H(z) =
b0 + b1z

−1 + b2z
−2

1+ a1z−1 + a2z−2
.
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The most commonly used biquad implementation is the direct form 2 (DF2),

Figure 22.1a. The transposed direct form 2 (TDF2) shown in Figure 22.1b appears

to be less commonly used. Both forms will be used in this lab exercise.

Most of our design work is going to be done for us by MATLAB. MATLAB ex-

presses transfer functions as a cascade of biquadratic section. MATLAB’s default

is that sections are ordered starting with the pole pair furthest from the unit

circle moving toward the pole pair being closest to the unit circle. Zeros are

matched starting with the one closest to the pole pair nearest the unit circle and

going toward the pole furthest to the unit circle.

This exercise will only consider lowpass filters. Somewhat arbitrarily, we will

set the gain of each biquad section to unity at 0 Hz. We will use a 16-bit word size

with Q15 format input samples and biquad coefficient values. Nominally there

should not be any numeric overflow problems when looking at the input to out-

put levels for the individual biquad sections. Howver this is not necessarily the

case when going from a biquad input to its internal delay stage inputs/outputs.

Our primary design concern is about overflows internal to the biquad cas-

cade. These can be a serious problem when using the DF2 biquad sections and

appears to be an almost non-existent problem when using the TDF2 biquad sec-

tions. There is a price to be paid for this robustness. The inner loop of a TDF2

filter code requires more instructions than does the DF2.

The TDF2 biquad section is relatively easy to program. Assume that tempo-

rary register T0 holds the input value to the current section and that temporary

register T1 holds the output value for the current section. The inner loop calcu-

lations are:

• T1 = w1 + b0T0,

• w1 = b1T0− a1T1+w2,

• w2 = b2T0− a2T1,

• T0 = T1.

Theoretically the magnitudes of the a1 and b1 values can be as large as 2.

Values one and greater in magnitude are not representable using a 16-bit word

size and the Q15 format. One way to handle large values, and retain use of

the Q15 format, is to use a1/2 and b1/2 and repeat the associated mac/mas
instructions. The above inner loop does not show how to make use of a1/2 and

b1/2 values. Doing this correctly is part of your responsibility in this exercise.

22.3 Recursive sine/cosine oscillator

22.3.1 Theory

The digital feedback circuit shown in Figure 22.2a was introduced in lecture and

it’s operation analyzed. As an aid to determining the locations of the poles of
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its transfer function we can add a dummy input point. Redrawing this block

diagram adding provision for an input the result is the diagram shown in Figure

22.2b. The oscillator is started running by placing initial values into the two

delay stages and the input is set to zero.

òJN

òJN

O~

ó§å•

JN

(a)

òJN

òJN

O~

ó§å•

JN

ñxåz

(b)

Figure 22.2: (a) Second-order recursive oscillator block diagram. (b) Equivalent

second-order all pole filter.

For Figure 22.2b we have the general transfer function

H(z) =
1

1+ a1z−1 + a2z−2
.

The poles of this equation lie at a radius of
√
a2. For the block diagrams in

Figure 22.2 we have a2 = 1. The poles are on the unit circle. This is the situation

where we have an oscillator.

The relation between a and the frequency of oscillation, fo, for the oscillator

in Figure 22.2 is given by

2π
fo
fs
= cos−1(a).

Figure 22.3 contains the listing of a simple assembly language program that

implements such a oscillator.

Figure 22.4 contains the block diagram of a second order recursive oscillator

whose delay stage outputs are in cosine/sine phase relationship. The equations

describing the updating of the delay stage contents can be written in matrix form

as

[

w1[n+ 1]

w2[n+ 1]

]

=

[

cosθ cosθ + 1

cosθ − 1 cosθ

][

w1[n]

w2[n]

]

.

This is a more interesting oscillator than the one in Figure 22.2a. In Figure

22.2a the values in the second delay stage were simply one clock time delays of

Chapter 22 312 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

; EECS 452 recursive sine generator
;
; 6 October 2003 .. initial version .. KM

.sect ".text" ;place into the code section

.align 4 ;force 32-bit boundary

.global _asinegen ;make entry visible to linker

alpha .set 32488 ;alpha stands for the a variable
r .set (-0x7FFF) ;define start w_1 value
s .set 0x4000 ;define start w_2 value

.asg t0, w_1 ;renaming t0 at w_1

.asg t1, w_2 ;renaming t1 as w_2

_asinegen:
bset sxmd ;enable sign extend
bset frct ;shift left 1 on multiply
bset m40 ;use 40 bit accumulator
bset rdm ;round
bclr c54cm ;not C54x compatible
mov #r,w_1 ;initialize w_1
mov #s,w_2 ;initialize w_2

L1:
mov #alpha<<#16,ac0 ;ac0h = a
mpy w_1,ac0 ;a*w_1
sftsc ac0,#1 ;2*a*w_1
sub mmap(w_2)<<#16, ac0 ;2*a*w_1-w_2
mov w_1,w_2 ;w_2 = w_1
mov rnd(hi(saturate(ac0))),mmap(t0) ;w_1 = y;
mov w_1,port(#0x3002) ;McBSP_reg(2, McBSP_DXR2) = y;
mov w_1,port(#0x3003) ;McBSP_reg(2, McBSP_DXR1) = y;

L2:
btst #1,port(#0x3004),tc1
bcc L2,!tc1 ;while((McBSP_reg(2, McBSP_SPCR2)&0x0002) == 0);
b L1 ;generate next sinewave value

.end

Figure 22.3: Assembly language source code for the simple recursive oscillator.

The delay stages are implemented using temporary registers.
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Figure 22.4: Sine/cosine 2nd order recursive oscillator.

those in the first delay stage. In the oscillator shown in Figure 22.4 the values in

the two delay stages are shifted 90 degrees relative to each other.

This oscillator can be used to generate quadrature phase sine and cosine val-

ues for use in communication system modulators and demodulators. A draw-

back is that the output levels of the two stages differ. This can be remedied by

determining the relationship (say by using MATLAB or by deriving the defining

equations) and scaling the smaller of the two levels.

The relation between θ and the output frequency fo for the oscillator in Fig-

ure 22.4 is

θ =
2πfo

fs
.

The starter source code for the quadrature oscillator is contained in Section

22.22.

22.4 Transfer function measurement

We continue the development of the transfer function code introduced in Exer-

cise 5.

The TFMark2 program version still supports measuring transfer functions of

a filter co-resident in the DSK. The filter support has now been expanded on and

encapsulated in a separate program module. The transfer function measurement

now uses analog input to the filter and processes the resulting analog output.

The program is moving from being essentially a simulation to being an actual
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Figure 22.5: Connections for making transfer function measurements.

measurement. Though, in today’s world, the difference between simulation and

reality is often somewhat blurred.

arq

oç
ìí

oá
å

iá
å

aph

Figure 22.6: Typical test configuration. Assumes filter is external to the measure-

ment processor. Figure 22.11 shows the arrangement when the measurement

software and the filter are co-resident.

Figure 22.5 shows how to cable the DSK for making measurements. The

headphone output parallels the line out providing a useful monitoring point.

The right headphone output corresponds to the input to the filter and the left

headphone output corresponds to the output of the filter.

Figure 22.6 illustrates the signal flow when measuring a external filter. In

order to be able to correct for gain and phase imperfections an initial calibration

run is made with the filter replaced by a direct connection between input and

output.
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For the situation when the filter is co-resident with the measurement software

(see Figure 22.11) this is accomplished by simply not calling the filter code and

simply echoing the right input onto the left output. The TFMark2 program has

mode selectable from the keyboard to do this.

The TFMark2 program has four test configurations that can be selected from

the user console. These are

0 The filter transfer function measurement mode. Allows the user to select

which filter to use and generates a measurement file output.

1 A test to see if the DDS is running correctly. The DDS cosine output is

available on the right D/A output. The program also echoes the right A/D

input on the left D/A output.

2 A test to observe the DDS cosine on the right output and the DDS sine on

the left output.

3 Used when running the filters and not making a transfer function measure-

ment. The left input is filtered with the result being placed onto the left

output. The filter to be used is interactively selected using the console

input.

22.5 C5510

22.5.1 Prelab

Prelabs are to be done individually and are to be handed in at the

start of the lab period. Handwritten work will not be graded.

22.5.2 The IIR filter

Using MATLAB’s FDATool design three IIR filters meeting the following specifica-

tion:

• sample rate of 48000 Hz,

• low pass transfer function.

• ripple in the pass band limited to 0.1 dB,

• low pass cutoff frequency of 3100 Hz,

• transition region from 3100 Hz to 4000 Hz

• minimum attenuation in the stop band of 60 dB relative to the pass band.

The filter designs are to be of the following types:

• Chebyshev Type 1 IIR having even order,
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• Chebyshev Type 2 IIR having even order,

• Elliptic IIR having even order.

The MATLAB Chebyshev Type 1 and 2 filter designs might be of odd order. If

so, uncheck the “minimum order” box and enter the next largest even value for

the order. It is easier for us to work with even order filters than otherwise. When

specifying the filter order you will will need give some thought to the meaning of

the requested parameter values. By specifying a filter size greater than minimum

needed to meet the above needs you have the freedom to specify the parameter

of most interest and allow the filter to exceed the specification elsewhere. The

aspect most important to the filter design will vary depending on the filter type.

Export the designs to MAT files. I named mine, Cheby1, Cheby2, and

Elliptic. The current versions of MATLAB export the coefficients of second

order sections (SOS). The older versions of MATLAB export the numerator and

denominator polynomials of the overall transfer function.

Write a MATLAB script to read in your MAT files. It may be that your version

of MATLAB exported to SOS form. If not, use tf2sos to convert the full transfer

function coefficients to second-order-section (SOS) coefficients.

For each biquad section determine the 0 Hz gain. Normalize the numerator

values so that each section has unit gain at 0 Hz.

Each row of the SOS matrix contains the coefficients for a second order sec-

tion. The coefficients are ordered:

b0 b1 b2 1 a1 a2

To normalize the DC gain of a section to unity multiply the b values for that

section by

(1+a1+a2)/(b0+b1+b2)

This isn’t the most clever normalization but it will do for our purposes. Quite

often the 0 Hz gain is at a value corresponding to the ripple minimum. The effect

of our normalization will to cause the resulting filter to have ripple gain peaks

slightly greater than one.

Integerize the second order coefficient values by multiplying by 215 and round.

This puts them into integer values which can be interpreted as fractions in the

Q15 format. Some of the values may have magnitude greater than 32767. That’s

ok for now. When we move the values into to our test program they will be

placed into 32-bit long arrays. This avoids our having to deal with this situation

until later in our program.

Print, or more usefully, write the coefficient values to a memory stick or a

floppy disk. Order the scaled and integerized values in the order

b0,b1,b2,a1,a2
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Place each section’s five coefficient values on a single line. My MATLAB script used

fprintf(’%8d, %8d, %8d, %8d, %8d,\n’, ...
Qmysos(idx, 1), Qmysos(idx,2), Qmysos(idx,3), Qmysos(idx,5), Qmysos(idx,6));

This format will greatly facilitate getting the coefficient values into the Code

Composer Studio based source code.

The source code for the DF2 example used in class has been placed onto

the EECS 452 handouts web page, myDF2IIR.asm. An edited version has also

been prepared for you. This is to serve as the starting point for your TDF2 filter

function, myTDF2IIR.asm. The location where your code will go has been iden-

tified with the comment “here be dragons”. Update the file’s history by adding a

comment at the start of the file indicating your name, date, and whatever.

The iircas5 and myDF2IIR functions make use of parallel operations. For

your DF2 code do not initially attempt to do this. Go for simple and get it right.

Later, if you wish, optimize.

The iircas5 and myDF2IIR functions each order the a and b coefficient val-

ues as necessary in order to optimize the code. That is, the order is determined

by the code not the reverse. You should also do so for your TDF2 SOS implemen-

tation. What is meant is that you should use the coefficient values in order that

is most natural when you write your code. The order needed will be described

to the FilterSetup function located in the FilterWrapper.c file.

The myTDF2IIR ordering will most likely differ from that used by the other

functions. The resulting order can be obtained with a simple modification of the

FilterSetup.c code.

For this part of the prelab:

• Turn in a list of integerized coefficient values for the Chebyshev types 1

and 2 and the elliptic filter designs designs. Don’t forget to identify which

is which.

It will be useful to have the values saved in a text file on a USB flash drive

or a floppy or be able to readily generate them in lab so they can be cut and

pasted.

• Turn in in a listing of your transposed direct form 2 inner loop assembly

language statements.

22.5.3 The sine/cosine oscillator

Simulate the operation of the sine/cosine oscillator in Figure 22.4 using MATLAB.

The starting values and coefficient values that you need can be determined
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by looking at the source code contained in this write-up. Produce a plot show-

ing the operation corresponding to approximately 8 cycles of the sine/cosine

waveforms. (You need to use the values found in the source code found in this

write-up to determine the expected output frequency. Divide this into the sam-

ple frequency to determine the number of samples per cycle.) Use the MATLAB

subplot format 2 rows and 1 column for the plots. Put the w1 output on the top

plot and the w2 output on the lower plot.

Label your plots. Note what the peak-to-peak values are for each waveform.

Modify your MATLAB script to simulate the saturation of values to the range

[−1,1]. Plot these as above. There will be a startup period when the oscillator is

not yet working. Determine where the oscillator has settled into normal opera-

tion. Use this region to determine the amplitudes of the w1 and w2 waveforms.

The ratio of these values will be useful in scaling the smaller level waveform in

your assembly language implementation.

It’s not part of the prelab but it would seem to be a good idea to figure out

how to complete the code given in Section 22.22 before coming to lab. This file

is available on the EECS 452 handouts web page. Hint: use saturating moves

when updating the two delay registers.

22.5.4 Measuring transfer functions

Write a MATLAB script that:

• Reads in a TFMark2 transfer function data set. This file is in ASCII with each

line representing a measurement at a frequency. The values on a given line

are:

– Frequency in Hz.

– R magnitude from the right channel input.

– R magnitude from the left channel input.

– Angle from the right channel input. Range is from minus one half

cycle (equal to -1) to plus one half cycle (equal to +1).

– Angle from the left channel input. Range as for the right channel input

value.

• Plots the relative gain in dB over the range -80 dB to 0 dB. Use subplot(3,1,1).

• Plots the relative angle in cycles. You have to convert values to radians,

unwrap, and then difference. Plot using subplot(3,1,2).

• Calculates the associated delay in terms of sample time counts (1/48000 =

1 count). Plot using subplot(3,1,3). Don’t forget to label your plots.
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Figure 22.7 illustrates what the requested plots should look like when using

real measurement data. The top magnitude plot was not requested above.

The extra plot was included to illustrate the gain difference between input

and output due to the way the CODEC is implemented on the DSK.
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Figure 22.7: Sample non calibrated measurement. Top plot was added to make

more clear the gain difference between the filter input and output values due to

gains in the A/D and/or D/A system. These were investigated in an earlier lab

exercise.

• Calculates the mean, median, and standard deviation of your calibration

data set delays. MATLAB makes this quite easy to do.

• Calculates the theoretical unwrapped phase for your elliptic filter design.

Some hints are:

– Use FDAtool to export your filter design to a MAT file. Depending on

the version of MATLAB that you are using this will be either in transfer
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function form or in second order section form.

– Read in the above file. If this is in SOS form then use sos2tf to convert

it into transfer function form. At present we are not worried about

getting the gain correct, just the phase.

– For the same exact frequencies used by the calibration file use freqz
to evaluate the transfer function.

– Use the angle function to extract the angle and then use unwrap. Con-

vert to cycles.

• Reads a measurement file. This will be generated in lab using your trans-

posed direct form filter function.

• Computes the unwrapped relative phase difference between the input and

output.

• Subtracts the calibration phase.

• Plots the phase of the MATLAB prototype. Use a new figure with subplot(3,1,1).

• Plots the phase of your measurement data after being corrected with the

calibration data (subplot(3,1,2)).

• Plots the difference between measurement and theory. Use subplot(3,1,3).

See Figure 22.8 for an example of what is expected to be a typical test run.
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Figure 22.8: Example of phase difference obtained using instructor’s elliptic

design. The low frequency delay error is due to low levels caused by the in-

put/output capacitive coupling. There appears to be a general delay error of

about −1 µs. Removing the ramp due to the −1µs “error” gives an extremely

good fit between measurement and theory over the passband. For reference, the

time between samples at fs = 48000 Hz is 20.8 µs.

A test calibration data set that can be used to check out your MATLAB script

can be found on the class handouts web page. This file is only meant for use

in testing your script. It is expected that each DSK will be slightly different and
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that you will make a calibration run in lab for your particular system. It would

be interesting to see how much DSK to DSK variation exists.

22.5.5 Exercise

The basic concepts being explored in this lab exercise consist of:

• Implementation of a transposed direct form 2 biquad filter code. Includes

dealing with the range of the a1 and b1 coefficient vales, looking at the

effects of internal overflows (they really can occur).

• Comparison of the behavior of the TI IIRCAS5, the myIIRCAS5 code devel-

oped in lecture, and your TDF2 code.

• How well the Chebyshev 1, Chebyshev 2 and Elliptic designs perform.

• Basic concepts involved in making transfer function measurements.

• Implementation and testing of a quadrature recursive oscillator.

Note: when modifying your code for a particular test, such as removing sat-

uration, don’t forget to restore the code afterward. Guess what happens if you

don’t and come back later to make other tests.

22.5.6 The TDF2 biquad IIR cascade

The main activities consist of:

1. Implementing a TDF2 biquad IIR function (myTDF2IIR) using assembly lan-

guage.

2. Investigating overflow behavior of the two DF2 functions and your TDF2

function when implementing the elliptic filter design.

3. Using your MATLAB script to plot the transfer function of the elliptic filter

design using the myTDF2IIR function.

4. Measure “the” group delay of the elliptic IIR filter.

The FilterSetup function contained in FilterWrapper.c has provision for

mapping a second order section coefficient list from the

b0, b1, b2, a1, a2
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ordering to an arbitrary order. It should be clear from the listing how this is

done. Look at the support for the direct form functions iircas5 and myDF2IIR.

You will have to reorder the coefficient values in a similar manner for your ver-

sion of the myDFT2IIR function.

There will be problems with the a1 coefficient values, and possibly for the b1
values for at least one of the IIR filter designs. There will be at least one value

having magnitude greater than 1.

This will be handled by modifying the TI iircas5 code to accept a value

of a1/2 and b1/2. This is your responsibility! You might consider adding a

masm instruction for one coefficient and macm instruction for the other. You will

have to pay particular attention to the addressing modes being used in the in-

structions you are augmenting. Your added instructions must not modify the

addresses being used by the existing instructions! If uncertain (and you prob-

ably will be), check the addressing mode descriptions in the TMS320C55x DSP

Mnemonic Instruction Set Reference Guide or in TMS320C55x DSP CPU Reference

Guide.

The myDF2IIR code was written with a1 and b1 scaling problem in mind and

assumes that a1/2 and b1/2 values are supplied in the call.

Similar unscaling instructions are to be incorporated into your myTDF2IIR
function.

In the pre-lab you were asked to use MATLAB to generate sets of filter values

using Q15 format without regard to word size. These values will be placed into

long (32-bit) arrays. Where should be obvious by studying the FilterSetup
code. There is a specific array to be used by each of the three filter designs you

were asked to generate.

The division by 2 of the a1 and b1 values is done in the reordering process

supported in the FilterSetup code. The 32-bit long values are converted to 16

bit Q15 form in the reordering process. The a1 and b1 values are divided by 2

as part of the reordering.

A renamed and stripped down version of myDF2IIR.asm has been provided

for use as your myTDF2IIR starting point. All you need to do is to supply the

instructions needed in the inner loop. This file can also be found on the EECS

452 handouts web page and is present on the lab machines in the Lab6 directory.

This code does not require the data buffer to be aligned onto any particular

boundary. However, the db array in the test program needs to be aligned prop-

erly because it is shared by functions that do require it. This has been done for

you.
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Adding a single instruction inside the inner loop of the assembly language

FIR function has a significant effect on its execution time. However, for the IIR

filter functions there already are present a significant number of instructions in

the inner loop. The effect of adding one or two instructions is less severe.

The calling sequences of fir, iircas5, myDF2IIR, and myTDF2IIR are almost

compatible making it easy to switch between functions. In past DSPlib versions

the location of the nx parameter in the function calls was identical for the FIR

and IIR functions. For some reason TI decided this wasn’t necessary for the C55x

DSPlib.

The source files to be incorporated into the project (make) file for this week’s

laboratory exercise include:

• AIC23int_00.asm, interrupt support

• DisplayTest00.c, draws plot backgrounds

• draw_characters.c, PostScript character drawing.

• FilterWrapper.c, module with filter support

• fir.asm
• iircas5.asm
• intvec.asm, generic interrupt vector

• myatan2.asm
• myDF2IIR.asm
• myTDF2IIR.asm
• no_isr.asm
• setup_codec.c, initializes McBSP and AIC23 to run

• setup_McBSP_plot.c, sets up McBSP channel 0.

• TFMark2.c, the main program.

• XVGA.c,

The run time support library and a linker command file will be needed as

well. The TFMark2 program uses the small memory model.

Because we are supplying our own interrupt vector there is the potential of

a conflict at build time with the interrupt vector contained in the RTS library.

When this happens the error message

error: can’t allocate vectors

will result.

The work around is to use the compiler’s option to specify the link order.

Simply select all the modules and add them to the link list. Then drag and drop

the RTS library so that it is last on the list.
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The FilterSetup function in FilterWrapper.c is interactive. The filter se-

lection can be easily changed by stopping the program, reloading and restarting.

Be careful when setting the A/D input levels so as to not over drive the DSK

analog input. The input level to the DF2 filter functions needs to be reduced

by a significant factor relative to the largest safe usable input level for TDF2 in

order to insure proper operation (no overflow). To help in establishing the input

level the FilterSetup program provides a pass through mode sending samples

directly from the A/D input to the D/A output.

The filter support code puts the filtered output onto the left D/A channel

(white cable) and echoes the input samples onto the right D/A channel (red

cable). These can be readily monitored by connecting the scope to the DSK’s

headphone output.

This version of the transfer function program has four user selectable modes:

0 The normal measurement mode. A jumper cable is used to connect the line

out to the line in. The DDS output is placed on the right channel output.

The right channel input goes to the selected filter. The filter output is

placed onto the left channel output. This then goes to the left channel

input. This arrangement allows the A/D and D/A support circuitry and

delays to be calibrated out of the measurement data.

1 The right line input is echoed onto the left line output. The DDS is still

present on the right line output.

2 The DDS cosine output is present on the right line output. The DDS sine

output is present on the left line output.

3 The DDS output is present on the right line output. The left line input

connects to the filter input. The filter output goes to the left line output.

This allows using an external oscillator to check filter operation.

It is very helpful to monitor the program outputs on an oscilloscope using

the headphone jack. The headphone outputs essentially parallel the line output

signals. Most cable problems (generally opens) are very apparent if one monitors

the D/A output levels.

As the first step in the lab exercise use TFMark2 mode 0 with the no-filter

filtering sub mode to obtain a data set for use in calibrating the system when a

filter is not present. The line outputs have to be connected to the line inputs for

this measurement. Use a shift amount of 0.
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The default file name is tfmeas and will be located in the debug subdirectory.

Move this file into your working directory and rename it calibration. This is a

text file and can be inspected to make sure all went well with the measurement.

Of the three filter types being implemented in this exercise the elliptic is

the most robust followed by the Chebyshev 2 and then the Chebyshev 1. It

is recommended that you use the elliptic coefficients when initially testing and

debugging your TDF2 function.

For the Elliptic filter design:
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Figure 22.9: DF2 elliptic filter maximums of filter input to delay stage outputs.

Note that the frequency axis is in units of 104 Hz.
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Figure 22.10: TDF2 elliptic filter maximums of filter input to delay stage outputs.

Note that the frequency axis is in units of 104 Hz.

Recall,
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• iircas5 is direct form 2 without any provision for saturation,

• myDF2IIR is direct form 2 with values saturated on store,

• myTDF2IIR does whatever you specified, hopefully saturating whenever

converting a 32-bit Q31 value into a 16-bit Q15 value.

Figure 22.9 is a plot of the maxima over the 8 delay stages making up the DF2

filter using the elliptic filter coefficients. Note that even though the gain through

the filter, input-to-output, in the passband is one the gain, input-to-delay stages,

almost always exceeds one. The input level to the DF2 filter functions will have

to be reduced accordingly in order to obtain proper performance, i.e., without

overflow. The transfer function code right shift input request allows the sample

values to be scaled by a corresponding power of two prior to being sent to the

filter.

Figure 22.10 is a plot of the maxima over the 8 delay stages making up the

TDF2 filter when using the elliptic filter coefficients. Note, no overflow problems.

1. For the iircas5, myDF2IIR, and myTDF2IIR filter functions experimentally

determine the maximum input level at which the filter works properly over

the full frequency range using a sine wave input. You have to be careful

with the myDF2IIR because it saturates and it is easy to miss the level

at which this occurs. In theory the iircas5 and the myDF2IIR functions

should have the same performance limits. The desirability of the use of

saturation in the myDF2IIR function should be quite apparent.

Record these levels in Volts peak-to-peak.

2. Using one of the DF2 filter functions determine the largest usable input

level at 100 Hz. Record the frequency and largest usable input level at this

frequency. A version that allows overflows will most clearly show when the

input level is too high for proper operation.

Record these levels in Volts peak-to-peak.

3. Using one of the DF2 filter functions search out the location of the peak

near 3000 Hz shown in Figure 22.9. Record the frequency and largest us-

able input level at this frequency. Similarly, search out the notch near

2000 Hz and record the frequency and largest usable input level at this

frequency. High precision isn’t called for but try to come close enough to

verify the plot.

4. For the myTDF2IIR SOS realization set input to the maximum distortion

free level that you determined earlier (or just a tad bit smaller) slowly vary

the input frequency over the passband and the lower part of the stop band
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and determine the range of frequencies (if any) at which the filter output

distorts. There should not be any distortion over the filter operating band.

If there is it may be necessary to reduce the input level slightly. If the

distortion continues to exist there is a problem.

Even though the TDF2, at least nominally, works at all frequencies with-

out distortion using a sine input this does not mean that it will not have

distortion caused by internal overflow when using other waveforms.

The Fourier series for a unit amplitude square wave has a fundamental

having amplitude of 4/π . Using such an input it is, in effect, possible to

overdrive the filter with an input that has maximum peak value near unity.

Use a square wave having the same peak-to-peak range as the sine wave

used above and investigate (and report on the results) whether or not the

TDF2 filter indeed shows the effects of overflow over its passband. See

if you can determine the relation between the maximum safe level square

wave and the maximum safe level sine wave amplitudes? Try to character-

ize the overflow caused distortion for each of the four configurations being

considered. Some will be more acceptable than others. Sketches would be

of use here.

A way to help yourself to better see when there is an overflow is to remove

the saturate statements in your code. This should make it more apparent

when the filter experiencing an overflow situation.

5. Use the profiler and record the execution time of the iircas5, myDF2IIR,

and myTDF2IIR functions for the elliptic design. In your report comment

on the differences.

6. Acquire data to allow you to determine the transfer function of the elliptic

TDF2 IIR filter. Use TFMark2 mode 0 to make the measurement.

For the Chebyshev type 1 filter design:

• Run TFMark2 mode 3 using the Chebyshev type 1 for the myDF2IIR and

myTDF2IIR SOS filter types.

What we want to do is examine the behavior of the two filter types when

implementing our Chebyshev type 1 filter. Does one implementation work

better than the other (what is better?). Is there a significant operational

difference at low, medium or high input levels?

Operate the two filter types at varying input amplitudes and frequencies

and notice how the behavior seems to change. Comment on what you ob-

serve.
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For the Chebyshev type 2 filter design:

• Using one of the DF2 SOS filter functions determine the input level at which

the filter works properly over it’s passband and a bit into the stop band.

Record this level in volts peak-to-peak.

• For our TDF2 SOS realization repeat the above. It might be useful to remove

the saturation operation in order to see more clearly when saturation oc-

curs.

• Experiment a bit with the input levels for the DF2 and TDF2 designs and

sweep the test frequency over the pass band and a little into the stop band.

Are there any significant problems or artifacts that are observed?

The design and implementation of FIR and IIR filters is a basic bread-and-

butter task for the DSP professional. This exercise and the previous one (FIR)

provided experience in this task. Even though it looks like we have run through

a large number of situations we have only scratched the surface of the topic.

Key considerations involved in implementing an IIR filter are:

• Choice of filter transfer function.

• Filter topology.

• How the arithmetic is performed.

Given a simple lowpass filter specification MATLAB provided us with three vi-

able choices for a transfer function. Lacking any additional constraints the ellip-

tic transfer function appears to have provided the least complex implementation

and the best performance.

There are an infinite number of ways in which a given transfer function can be

implemented. We want one that works and works well. The DF2 is probably the

most commonly implemented form. We found that the transposed form is more

likely to work better. What is the cost in program complexity and is it worth it?

The answers appear to be not much more and yes. However, it should be noted

that there were places in the TDF2 code where word size was reduced from 32-

bits to 16-bits opening avenues for quantization noise to enter the system. We

have may paid a price in noise performance for our robust operation. At this

point we really don’t know. A complete analysis would be a good topic for a

more advanced course.

Note that the iircas5 library function makes full use of the guard bits but

neglects to saturate the results of the computations. The function returns a flag

indicating whether or not an overflow has occurred. Generally this information

is received too late to be very useful.
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The following can be done outside of lab.

During the lab period you captured two data sets using the Mark 2 transfer

function measurement program. The first was for no filter. This characterizes

the transfer function of the measurement system. The second was for the el-

liptic TDF2 filter. The transfer function associated with the second data set is

the cascade of the measurement system transfer function and the elliptic filter

transfer function.

Figure 22.11 is a moderately detailed illustration of our measurement sys-

tem showing the system components involved when making a transfer function

measurement with the filter co-resident with the measurement software.

o=aL^ o=^La ÑáäíÉê i=aL^ i=^La

aap
êáÖÜí=áåéìí

äÉÑí=áåéìíÅäçëÉ=Ñçê=Å~ä=êìå

íê~åëÑÉê=ÑìåÅíáçå=ÄÉáåÖ=ãÉ~ëìêÉÇ

ÉñíÉêå~ä=ÑáäíÉê=ãÉ~ëìêÉãÉåí

Figure 22.11: Details of the system components affecting the transfer function

measurement. The components external to the DSK when making a measure-

ment on an externally implemented filter are also indicated.

We can write the measurement system transfer function in polar form as

Hm(f ) = Rm(f )ejθm(f )

and the filter transfer function in polar form as

Hf (f ) = Rf (f )ejθf (f ).

The first (filterless) measurement transfer function is

H1(f ) = Hm(f )

and the second (with filter) measurement transfer function is

H2(f ) = Hm(f )Hf (f ).
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Clearly

Hf (f ) =
H2(f )

H1(f )
=
R2(f )

R1(f )
ej[θ2(f )−θ1(f )] .

Using your data compute Hf (F). Use the program that you wrote for the

prelab to plotHf (f )magnitudes, phase and delay. Also plot the phase difference

between the computed Hf (f ) and the values predicted by calculation of the

transfer function using MATLAB.

As part of your report include:

• Include the listing of your working assembler TDF2 filter code.

• Include transfer function plots that you made

• Comment on the performances of the DF2 and TDF2 filters. This might

include:

– How their operation is affected by the addition of saturation when

saving the accumulator contents into a 16-bit word.

– Which one would you choose for an application and why?

• Include any waveform sketches that you might have made.

• Compare this week’s IIR and last week’s FIR timings. Did the IIR filter

execute significantly faster or slower that the equivalent FIR filter?

• Include the results and calculations for the measurements (and MATLAB

calculations) for the Elliptic filter.

With the possible exception of overflow effects there should be no difference

between the DF2 and TDF2 IIR filter transfer functions.

22.5.7 Sine/Cosine oscillator

Using the starter code given in Section 22.22 add the instructions required to

implement the recursive sine/cosine oscillator shown in Figure 22.4 . Focus get-

ting your code correct. Optimization in the form of parallel instructions and the

like can be done later, if you like, once your program works. The code in Section

22.22 and 22.3 differ in where the delay stage contents are located. In Figure

22.3 the delay stages, w_1 and w_2 are implemented in temporary registers. In

Section 22.22 the delay stages are implemented in data memory. Data memory

is addressed differently. For example, to multiply the contents of w_1 by the

cosine constant placing the product into ac0 one would write

mpy *(#w_1),#cosine,ac0
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Q15 scaling is to be used. It should be apparent how to implement multipli-

cation by 1+ cosθ (which in general does not fit into 16-bit Q15 form). Hint: use

the fact that multiplication is distributive over addition.

The symbol cosine in the given code corresponds to cosθ.

Run your oscillator. The value supplied for cosine is the same value as

alpha used in generating a 1000 Hz waveform by the simple oscillator in Figure

22.2. Do you get the same frequency?

The outputs from the two stages have different amplitudes. One essentially

swings between ±1 and the other has a significantly smaller swing. Modify your

code to scale the smaller value prior to displaying it. Scale it to be as large as

possible without distorting. Use your MATLAB simulation results to set the scale

factor. You likely will need represent the scale factor using Q11. The oscillator

stage values are Q15. With the frct bit set the results of multiply instructions

are shifted left one bit position. Thus multiplying a Q15 value by a Q11 value

results in a Q(26+1) value. How does one put this back into Q15 before sending

it to the D/A?

Remove the saturate statements that are being used to keep the oscillator

stable. Note what happens to the waveforms.

22.5.8 Report

Beyond what was requested above, basically report on what you did, how you did

it, and what the results were. Include supporting documentation such as plots,

program listings, etc. Give the grader something on which to judge the quality

of your work. Insightful observations and discussion are a definite plus.

Include listings of your programs.

22.6 S3SB

We have/had good intentions, however . . .

22.6.1 Prelab

22.6.2 Exercise

22.6.3 Report

22.7 DSPlib IIRCAS5 manual pages

See Figures 22.12, 22.13 for the DSPlib IIRCAS5 documentation.

Chapter 22 332 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

iircas5

4-73 Function Descriptions

Benchmarks (preliminary)

Cycles† Core: nx * (2 + 3 * nbiq)
Overhead: 44

Code size
(in bytes)

122

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

Cascaded IIR Direct Form II (5 Coefficients per Biquad)iircas5

Function ushort oflag = iircas5 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq,
ushort nx)
(defined in iircas5.asm)

Arguments

x [nx] Pointer to input data vector of size nx

h[5*nbiq] Pointer to filter coefficient vector with the following
format:
h = a11 a21 b21 b01 b11 ... a1i a2i b2i b0i b1i
where i is the biquad index a21 is the a2 coefficient of
biquad 1). Pole (recursive) coefficients = a. Zero
(non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[2*nbiq] Pointer to address of delay line d. Each biquad has 2
delay line elements separated by nbiq locations in the
following format:
d1(n-1), d2(n-1),..di(n-1) d1(n-2), d2(n-2)...di(n-2)
where i is the biquad index(d2(n-1) is the (n-1)th delay
element for biquad 2).

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first block only. Be-
tween consecutive blocks, the delay buffer preserves
the previous r output elements needed.

� Memory alignment: this is a circular buffer and must
start in a k-bit boundary(that is, the k LSBs of the
starting address must be zeros) where k = log2
(2*nbiq).

nbiq Number of biquads

Figure 22.12: First page of the DSPlib IIRCAS5 function description. (From

SPRU422F.)
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iircas5

4-74  

nx Number of elements of input and output vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description Computes a cascade IIR filter of nbiq biquad sections. Each biquad section is
implemented using Direct-form II. All biquad coefficients (5 per biquad) are
stored in vector h. The real data input is stored in vector x. The filter output
result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx = 1).

The usage of 5 coefficients instead of 4 facilitates the design of filters with a
unit gain of less than 1 (for overflow avoidance), typically achieved by filter
coefficient scaling.

Algorithm (for biquad)

d(n) � x(n) � a1 * d(n � 1) � a2 * d(n � 2)
y(n) � b0 * d(n) � b1 * d(n � 1) � b2 * d(n � 2)

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/iircas5 subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (5 + 5 * nbiq)
Overhead: 60

Code size
(in bytes)

126

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

Figure 22.13: Second page of the DSPlib IIRCAS5 function description. (From

SPRU422F.)
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22.8 List of codes

22.9 IIR Transfer function Mark 2

/* File name: TFMark2.c

Test studies for the transfer function measurment program.

12Feb2004 .. initial version (TFMark1) .. K.M
29Feb2004 .. modified for lab 6 .. KM
13Oct2007 .. XVGA display added .. KM
14Oct2007 .. PostScript output added .. KM

*/

#include <stdio.h>
#include <math.h>
#include "../../TI_support/McBSP_452.h"

//**********************************

#define FTV_CNT 33
#define FOREVER 1
#define FS 48000

//**********************************

char myID[] = "TFMark2(14Oct07) ";

char label[100] = "";
unsigned long ComputeFTV(unsigned long, unsigned long);
void display_initialize(void);
void plot_dB_init(int, float, float, float, float, float, float, float, float);
void plot_angle_init(int, float, float, float, float, float, float, float, float);
void GoToData(int, float, float);
void DrawToData(int, int, float, float);
void display_close(void);

// interrupt support definitions

extern unsigned long ftv;
extern volatile int AIC_LeftIn, AIC_RightIn, AIC_LeftOut, AIC_RightOut;
extern volatile int Icos, Qsin, AIC_flag;

char str_shift[]="shift ";

unsigned long fs = FS;

double pi=3.14159265;
unsigned long ac;
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unsigned Nint = 1*FS/10; // integrate for 0.1 seconds
unsigned Nstart = 250; // skip to allow filter to settle

// dependent on filter size!!
long xr32, yr32, xd32, yd32;

unsigned int test = 2; // select which test to execute
int shift;

int sw_enable_postscript = 1; // 1 turns on PostScript output
int sw_direct = 0; // 1 connects filter direct (no A/D or D/A)

void main(void)
{

int idx, sround, FilterOut, Rin;
unsigned long f;
long round;
float xrflt, yrflt, rrflt, dang, dB;
float xdflt, ydflt, rdflt, rang, sf;
FILE *out;

printf("%s\n", myID);
printf("modes-> 0:TF meas, 1:DDS=rt, lout=lin, 2:r=cos, l=sin, 3:lin=osc, lout=filter out\n");
printf("enter mode: ");
scanf("%d", &test);
printf("\n");

/*****************************************************************************/

if (test == 1) {

// let the DDS run on right output and echo right input on left out

setup_codec();
startup();

ftv = ComputeFTV(1000, fs);

_enable_interrupts();

while (FOREVER) {
AIC_flag = 0;
while (AIC_flag == 0);
AIC_LeftOut = AIC_RightIn;

}
}

if (test == 2) {

// Loop echoing cosine on right and sine on left.
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setup_codec();
startup();

ftv = ComputeFTV(1000, fs);

_enable_interrupts();

while (FOREVER) {
AIC_flag = 0;
while (AIC_flag == 0);
AIC_LeftOut = Qsin;

}
}

if (test == 3) {

// For analog testing of filter

// AIC23 left channel A/D input to filter
// filter output to ACI23 left channel D/A

FilterSetup(); // set up filter

setup_codec();
startup();

ftv = ComputeFTV(1000, fs); // 1 KHz for observation

_enable_interrupts();

while (FOREVER) {
AIC_flag = 0;
while (AIC_flag == 0);
AIC_LeftOut = filter(AIC_LeftIn);

}
}

/********************************************************************************/

else {

// now for a complete spectrum analyzer

// Measures from 10 Hz to 6000 Hz in 10 Hz steps
// Integration time is determined by Nint and FS.

// Floating point R calculations to be eliminated in later stand alone version.
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display_initialize();
strcpy(label, myID);

FilterSetup(); // set up filter to use

printf("shift filter input samples right by: ");
scanf("%d", &shift);
sround =0; if (shift>0) sround=(1<<(shift-1)); // for rounding

str_shift[6] = ’0’+shift; // klutzy .. but for now, ok
strcat(label, str_shift);

printf("direct (0=no) : ");
scanf("%d", &sw_direct);
if (sw_direct != 0) strcat(label, " direct");

print_string(0.052, 0.965, 2, 0, 2, label);

// plot, Pxo, Pxlen, xs, xr, Pyo, Pylen, ys, yr
plot_dB_init( 0, 0.05, 0.40, 0.0, 6000.0, 0.6, 0.35, -80.0, 80.0);
plot_angle_init(1, 0.55, 0.40, 0.0, 6000.0, 0.6, 0.35, -1.0, 2.0);

setup_codec(); // initialize the AIC23 and McBSP
startup(); // initialize the interrupt support

// Scale factor to normalize max R^2 to 1 (nominally it appears).
// Q15 16 bit samples.
// Q15 sine/cosine values.
// Product is Q30
// Needed gain of 2 for A/D but used 1.875 instead
// Divided by 8182 (2^13).
// Summed up Nint values.

sf = 8192.0/((float)Nint*32768.0*32768.0*1.875/2.0);

out = fopen("tfmeas.txt", "w"); // open output file, name: tfmeas
if (out == NULL) {

printf("can’t open output file\n");
exit (1);

}

for (f = 10; f <= 6000; f+=10) {
ftv = ComputeFTV(f,fs); // calculate FTV for this frequency
xr32 = yr32 = 0L; // initialize integrators
xd32 = xd32 = 0L;
round = (1L<<11); // used for rounding shifted values

_enable_interrupts(); // only allow ints when needed

for (idx = 0; idx < Nint+Nstart; idx++) {
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AIC_flag = 0;
while (AIC_flag == 0);

// only shift when checking a filter for internal overflow

Rin = ((AIC_RightIn+sround)>>shift); // DDS output sampled
// A/D gain is 1/2

if (sw_direct != 0) {
Rin = ((Icos+(sround<<1)) >> (shift+1));

}

// Corect for A/D gain of 1/2 but leave some head room

Rin = (Rin << 1) - (Rin >> 3); // Multiplied by 1.875

AIC_LeftOut = filter(Rin)<<shift; // filter value and unscale in needed

if (idx < Nstart) continue; // wait until filter memory is filled

xr32 += ((long)Icos*Rin+round) >> 12;
yr32 -= ((long)Qsin*Rin+round) >> 12;

FilterOut = AIC_LeftIn << 1; // had analog gain of 1/2
if (sw_direct != 0) FilterOut = AIC_LeftOut+1;

xd32 += ((long)Icos*FilterOut+round) >> 12;
yd32 -= ((long)Qsin*FilterOut+round) >> 12;

}
_disable_interrupts(); // seems to make system more reliable this way

xrflt = xr32; yrflt = yr32;
xrflt *= sf; yrflt *= sf;
rrflt = sqrt(xrflt*xrflt+yrflt*yrflt); // later make fixed point!!!
xdflt = xd32; ydflt = yd32;
xdflt *= sf; ydflt *= sf;
rdflt = sqrt(xdflt*xdflt+ydflt*ydflt); // later make fixed point!!!

// Need to make x and y values 16 bit for myatan2.
// Shifting right bit at a time until smallest fits.

while ((labs(xr32) > 32767)||(labs(yr32) > 32767)) {
xr32 >>= 1; yr32 >>= 1;

}
while ((labs(xd32) > 32767)||(labs(yd32) > 32767)) {

xd32 >>= 1; yd32 >>= 1;
}

rang = myatan2((int)yr32, (int)xr32)/32768.0; // make fp for common usage testing
dang = myatan2((int)yd32, (int)xd32)/32768.0; // make fp for common usage testing
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/* Data order per line is:

frequency in Hz
r value measured at input to filter
r value measured at D/A output from filter
angle measured at input to filter (range -1 to 1 half cycles)
angle measured at D/A output from filter (range -1 to 1 half cycles)

*/

fprintf(out, " %6lu %9.6f %9.6f %9.6f %9.6f\n",
f, rrflt, rdflt, rang, dang); // used for file output only

dB = 20*log10(rdflt);

if (f==10) {
GoToData(0, (float)f , dB);
GoToData(1, (float)f, dang);

}
else {

DrawToData(0, 1, (float)f, dB);
DrawToData(1, 1, (float)f, dang);

}

}

display_close();
fclose(out);

}
}

/*****************************************************************************/

// Function to compute 32 bit unsigned FTV value give f and fs

unsigned long ComputeFTV(unsigned long f, unsigned long fs)
{

unsigned idx;
unsigned long ftv;

ftv = 0;

for (idx = 0; idx < FTV_CNT; idx++) {
if (f >= fs) {

ftv = (ftv<<1)+1;
f -= fs;

}
else ftv <<= 1;
f <<= 1;

}
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if (f >= fs) ftv += 1;

return (ftv);
}

22.10 IIR filter function test support

/* File name: FilterWrapper.c

29Feb2004 .. created from Fall 2003 code .. K.Metzger
14Oct2007 .. updated for display generation .. KM

*/

#include <stdio.h>
#include <string.h>

#define DATA short int
#define ushort unsigned short

extern char label[];

// Support for various filter functions

void delay(unsigned);
short (*pFunction)(DATA*, DATA*, DATA*, DATA*, ushort, ushort);
short fir(DATA*, DATA*, DATA*, DATA*, ushort, ushort);
short iircas5(DATA*, DATA*, DATA*, DATA*, ushort, ushort);
short myDF2IIR(DATA*, DATA*, DATA*, DATA*, ushort, ushort);
short myTDF2IIR(DATA*, DATA*, DATA*, DATA*, ushort, ushort); // need to uncomment this
short none(DATA*, DATA*, DATA*, DATA*, ushort, ushort);
void print_string(float x, float y, int step, int rotation, int color, char *cp);

/* Filter coefficients */

// Equiripple FIR design

#define int16_T int
#include "FIR145.h"
#define FIR_coeffs B

#define NH (sizeof(FIR_coeffs)/sizeof(int))
#pragma DATA_ALIGN(db,2048); // overkill
short int db[NH+2]; // will also use for IIR filter buffer
unsigned nFIR_coeffs=NH;

// IIR filter SOS coefficients are ordered: b0 b1 b2 a1 a2
//
// b values are to be normalized tf2sos values integerized
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// after multiplying by 2^15.
//
// a values are to be tf2sos values integerized after
// multiplying by 2^15. Except does not include the a0 values.
//
// Sections are ordered from input to output.

// define names for the IIR SOS coefficient column positions

#define b0 0
#define b1 1
#define b2 2
#define a1 3
#define a2 4

// Chebyshev 1 IIR design .. your values go here!

long C1_coeffs[] ={
};

unsigned nC1_coeffs = (sizeof(C1_coeffs)/sizeof(long));

// Chebyshev 2 IIR design .. your values go here!

long C2_coeffs[] = {
};

unsigned nC2_coeffs = (sizeof(C2_coeffs)/sizeof(long));

// Elliptic IIR design .. your values go here!

long El_coeffs[] = {
// 1481, 2581, 1481, -45021, 17796, // test values using the
// 8147, 5622, 8147, -33995, 23142, // FDAtool default design
// 17616, 1500, 17616, -24248, 28212, // parameters and elliptic
// 23728, -3146, 23728, -19933, 31474 // your elliptic goes here
};

unsigned nEl_coeffs = (sizeof(El_coeffs)/sizeof(long));

short int *ptr_coeffs;
short int coeffs[5*24]; // to hold IIR coeffs...make sure correct size or larger !!!!
short int FilterType;

ushort nSections;

void FilterSetup(void)
{

int IIRtype, TFtype, idx;
long* sections;
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// First ask if no filter, FIR filter or IIR filter.

while (1) {
printf("Select (0=none, 1=FIR, 2=IIR): ");
scanf("%d", &FilterType);
if (FilterType <0 ) continue;
else if (FilterType == 0) strcat(label, "None ");
else if (FilterType == 1) strcat(label, "FIR ");
else strcat(label, "IIR ");

// If IIR ask which function to use.

if (FilterType > 1) {
printf("Select (0=IIRCAS5, 1=myDF2IIR, 2=myTDF2IIR): ");
scanf("%d",&IIRtype);
if (IIRtype < 0) continue;
else if (IIRtype == 0) strcat(label, "IIRCAS5 ");
else if (IIRtype == 1) strcat(label, "myDF2IIR ");
else strcat(label, "myTDF2IIR ");

// Finally, ask which TF type to use.

printf("Select TF type: (0=Cheby 1, 1=Cheby 2, 2=Elliptic): ");
scanf("%d",&TFtype);
if (TFtype < 0) continue;
else if (TFtype == 0) strcat(label, "Cheby 1 ");
else if (TFtype == 1) strcat(label, "Cheby 2 ");
else strcat(label, "Elliptic ");

}

fflush(stdin);

ptr_coeffs = coeffs; // set up default pointer to IIR coeffs
if (FilterType==0) {

pFunction = &none;
}
else if (FilterType==1) {

IIRtype = -1;
pFunction = &fir;
nSections = nFIR_coeffs;
ptr_coeffs = (short int*)FIR_coeffs; // change to point to fir coeffs
printf("FIR with %d coefficients\n", nSections);

}
else if (TFtype==0) { // Chebyshev 1

nSections = nC1_coeffs/5;
sections = C1_coeffs;
printf("Chebyshev type 1 of order %d\n", 2*nSections);

}
else if (TFtype==1) { // Chebyshev 2

nSections = nC2_coeffs/5;
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sections = C2_coeffs;
printf("Chebyshev type 2 of order %d\n", 2*nSections);

}
else { // Elliptic

nSections = nEl_coeffs/5;
sections = El_coeffs;
printf("Elliptic of order %d\n", 2*nSections);

}

// The iircas5 function and the iircast5 function are
// optimized to have the b and a coefficient values in
// a particular order. The long values defined at the
// start of this code are to reordered and a1 divided
// by 2 and then converted to 16-bit form.

if (FilterType == 0) {
printf("straight through\n");

}
else if (FilterType == 1) {

printf("FIR\n");
}
else if (IIRtype == 0) { // iircas5 DF2 filter

printf("IIRCAS5 DF2\n");

pFunction = &iircas5;

// don’t forget to divide the a1 values by 2

for (idx=0; idx<nSections; idx++) {
coeffs[idx*5+0] = sections[idx*5+a1]/2 ;
coeffs[idx*5+1] = sections[idx*5+a2];
coeffs[idx*5+2] = sections[idx*5+b2];
coeffs[idx*5+3] = sections[idx*5+b0];
coeffs[idx*5+4] = sections[idx*5+b1]/2;

}
}
else if (IIRtype == 1) { // myDF2IIR

printf("myDF2IIR\n");

pFunction = &myDF2IIR;

// don’t forget to divide the b1 and a1 values by 2

for (idx=0; idx<nSections; idx++) {
coeffs[idx*5+0] = sections[idx*5+a2];
coeffs[idx*5+1] = sections[idx*5+a1]/2;
coeffs[idx*5+2] = sections[idx*5+b1]/2;
coeffs[idx*5+3] = sections[idx*5+b2];
coeffs[idx*5+4] = sections[idx*5+b0];

}
}
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else { // myTDF2IIR TDF2 filter
printf("myTDF2IIR SOS\n");

pFunction = &myTDF2IIR;

// don’t forget to divide the b1 and a1 values by 2

for (idx=0; idx<nSections; idx++) {
coeffs[idx*5+0] = sections[idx*5+??]; // ??
coeffs[idx*5+1] = sections[idx*5+??]; // ??
coeffs[idx*5+2] = sections[idx*5+??]; // ??
coeffs[idx*5+3] = sections[idx*5+??]; // ??
coeffs[idx*5+4] = sections[idx*5+??]; // ??

}
}

// zero the data buffer

for (idx = 0; idx < sizeof(db)/sizeof(DATA); idx++) {
db[idx] = 0;

}

break;
}
return;

}

// Function to filter a single sample

int y_out;

int filter(int sample)
{

if (FilterType == 1) { // see if FIR
pFunction((DATA*)(&sample),

ptr_coeffs, // address of the coefficients
(DATA*)(&y_out), // address of the output
db, // delay buffer address
1, // only doing sample at a time
nSections);

}
else { // else it’s an IIR

pFunction((DATA*)(&sample),
ptr_coeffs, // address of the coefficients
(DATA*)(&y_out), // address of the output
db, // delay buffer address
nSections,
1); // only doing sample at a time

}
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return (y_out);
}

/* Support for unfiltered operation */

short none(DATA* in,
DATA* coeffs,
DATA* out,
DATA* dbuff,
ushort nh,
ushort nx)

{
unsigned idx;

for (idx = 0; idx < nx; idx++) *out = *in;
return (0);

}

22.11 myDF2IIR source code

; File name: myDF2IIR.asm
;
; 19Oct2003 .. created as a learning experience code study .. KM
;
; on call we have
; ar0 ptr_x
; ar1 ptr_h
; ar2 ptr_y
; ar3 ptr_d
; T0 nbiq
; T1 nx

.c54cm_off ;don’t want compatible with c54

.ARMS_on ;enable assembler for ARMS=1

.CPL_on ;enable assembler for CPL=1

.asg ar0,ptr_x

.asg ar1,ptr_h

.asg xar1,xptr_h

.asg xar7,txptr_h

.asg ar2,ptr_y

.asg ar3,ptr_w

.asg xar3,xptr_w

.asg xar6,txptr_w

.asg T0,nbiq

.asg T1,nx

.asg 0001100000000000b,my_ST0_55

.asg 0110100100000000b,my_ST1_55
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.asg 1001000000000000b,my_ST2_55

.asg 0001000000000010b,my_ST3_55

.sect ".text" ;place into the code section

.align 4 ;force 32-bit boundary

.global _myDF2IIR ;make entry visible to linker

_myDF2IIR:
psh mmap(st0_55) ; save machine state
psh mmap(st1_55) ; by saving all four
psh mmap(st2_55) ; status registers
psh mmap(st3_55) ; on the system stack
psh T3 ; probably don’t need this
pshboth txptr_h ; save the xars use to hold reset
pshboth txptr_w ; address of coeffs and delays

mov #my_ST0_55,mmap(st0_55) ; now configure the machine
mov #my_ST1_55,mmap(st1_55) ; a generic set of values that
mov #my_ST2_55,mmap(st2_55) ; still need a bit of tweeking
mov #my_ST3_55,mmap(st3_55) ; close to reset state

bset sxmd ; enable sign extend
bset frct ; shift left 1 on multiply
bset m40 ; use 40 bit accumulator
bset rdm ; round to nearest
bclr c54cm ; not C54x compatible
bclr satd ; disable saturation in D-unit
bclr sata ; disable saturation in A-unit

sub #1,nx ; hardware needs nx-1 for loop count
sub #1,nbiq ; hardware needs nbiq-1 for loop count
mov nx,mmap(brc0) ; set up outer loop count..T1 is free now
mov nbiq,mmap(brc1) ; set up inner loop count..T0 is free now
mov xptr_w,txptr_w ; save ptr_w initial value
mov xptr_h,txptr_h ; save ptr_h initial value

rptblocal L_outer-1
mov *ptr_x+<<#16,ac0 ; get sample value into ac
rptblocal L_inner-1 ; loop through sections

masm T3=*ptr_w+,*ptr_h+,ac0 ; ac0 = x-a2*w2, T3=w2
mas *ptr_w,*ptr_h,ac0 ; ac0 = x-a2*w2-w1*a1/2
||mov T3,T0 ; move w2 into T0
masm T3=*ptr_w-,*ptr_h+,ac0 ; ac0 = x-a2*w2-a1*w1, T3=w1
mov rnd(hi(saturate(ac0))),mmap(T1) ;v1
mpym *ptr_h+,T3,ac0 ; ac0 = w1*b1/2
||mov T3,*ptr_w+ ; move w1 into w2
sfts ac0,#1 ; assuming b1/2 was supplied
macm *ptr_h+,T0,ac0 ; ac0 = b1*w1+b2*w2
||mov T1,*ptr_w+ ; move v1 into w1
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macm *ptr_h+,T1,ac0 ; ac0 = b1*w1+b2*w2+b0*v1
; ac0 contains input to next section

L_inner:
mov rnd(hi(saturate(ac0))),*ptr_y+ ; filter cascade output value
mov txptr_w,xptr_w ; reset xptr_w
mov txptr_h,xptr_h ; reset xptr_h

L_outer:
popboth txptr_w ; restore xar used to hold reset address
popboth txptr_h ; restore xar used to hold reset address
pop T3 ; restore contents of T3
pop mmap(st3_55) ; restore the four status registers
pop mmap(st2_55)
pop mmap(st1_55)
pop mmap(st0_55)
ret

22.12 IIRCAS5 source code

22.13 myTDF2IIR source starter code

; File name: myTDF2IIR.asm
;
; 19Oct2003 .. created as a learning experience code study .. KM
;
; on call we have
; ar0 ptr_x
; ar1 ptr_h
; ar2 ptr_y
; ar3 ptr_d
; T0 nbiq
; T1 nx

.c54cm_off ;don’t want compatible with c54

.ARMS_on ;enable assembler for ARMS=1

.CPL_on ;enable assembler for CPL=1

.asg ar0,ptr_x

.asg ar1,ptr_h

.asg xar1,xptr_h

.asg xar7,txptr_h

.asg ar2,ptr_y

.asg ar3,ptr_w

.asg xar3,xptr_w

.asg xar6,txptr_w

.asg T0,nbiq
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.asg T1,nx

.asg 0001100000000000b,my_ST0_55

.asg 0110100100000000b,my_ST1_55

.asg 1001000000000000b,my_ST2_55

.asg 0001000000000010b,my_ST3_55

.sect ".text" ;place into the code section

.align 4 ;force 32-bit boundary

.global _myTDF2IIR ;make entry visible to linker

_myTDF2IIR:
psh mmap(st0_55) ; save machine state
psh mmap(st1_55) ; by saving all four
psh mmap(st2_55) ; status registers
psh mmap(st3_55) ; on the system stack
psh T3 ; probably don’t need this
pshboth txptr_h ; save the xars use to hold reset
pshboth txptr_w ; address of coeffs and delays

mov #my_ST0_55,mmap(st0_55) ; now configure the machine
mov #my_ST1_55,mmap(st1_55) ; a generic set of values that
mov #my_ST2_55,mmap(st2_55) ; still need a bit of tweeking
mov #my_ST3_55,mmap(st3_55) ; close to reset state

bset sxmd ; enable sign extend
bset frct ; shift left 1 on multiply
bset m40 ; use 40 bit accumulator
bset rdm ; round to nearest
bclr c54cm ; not C54x compatible
bclr satd ; disable saturation in D-unit
bclr sata ; disable saturation in A-unit

sub #1,nx ; hardware needs nx-1 for loop count
sub #1,nbiq ; hardware needs nbiq-1 for loop count
mov nx,mmap(brc0) ; set up outer loop count..T1 is free now
mov nbiq,mmap(brc1) ; set up inner loop count..T0 is free now
mov xptr_w,txptr_w ; save ptr_w initial value
mov xptr_h,txptr_h ; save ptr_h initial value

rptblocal L_outer-1
mov *ptr_x+,?? ; get sample value into ??
rptblocal L_inner-1 ; loop through sections

; here be dragons

L_inner:
mov ??,*ptr_y+ ; filter cascade output value
mov txptr_w,xptr_w ; reset xptr_w
mov txptr_h,xptr_h ; reset xptr_h
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L_outer:
popboth txptr_w ; restore xar used to hold reset address
popboth txptr_h ; restore xar used to hold reset address
pop T3 ; restore contents of T3
pop mmap(st3_55) ; restore the four status registers
pop mmap(st2_55)
pop mmap(st1_55)
pop mmap(st0_55)
ret

22.14 DisplayTest00 source code

Preliminary support for generating the magnitude and phase plots using the

Spartan-3 XVGA display system.

/* Display support for lab exercises

12Oct2007 .. initial development started .. KM

*/

#include <stdio.h>
#include <stdlib.h>

extern int need_stroke, sw_print_string, sw_enable_postscript;
int PSoffset;

void print_string(float x, float y, int step, int rotation, int color, char *cp);

void display_initialize(void);
void plot_dB_init(int, float, float, float, float, float, float, float, float);
void plot_angle_init(int, float, float, float, float, float, float, float, float);
void GoToData(int, float, float);
void DrawToData(int, int, float, float);
void GoToSheet(float, float);
void DrawToSheet(int, float, float);
void DrawHorizontalGridLine(int p_n, int color, float xend, float value, char *string);
void TicXAxis(int p_n, int color, float xloc, char *string);
void LabelXAxis(int p_n, char *string);
void LabelYAxis(int p_n, char *string, int offset);
void print_string(float, float, int, int, int, char *);
#define XS 1024
#define YS 768

FILE *post;

struct PLOT {
float Pxs; // plot x start .. sheet fraction
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float Pxlen; // plot x axis length .. sheet fraction
float Pys; // plot y orgin .. sheet fraction
float Pylen; // plot y axis length .. sheet fraction
float xs; // x real world start value
float xr; // x real world range value
float ys; // y real world start value
float yr; // y real world range value
float x_screen;
float y_screen;

} plot[3]; // four plots supported

void display_initialize(void)
{

setup_McBSP_plot((int)0);
if (sw_enable_postscript == 1) {

post = fopen("post.ps", "w");
if (post == NULL) {

printf("can’t open PostScript output file\n");
while (1);

}
fprintf(post, "%%!\n");
fprintf(post, "1 setlinewidth\n");
fprintf(post, "%f %f scale\n", 0.9*612/1024.0, 0.9*612/1024.0);
PSoffset = 0.05*1024;

}
XVGAinit();

}

void display_close(void)
{

if (sw_enable_postscript == 1) {
if (need_stroke == 1) {

fprintf(post, "stroke\n");
need_stroke = 0;

}
fprintf(post, "showpage\n");
fclose(post);

}
printf("done\n");

}

void plot_dB_init(int f_n, float Pxs, float Pxlen, float xs, float xr,
float Pys, float Pylen, float ys, float yr)

{
int color = 3;
struct PLOT *p;

// set up designated plot structure
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p = &plot[f_n];

p->Pxs = Pxs;
p->Pxlen = Pxlen;
p->xs = xs;
p->xr = xr;
p->Pys = Pys;
p->Pylen = Pylen;
p->ys = ys;
p->yr = yr;

// draw axes

GoToData(f_n, xs, ys); // left y-axis
DrawToData(f_n, color, xs, ys+yr);

// Do horizontal dB grid

DrawHorizontalGridLine(f_n, color, 6000, -80, "-80");
DrawHorizontalGridLine(f_n, color, 6000, -60, "-60");
DrawHorizontalGridLine(f_n, color, 6000, -40, "-40");
DrawHorizontalGridLine(f_n, color, 6000, -20, "-20");
DrawHorizontalGridLine(f_n, color, 6000, 0, " 0");
TicXAxis(f_n, color, 0.0, "0");
TicXAxis(f_n, color, 1000.0, "1000");
TicXAxis(f_n, color, 2000.0, "2000");
TicXAxis(f_n, color, 3000.0, "3000");
TicXAxis(f_n, color, 4000.0, "4000");
TicXAxis(f_n, color, 5000.0, "5000");
TicXAxis(f_n, color, 6000.0, "6000");
LabelXAxis(f_n, "Frequency (Hz)");
LabelYAxis(f_n, "Gain (dB)", 3);

}

void plot_angle_init(int f_n, float Pxs, float Pxlen, float xs, float xr,
float Pys, float Pylen, float ys, float yr)

{
int color = 3;
struct PLOT *p;

p = &plot[f_n];

p->Pxs = Pxs;
p->Pxlen = Pxlen;
p->xs = xs;
p->xr = xr;
p->Pys = Pys;
p->Pylen = Pylen;
p->ys = ys;
p->yr = yr;
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// draw axes

GoToData(f_n, xs, ys); // left y-axis
DrawToData(f_n, color, xs, ys+yr);

// Do angle grid

DrawHorizontalGridLine(f_n, color, 6000, -1.00, "-1.00");
DrawHorizontalGridLine(f_n, color, 6000, -0.75, "-0.75");
DrawHorizontalGridLine(f_n, color, 6000, -0.50, "-0.50");
DrawHorizontalGridLine(f_n, color, 6000, -0.25, "-0.25");
DrawHorizontalGridLine(f_n, color, 6000, 0.00, " 0");
DrawHorizontalGridLine(f_n, color, 6000, 0.25, " 0.25");
DrawHorizontalGridLine(f_n, color, 6000, 0.50, " 0.50");
DrawHorizontalGridLine(f_n, color, 6000, 0.75, " 0.75");
DrawHorizontalGridLine(f_n, color, 6000, 1.00, " 1.00");
TicXAxis(f_n, color, 0.0, "0");
TicXAxis(f_n, color, 1000.0, "1000");
TicXAxis(f_n, color, 2000.0, "2000");
TicXAxis(f_n, color, 3000.0, "3000");
TicXAxis(f_n, color, 4000.0, "4000");
TicXAxis(f_n, color, 5000.0, "5000");
TicXAxis(f_n, color, 6000.0, "6000");
LabelXAxis(f_n, "Frequency (Hz)");
LabelYAxis(f_n, "Angle (half cycles)", 5);

}

void LabelYAxis(int p_n, char *string, int offset)
{

float cdx, cdy, x, y, n, step = 2;
struct PLOT *p;

p = &plot[p_n];
cdx = 3.0*step/XS; cdy = 5.5*step/YS;
n = strlen(string);

x = p->Pxs - offset*cdx - cdy;
y = p->Pys + p->Pylen/2 - (n+1)*cdx/2;

print_string(x, y, step, 1, 3, string);

}

void LabelXAxis(int p_n, char *string)
{

float cdx, cdy, x, y, n, step = 2;
struct PLOT *p;

p = &plot[p_n];
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cdx = 3.0*step/XS; cdy = 5.5*step/YS;
n = strlen(string);

x = p->Pxs + p->Pxlen/2;
y = p->Pys;

print_string(x-(n+1)*cdx/2, y-3.5*cdy, step, 0, 3, string);

}

void TicXAxis(int p_n, int color, float xloc, char *string)
{

float cdx, cdy, x, y, n, step = 2;
struct PLOT *p;

p = &plot[p_n];
cdx = 3.0*step/XS; cdy = 5.5*step/YS;
n = strlen(string);

x = p->Pxs + p->Pxlen*(xloc - p->xs)/p->xr;
y = p->Pys;

GoToSheet(x, y);
DrawToSheet(color, x, y-cdy/2);

print_string(x-(n+1)*cdx/2, y-2*cdy, step, 0, 3, string);
}

void DrawHorizontalGridLine(int p_n, int color, float xend, float value, char *string)
{

float cdx, cdy, x, y, n, step = 2;
struct PLOT *p;

p = &plot[p_n];
cdx = 3.0*step/XS; cdy = 5.5*step/YS;
x = p->Pxs;
y = p->Pys + p->Pylen*(value - p->ys)/p->yr;
GoToSheet(x-cdx, y);
x = p->Pxs + p->Pxlen*(xend - p->xs)/p->xr;
DrawToSheet(color, x, y);
n = strlen(string)+2;
print_string(p->Pxs-n*cdx, y-cdy/2, step, 0, 3, string);

}

void GoToData(int f_n, float Px, float Py)
{

float fraction, Fx, Fy;
struct PLOT *p;

p = &plot[f_n];
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fraction = (Px - p->xs)/p->xr;
Fx = p->Pxs+fraction*p->Pxlen;
fraction = (Py-p -> ys)/p->yr;
Fy = p->Pys+fraction*p->Pylen;
GoToSheet(Fx, Fy);
p->x_screen = Fx;
p->y_screen = Fy;

}

void DrawToData(int f_n, int color, float Px, float Py)
{

float fraction, Fx, Fy;
struct PLOT *p;

p = &plot[f_n];
GoToSheet(p->x_screen, p->y_screen);

fraction = (Px - p->xs)/p->xr;
Fx = p->Pxs+fraction*p->Pxlen;
fraction = (Py - p->ys)/p->yr;
Fy = p->Pys+fraction*p->Pylen;
DrawToSheet(color, Fx, Fy);
p->x_screen = Fx;
p->y_screen = Fy;

}

void print_string(float x, float y, int step, int rotation, int color, char *cp)
{

char ch, *cptr;

cptr = cp;
GoToSheet(x, y);
TX_Put(0x8300 | ((rotation&0x0003)<<5) | ((color&0x0003)<<3)| step&0x0007);
while((ch=*cptr++) != NULL) {

TX_Put(0x8400 | (ch&0x00FF));
}
if (sw_enable_postscript != 0) {

sw_print_string = 1;
print_string_ps((int)(x*XS+0.5), (int)(y*YS+0.5), step, rotation, color, cp);
sw_print_string = 0;

}
}

void GoToSheet(float Sx, float Sy)
{

GoTo((int)(Sx*XS+0.5), (int)(Sy*YS+0.5));
}

void DrawToSheet(int color, float Sx, float Sy)
{

Draw(color, (int)(Sx*XS+0.5), (int)(Sy*YS+0.5));
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}

22.15 draw_characters source code

This is a slightly modified version of the test code used to develop the Spartan-3

character generator FPGA entity. It is used here to generate matching characters

for the PostScript output.

#include <stdio.h>
#include <stdlib.h>

#define Xsize 1024
#define Ysize 768
#define RED 1
#define BLUE 2
#define BLACK 3

#define STEP 2

int step=STEP;

int L_space[]={8+2,2, -1}; // 32
int L_exclaim[]={8+2,10, 2,4, 8+2,2, 2,2, -1};
int L_quote[]={8+1,10, 1,8, 8+3,10, 3,8, -1};
int L_sharp[]={8+1,9, 1,3, 8+3,9, 3,3, 8+0,5, 4,5, 8+0,7, 4,7, -1}; //35
int L_dollar[]={8+0,3, 3,3, 4,4, 4,5, 3,6, 1,6, 0,7, 0,8, 1,9, 4,9, 8+2,10, 2,2, -1};
int L_percent[]={8+4,10, 0,2, 8+1,10, 2,9, 1,8, 0,9, 1,10, 8+3,4, 4,3, 3,2, 2,3, 3,4, -1};
int L_amper[]={8+4,2, 0,7, 0,8, 1,9, 2,9, 3,8, 3,6, 0,5, 0,3, 1,2, 2,2, 4,4, -1};
int L_prime[]={8+2,10, 2,9, 1,8, -1}; // 39
int L_lparen[]={8+3,11, 2,10, 1,9, 1,3, 2,2, 3,1, -1}; // 40
int L_rparen[]={8+1,11, 2,10, 3,9, 3,3, 2,2, 1,1, -1}; // 41
int L_ast[]={8+2,10, 2,6, 8+0,9, 4,7, 8+0,7, 4,9, -1}; // 42
int L_plus[]={8+0,6, 4,6, 8+2,8, 2,4, -1}; // 43
int L_comma[]={8+2,3, 2,2, 1,1, -1}; // 44
int L_minus[]={8+0,6, 4,6, -1}; // 45
int L_period[]={8+1,2, 2,3, 3,2, 2,1, 1,2, -1}; // 46
int L_divide[]={8+4,10, 0,2, -1}; // 47
int L_0[]={8+0,3, 0,9, 1,10, 3,10, 4,9, 4,3, 3,2, 1,2, 0,3, 8+4,10, 0,2, -1}; // 48
int L_1[]={8+0,8, 2,10, 2,2, 8+0,2, 4,2, -1}; // 49
int L_2[]={8+0,8, 0,9, 1,10, 3,10, 4,9, 4,7, 0,3, 0,2, 4,2, -1}; // 50
int L_3[]={8+0,9, 1,10, 3,10, 4,9, 4,7, 3,6, 1,6, 8+3,6, 4,5, 4,3, 3,2, 1,2, 0,3, -1}; // 51
int L_4[]={8+3,2, 3,10, 0,5, 0,4, 4,4, -1}; // 52
int L_5[]={8+4,10, 0,10, 0,6, 2,7, 3,7, 4,6, 4,3, 3,2, 1,2, 0,3, -1}; // 53
int L_6[]={8+4,9, 3,10, 1,10, 0,9, 0,3, 1,2, 3,2, 4,3, 4,5, 3,6, 2,6, 0,5, -1}; // 54
int L_7[]={8+0,10, 4,10, 2,6, 1,2, 8+1,6, 3,6, -1}; // 55
int L_8[]={8+1,2, 3,2, 4,3, 4,5, 3,6, 1,6, 0,5, 0,3, 1,2, 8+1,6, 0,7, 0,9, 1,10, 3,10, 4,9, 4,7,
int L_9[]={8+0,3, 1,2, 3,2, 4,3, 4,9, 3,10, 1,10, 0,9, 0,7, 1,6, 3,6, 4,7, -1}; // 57
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int L_colon[]={8+1,2, 2,3, 3,2, 2,1, 1,2, 8+1,7, 2,8, 3,7, 2,6, 1,7, -1}; // 58
int L_semi[]={8+1,1, 2,2, 2,3, 8+1,7, 2,8, 3,7, 2,6, 1,7, -1}; // 59
int L_langle[]={8+4,10, 0,6, 4,2, -1}; // 60
int L_equal[]={8+0,4, 4,4, 8+0,7, 4,7, -1}; //61
int L_rangle[]={8+0,10, 4,6, 0,2, -1}; // 62
int L_qmark[]={8+0,8, 0,9, 1,10, 3,10, 4,9, 4,7, 3,6, 2,5, 2,4, 8+2,2, 2,2, -1}; // 63

int L_at[]={8+4,3, 3,2, 1,2, 0,3, 0,9, 1,10, 3,10, 4,9, 4,5, 3,5, 2,4, 1,5, 1,7, 2,8, 3,7,
int L_A[]={8+0,2, 0,8, 2,10, 4,8, 4,2, 8+0,5, 4,5, -1};
int L_B[]={8+0,2, 3,2, 4,3, 4,3, 4,5, 3,6, 1,6, 8+1,2, 1,10, 8+0,10, 3,10, 4,9, 4,7, 3,6,
int L_C[]={8+4,3, 3,2, 1,2, 0,3, 0,9, 1,10, 3,10, 4,9, -1};
int L_D[]={8+0,10, 3,10, 4,9, 4,3, 3,2, 0,2, 8+1,2, 1,10, -1};
int L_E[]={8+4,2, 0,2, 0,10, 4,10, 8+0,6, 3,6, -1};
int L_F[]={8+0,2, 0,10, 4,10, 8+0,6, 3,6, -1};
int L_G[]={8+4,9, 3,10, 1,10, 0,9, 0,3, 1,2, 3,2, 4,3, 4,5, 3,5, -1};
int L_H[]={8+0,10, 0,2, 8+4,10, 4,2, 8+0,6, 4,6, -1};
int L_I[]={8+1,2, 3,2, 8+2,2, 2,10, 8+1,10, 3,10, -1};
int L_J[]={8+0,3, 1,2, 2,2, 3,3, 3,10, 8+2,10, 4,10, -1};
int L_K[]={8+0,2, 0,10, 8+0,5, 4,9, 4,10, 8+0,6, 4,3, 4,2, -1};
int L_L[]={8+0,10, 0,2, 4,2, -1};
int L_M[]={8+0,2, 0,10, 2,6, 4,10, 4,2, -1};
int L_N[]={8+0,2, 0,10, 4,2, 4,10, -1};
int L_O[]={8+0,3, 0,9, 1,10, 3,10, 4,9, 4,3, 3,2, 1,2, 0,3, -1};
int L_P[]={8+0,2, 0,10, 3,10, 4,9, 4,7, 3,6, 0,6, -1};
int L_Q[]={8+0,3, 0,9, 1,10, 3,10, 4,9, 4,3, 3,2, 1,2, 0,3, 8+2,4, 4,2, -1};
int L_R[]={8+0,2, 0,10, 3,10, 4,9, 4,7, 3,6, 0,6, 8+1,6, 4,3, 4,2, -1};
int L_S[]={8+0,3, 1,2, 3,2, 4,3, 4,5, 3,6, 1,6, 0,7, 0,9, 1,10, 3,10, 4,9, -1};
int L_T[]={8+2,2, 2,10, 8+0,10, 4,10, -1};
int L_U[]={8+0,10, 0,3, 1,2, 3,2, 4,3, 4,10, -1};
int L_V[]={8+0,10, 0,7, 2,2, 4,7, 4,10, -1};
int L_W[]={8+0,10, 0,2, 2,5, 4,2, 4,10, -1};
int L_X[]={8+0,10, 4,2, 8+4,10, 0,2, -1};
int L_Y[]={8+0,10, 2,6, 2,2, 8+4,10, 2,6, -1};
int L_Z[]={8+0,9, 0,10, 4,10, 0,2, 4,2, 4,3, 8+1,6, 3,6, -1};
int L_lbrack[]={8+3,11, 1,11, 1,1, 3,1, -1}; // 91
int L_bslash[]={8+1,10, 4,2, -1}; // 92
int L_rbrack[]={8+1,11, 3,11, 3,1, 1,1, -1}; // 93
int L_caret[]={8+0,8, 2,10, 4,8, -1}; // 94
int L_under[]={8+0,1, 4,1, -1}; // 95

int L_backprime[]={8+2,10, 2,9, 3,8, -1}; // 96
int L_a[]={8+1,7, 3,7, 4,6, 4,2, 8+4,3, 2,2, 1,2, 0,3, 0,4, 1,5, 4,5, -1}; // 97
int L_b[]={8+0,10, 0,2, 8+0,3, 1,2, 3,2, 4,3, 4,6, 3,7, 1,7, 0,6, -1};
int L_c[]={8+4,6, 3,7, 1,7, 0,6, 0,3, 1,2, 3,2, 4,3, -1};
int L_d[]={8+4,10, 4,2, 8+4,3, 3,2, 1,2, 0,3, 0,6, 1,7, 3,7, 4,6, -1};
int L_e[]={8+4,3, 3,2, 1,2, 0,3, 0,6, 1,7, 3,7, 4,6, 4,5, 0,5, -1};
int L_f[]={8+4,9, 3,10, 2,10, 1,9, 1,2, 8+0,6, 2,6, -1};
int L_g[]={8+0,1, 1,0, 3,0, 4,1, 4,6, 3,7, 1,7, 0,6, 0,4, 1,3, 3,3, 4,4, -1};
int L_h[]={8+0,10,0,2, 8+0,6, 2,7, 3,7, 4,6, 4,2, -1};
int L_i[]={8+1,2, 3,2, 8+2,2,2,7,1,7, 8+2,9, 2,9, -1};
int L_j[]={8+0,2, 0,1, 1,0, 2,0, 3,1, 3,7, 2,7, 8+3,9, 3,9, -1};
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int L_k[]={8+1,2, 1,10, 8+4,2, 1,5, 4,7, -1};
int L_l[]={8+1,2, 3,2, 8+2,2, 2,10, 1,10, -1};
int L_m[]={8+0,2, 0,6, 1,7, 2,6, 2,2, 8+2,6, 3,7, 4,6, 4,2, -1};
int L_n[]={8+0,2, 0,7, 8+0,6, 2,7, 3,7, 4,6, 4,2, -1};
int L_o[]={8+0,3, 0,6, 1,7, 3,7, 4,6, 4,3, 3,2, 1,2, 0,3, -1};
int L_p[]={8+0,0, 0,7, 8+0,6, 1,7, 3,7, 4,6, 4,4, 3,3, 0,3, -1};
int L_q[]={8+4,0, 4,7, 8+4,6, 3,7, 1,7, 0,6, 0,4, 1,3, 4,3, -1};
int L_r[]={8+0,2, 0,7, 8+0,6, 2,7, 3,7, 4,6, -1};
int L_s[]={8+0,3, 1,2, 3,2, 4,3, 3,4, 2,5, 1,5, 0,6, 1,7, 3,7, 4,6, -1};
int L_t[]={8+0,7, 2,7, 8+1,9, 1,3, 2,2, 3,2, 4,3, -1};
int L_u[]={8+0,7, 0,3, 1,2, 3,2, 4,3, 8+4,2, 4,7, -1};
int L_v[]={8+0,7, 0,5, 2,2, 4,5, 4,7, -1};
int L_w[]={8+0,7, 0,3, 1,2, 2,3, 2,5, 8+2,3, 3,2, 4,3, 4,7, -1};
int L_x[]={8+0,7, 4,2, 8+4,7, 0,2, -1};
int L_y[]={8+0,7, 0,4, 1,3, 3,3, 4,4, 4,7, 8+4,4, 4,1, 3,0, 1,0, 0,1, -1};
int L_z[]={8+0,7, 4,7, 0,2, 4,2, -1};
int L_lbrace[]={8+4,11, 3,11, 2,10, 2,7, 0,6, 2,5, 2,2, 3,1, 4,1, -1};
int L_vbar[]={8+2,2, 2,10, -1}; // 124
int L_rbrace[]={8+0,11, 1,11, 2,10, 2,7, 4,6, 2,5, 2,2, 1,1, 0,1, -1}; // 125
int L_tilde[]={8+0,8, 0,9, 1,10, 3,8, 4,9, 4,10, -1}; // 126
int L_rub[]={8+2,2, -1}; // 127

int *cptrs[] = {
L_space, L_exclaim, L_quote, L_sharp, L_dollar, L_percent, L_amper, L_prime,
L_lparen, L_rparen, L_ast, L_plus, L_comma, L_minus, L_period, L_divide,
L_0, L_1, L_2, L_3, L_4, L_5, L_6, L_7,
L_8, L_9, L_colon, L_semi, L_langle, L_equal, L_rangle, L_qmark,
L_at, L_A, L_B, L_C, L_D, L_E, L_F, L_G,
L_H, L_I, L_J, L_K, L_L, L_M, L_N, L_O,
L_P, L_Q, L_R, L_S, L_T, L_U, L_V, L_W,
L_X, L_Y, L_Z, L_lbrack, L_bslash, L_rbrack, L_caret, L_under,
L_backprime, L_a, L_b, L_c, L_d, L_e, L_f, L_g,
L_h, L_i, L_j, L_k, L_l, L_m, L_n, L_o,
L_p, L_q, L_r, L_s, L_t, L_u, L_v, L_w,
L_x, L_y, L_z, L_lbrace, L_vbar, L_rbrace, L_tilde, L_rub
};

int xx, yy, *cptr;
int sw_no_draw = 0;
int str_length = 0;

int getxy(int st, int rotation)
{

int xv, itemp;

xv = *cptr++; yy = *cptr++;
if(xv < 0) return(-1);

xx = xv&0x07;
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xx = ((st*xx+1)>>1);
yy = ((st*yy+1)>>1);

switch (rotation) {
case 1 : itemp = xx;

xx = -yy;
yy = itemp;
break;

case 2 : xx = -xx;
yy = -yy;
break;

case 3 : itemp = xx;
xx = yy;
yy = -itemp;
break;

default : break;
}

if (xv > 7) return(1); // penup
return(0); // pendown

}

void scale_draw_char(int x, int y, float sf, int color, char ch)
{

int sw;

ch = ch-32;
cptr = cptrs[ch];
if(getxy(2, 0) < 0) return;
xx = sf*(xx-2)+0.5;
yy = sf*(yy-6)+0.5;
GoTo(x+xx, y+yy);
while((sw=getxy(2, 0))>=0) {

xx = sf*(xx-2)+0.5;
yy = sf*(yy-6)+0.5;
if(sw!=0) {

GoTo(x+xx, y+yy);
} else {

Draw(color, x+xx, y+yy);
}

}
}

void dr_char(int x, int y, int st, int rotation, int color, int *cp)
{

int sw, itemp;

cptr = cp;
if( getxy(st, rotation) < 0 ) return;
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if(sw_no_draw != 1) GoTo(x+xx, y+yy);

while((sw=getxy(st, rotation))>=0) {
if(sw!=0) {

if(sw_no_draw != 1) GoTo(x+xx, y+yy);
} else {

if(sw_no_draw != 1) Draw(color, x+xx, y+yy);
}
itemp = x+xx;
if(itemp>str_length) str_length = itemp;

}
}

void draw_char(int x, int y, int st, int rotation, int color, char ch)
{

int *ptr;

ch = ch-32;
ptr = cptrs[ch];
dr_char(x, y, st, rotation, color, ptr);

}

void print_string_ps(int x, int y, int step, int rotation, int color, char *cp)
{

char ch;
int dx;

dx = (7*step)/2;

while((ch=*cp++) != NULL) {
draw_char(x, y, step, rotation, color, ch);
switch (rotation) {

case 1: y += dx; break;
case 2: x -= dx; break;
case 3: y -= dx; break;
default : x += dx;

}
}

}

22.16 setup_McBSP_plot source code

Sets up McBSP channel 0 for use with the Spartan-3 SB XVGA entity.

/* EECS 452 McBSP/AIC23 basic paradigm example support

*
* 12Jul03 .. initial version .. KM

* 24Apr07 .. McBSP plot version .. KM
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*
*/

#include "../../TI_support/McBSP_452.h"

void McBSP_plot(unsigned port, unsigned value)
{

while( ((McBSP_reg(port, McBSP_PCR))&0x0010)!=0 ); // wait on FPGA ready
while((McBSP_reg(port, McBSP_SPCR2)&0x0002) == 0); // wait on McBSP xmtr ready
McBSP_reg(port, McBSP_DXR1) = value; // send value to McBSP xmtr

}

void TX_Put(unsigned code)
{

McBSP_plot(0, code);
return;

}

/* Function to set up both the McBSP ports and the AIC23.

*
* Returns with the data flowing between the C5510 and the AIC23.

*
*/

void setup_McBSP_plot(int port)
{

/* set up specified McBSP port for SPI */

McBSP_reg(port, McBSP_SPCR2) = 0x0000; // stop xmtr
McBSP_reg(port, McBSP_SPCR1) = 0x1800; // clock stop mode, half cycle delay
McBSP_reg(port, McBSP_RCR1) = 0x0000;
McBSP_reg(port, McBSP_RCR2) = 0x0000;
McBSP_reg(port, McBSP_XCR1) = 0x0040; // 16-bit words
McBSP_reg(port, McBSP_XCR2) = 0x0000;
McBSP_reg(port, McBSP_SRGR1) = 0x0004; // low 8 bits is clock divide
McBSP_reg(port, McBSP_SRGR2) = 0x2011;
McBSP_reg(port, McBSP_MCR1) = 0x0000;
McBSP_reg(port, McBSP_MCR2) = 0x0000;
McBSP_reg(port, McBSP_PCR) = 0x1A08; // rcv as gpio in
McBSP_reg(port, McBSP_SPCR2) = 0x00C1; // start xmtr

}
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22.17 Output to XVGA via McBSP 0 source code

Basically the low level output routines.

/* EECS 452 XVGA support

03Dec2002 .. initial Tektronix 4010 version started .. K.Metzger
22Feb2004 .. updated for EECS 452 .. K.Metzger
17May2007 .. FPGA specific protocol implemented .. K.Metzger

The primitive operations derive from pen plotter routines. penup moves
the plotting "pen" to a given position in the up (non-printing) position.
pendn does the same but with the pen in contact with the drawing surface.
pendot moves pen up and then puts the pen down. This is like doing a
penup placing the pen in contact with the drawing surface at the end.

The display coordinate system has origin in lower left corner of the
screen. The full x extent is 1024 points. The full y extent is 780
visible points. These routines work in "raw" coordinates.

*/

#include <stdio.h>
#include <stdlib.h>

unsigned volatile flag = 0;
unsigned volatile value;

unsigned pages = 0x0000;

void GoTo(int, int);
void Draw(int, int, int);

extern int sw_enable_postscript, PSoffset;
extern FILE *post;

int sw_print_string;
int need_stroke;
int old_color = 0;

void XVGAinit()
{

need_stroke = -1;
TX_Put(0x8200+pages); // set work and display pages
TX_Put(0x8100); // clear working page
GoTo(0,0); Draw(0,1023,300); // should not need..have a bug
need_stroke = 0;
sw_print_string = 0;
return;

}
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void GoTo(int x, int y)
{

if (sw_enable_postscript != 0) {
if (need_stroke >= 0) {

if (need_stroke == 1) {
fprintf(post, "stroke\n");
need_stroke = 0;

}
fprintf(post, "%d %d moveto\n", x+PSoffset, y+PSoffset);

}
}
TX_Put(x&0x03FF);
TX_Put(0x2000|0x0400|(y&0x03FF));

return;
}

void Draw(int color, int x, int y)
{

if (sw_print_string != 1) {
TX_Put(x&0x03FF);
TX_Put(0x4000|0x0400|((color&0x3)<<11)|(y&0x03FF));

}
if (sw_enable_postscript != 0) {

if (color != old_color) {
if (color == 1) {

fprintf(post, "1 0 0 setrgbcolor\n");
}
else if (color == 2) {

fprintf(post, "0 0 1 setrgbcolor\n");
}
else {

fprintf(post, "0 0 0 setrgbcolor\n");
}
old_color = color;

}
if (need_stroke >= 0) {

fprintf(post, "%d %d lineto\n", x+PSoffset, y+PSoffset);
need_stroke = 1;

}
}
return;

}
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22.18 Interrupt support, AIC23int_00.asm

This is an interrupt based support package for the AIC23 CODEC.

;File name: AIC23int_00.asm
;
; EECS 452 AIC23 codec interrupt support for the C5510DSK
;
;
; 28Feb2004 .. lab 6 transfer function interrupt support .. KM
; 6Mar2004 .. made accumulator externally visible .. KM
; 8Feb2005 .. moved no_isr to its own file .. KM
;

.c54cm_off ;don’t want compatible with c54

.ARMS_on ;enable assembler for ARMS=1

.CPL_on ;enable assembler for CPL=1

.global _startup, _resetv

.global Mc2R_int, Mc2X_int

.global _AIC_flag, _AIC_LeftIn, _AIC_RightIn, _AIC_LeftOut, _AIC_RightOut

.global _Icos, _Qsin, _ftv, _DDSaccum

.data

.bss _AIC_flag,1

.bss _AIC_LeftIn,1

.bss _AIC_RightIn,1

.bss _AIC_LeftOut,1

.bss _AIC_RightOut,1

.bss _Icos,1

.bss _Qsin,1

.bss _ftv,2,1,2

.bss _DDSaccum,2,1,2

.text

.asg (0xFFFA00>>1),SINE_TABLE

; status registers contents to insure our environment

.asg 0001100000000000b,my_ST0_55

.asg 0110100100000000b,my_ST1_55

.asg 1001000000000000b,my_ST2_55

.asg 0001000000000010b,my_ST3_55 ; ROM access is enabled

_startup:
pshboth xar0
mov #_resetv >> 8, ac0 ; get int vector address page
mov ac0,mmap(ivpd) ; set up DSP int address
mov ac0,mmap(ivph) ; set up host int address
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amov #Mc2R_int,xar0 ; set up McB port 2 rcvr addr
mov xar0,dbl(*((_resetv+0x60)/2))
amov #Mc2X_int,xar0 ; set up McB port 2 xmtr addr
mov xar0,dbl(*((_resetv+0x68)/2))
or #0x3000,mmap(ifr0) ; clear Mc2 interrupt flags
or #0x3000,mmap(ier0) ; enable Mc2TX and Mc2RX interrupts
mov #0,*(#_AIC_flag) ; clear the sample flag
mov #0,port(#0x3003) ; start Mc transmitter running
popboth xar0
ret

; Setup McBSP channel 2 codec interrupt support
;
; assumes setup_codec() has been called
;

; Support for codec interrupt driven data transfers

Mc2R_int:
psh mmap(st2_55)
psh mmap(st3_55)
psh mmap(t0)

mov #my_ST0_55,mmap(st0_55) ; now configure the machine
mov #my_ST1_55,mmap(st1_55)
mov #my_ST2_55,mmap(st2_55)
mov #my_ST3_55,mmap(st3_55)

mov port(#0x3000),t0 ; get left value
mov t0,*(#_AIC_LeftIn)
mov port(#0x3001),t0 ; get right value...and clear flag
mov t0,*(#_AIC_RightIn)
mov #0x0001,*(#_AIC_flag) ; use receive to synchronize

Mc2R_exit:
pop mmap(t0)
pop mmap(st3_55)
pop mmap(st2_55)
nop ; 6 nops stops remarks 99 and 100
nop
nop
nop
nop
nop
reti

;---------------------------------------------------------------------------------------
;
; Support to send L&R sample values to the AIC23 codec
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Mc2X_int:
psh mmap(st2_55)
psh mmap(st3_55)
psh mmap(ac0l)
psh mmap(ac0h)
psh mmap(ac0g)
pshboth xar0
psh mmap(t0)

mov #my_ST0_55,mmap(st0_55) ; now configure the machine
mov #my_ST1_55,mmap(st1_55)
mov #my_ST2_55,mmap(st2_55)
mov #my_ST3_55,mmap(st3_55)

; run the DDS to get cos and sin values

mov dbl(*(#_DDSaccum)),ac0 ; get DDS phase accumulator
add dbl(*(#_ftv)),ac0 ; add the frequency tuning value
mov ac0,dbl(*(#_DDSaccum)) ; and update the accumulator
amov #SINE_TABLE,xar0 ; ac0 now points to sine table
mov hi(ac0<<#-8),mmap(t0) ; get top 8 bits of phase accumulator
and #0x00FF,t0 ; make sure it is 8-bit value
mov *ar0(t0),ac0 ; fetch sine value
mov ac0,*(#_Qsin) ; save sine value
add #64,t0 ; adjust for cosine phase
and #0x00FF,t0 ; make offset moduluo-256
mov *ar0(t0),ac0 ; fetch cosine value
mov ac0,*(_Icos) ; save cosine value

; end of the DDS support

mov *(#_AIC_LeftOut),t0 ; fetch the left value
mov t0,port(#0x3002) ; and send to L in TX
mov ac0,port(#0x3003) ; send cosine to R channel and clear flag

X2I_exit:
pop mmap(t0)
popboth xar0
pop mmap(ac0g)
pop mmap(ac0h)
pop mmap(ac0l)
pop mmap(st3_55)
pop mmap(st2_55)
nop ; 6 nops stop remarks 99 and 100
nop
nop
nop
nop
nop
reti
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22.19 Interrupt vector

This file can conflict with a corresponding vector contained in the run time li-

brary file. The order in which files are processed by the linker needs to be speci-

fied in order to void conflict.

This file should be placed at the beginning of the link order list. The rts55.lib
(or rts55x.lib) file should be placed at the end of the link order list

.sect "vectors"

.global _no_isr, _resetv

.global Mc2R_int, Mc2X_int

_resetv:.ivec _no_isr ; use default c54x dual stacking slow
nmi: .ivec _no_isr
int0: .ivec _no_isr
int2: .ivec _no_isr
tint0: .ivec _no_isr
rint0: .ivec _no_isr
rint1: .ivec _no_isr
xint1: .ivec _no_isr
no1: .ivec _no_isr
dmac1: .ivec _no_isr
dspint: .ivec _no_isr
int3: .ivec _no_isr
rint2: .ivec _no_isr
xint2: .ivec _no_isr
dmac4: .ivec _no_isr
dmac5: .ivec _no_isr
int1: .ivec _no_isr
xint0: .ivec _no_isr
dmac0: .ivec _no_isr
int4: .ivec _no_isr
dmac2: .ivec _no_isr
dmac3: .ivec _no_isr
tint1: .ivec _no_isr
int5: .ivec _no_isr
berr: .ivec _no_isr
dlog: .ivec _no_isr
rtos: .ivec _no_isr
no2: .ivec _no_isr
no3: .ivec _no_isr
no4: .ivec _no_isr
no5: .ivec _no_isr
no6: .ivec _no_isr
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22.20 Interrupt support error, no_isr.asm

This file contains the support for interrupts that are not supported. Any time an

interrupt occurs for a device which has not been properly supported a branch is

made to _no_isr. This prevents the computer wandering too far.

;File name: no_isr.asm
;
; EECS 452 unsupported interrupt support for the C5510DSK
;
; 8Feb2005 .. no_isr placed into its own file .. KM
;

.c54cm_off ;don’t want compatible with c54

.ARMS_on ;enable assembler for ARMS=1

.CPL_on ;enable assembler for CPL=1

.global _no_isr ;make visible to outside world

.text

_no_isr: b _no_isr

22.21 Main function for recursive sine/cosine oscillator

void main(void)
{

setup_codec();
bsinegen();

}

22.22 Starter code for recursive sine/cosine oscillator

The source file is named bsinegen.asm.

; EECS 452 recursive sine/cosine generator
;
; 6 Oct 2003 .. initial version .. KM
; 12 Oct 2003 .. sine/cosineine version .. KM
; 2 Nov 2003 .. repairs .. KM

.data

.bss w_1,1 ; delay stage 1 in data memory

.bss w_2,1 ; delay stage 2 in data memory
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.sect ".text" ; place into the code section

.align 4 ; force 32-bit boundary

.global _bsinegen ; make entry visible to linker

cosine .set 32488 ; cosine in Q15
r .set (-0x7FFF) ; define start w_1 value, Q15
s .set 0x4000 ; define start w_2 value, Q15

_bsinegen:
bset sxmd ; enable sign extend
bset frct ; shift left 1 on multiply
bset m40 ; use 40 bit accumulator
bset rdm ; round
bclr c54cm ; not C54x compatible
mov #r,*(#w_1) ; initialize w_1
mov #s,*(#w_2) ; initialize w_2

L1:
; The following section is to be written by students

here be dragons

; end of student section

; move (scaled) w_2 into T0
mov T0,port(#0x3002) ; McBSP_reg(2, McBSP_DXR2) = w_2; left
mov *(#w_1),T0
mov T0,port(#0x3003) ; McBSP_reg(2, McBSP_DXR1) = w_1; right

L2:
btst #1,port(#0x3004),tc1
bcc L2,!tc1 ;while((McBSP_reg(2, McBSP_SPCR2)&0x0002) == 0);
b L1 ;generate next sinewave value

.end
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23 : Working with FFTs

The FFT is the DSP journeyman’s stock in trade. One should, must know how to

use. Should also know how to implement.

Some tasks and/or things to think about:

• Generate real time display in FPGA.

• Baseband and centered at a frequency.

• Computing magnitudes in dBs.

• Scaling based on the noise floor.

• Scaling methods.

• Test FPGA butterfly performance using PC to S3SB USB link.

Yet another FFT implementation? Why?

The yaFFT implementation was primarily done as a learning exercise, a VHDL

étude. The end result was nominally to be incorporated into two EECS 452 lab ex-

ercises, one doing real-time spectrum analysis and display and the other imple-

menting an orthogonal frequency division multiplexed (OFDM) communication

system.

A goal is to implement yaFFT using bit-serial arithmetic on the Digilent Spartan-

3 Starter Boards used in the EECS 452 lab.

The primary references for this work were [?] and more to come. Work was

started on this memo on May 7, 2007 and has progressed in fits and starts.

23.0.1 Comments on levels of abstraction

As computers have become more powerful and commonly available so has the

levels at which design is conducted have become more abstract.

At our chosen VHDL behavioral level of abstraction, there are lower levels,

gates, transistors, device geometries and the like. The lower levels can be ex-

plored by reading books such as [?].

23.0.2 Comments on the design process

Design is generally a holistic process. Some times there is a well defined starting

point, sometimes many.
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One has a general goal that is to be attained, maybe some ideas of how to get

there but uncertainty is also, at least initially, often rampant. One pokes here and

there trying to develop a overall understanding what needs to be done and how.

Eventually enough pieces come together that allow one to start implementation.

A key to success is knowing what what one knows and what one does not

know, and thank-you D. Rumsfeld, worrying about what one does not know isn’t

known. One can work on the know unknowns. The unknown unknowns will

generally eventually make themselves apparent. They can be helped out with

this by doing paper designs and and coding small feasibility studies.

A problem with engineering education is that once the holistic processes has

been completed and the total system is understood and implemented the result

is presented in a linear fashion just as if it had been thought about that way.

The designer has his technical baggage, some good and useful, some not.

What one does is directed by experience and inclination. Books and technical

articles can be used to augment experience. Such need to be found, read, and

internalized. Google is very handy helping locate material. Being persistent

and clever in choosing keywords are both important. Checking recent journals

found on the second floor to find relevant articles is also useful. Their included

references provide more pointers into the literature. If you don’t know how to

search out useful information, well maybe, there is a known unknown!

At some point one needs to start.

The presentation in this memo is a meld of the holistic and linear. One might

say a hodgepodge or chaotic.

23.1 The real-time spectrum analyzer and display

When I became involved in EECS 452 many years ago there was a lab exercise

that used a Motorola DSP to acquire data sets, form the DFTs using a FFT code

and generate a real-time display. The display device was a “standard” oscillo-

scope. The evaluation board being used then had a two channel D/A output.

One channel was used to trigger a display scan and the other to produce the

plot. As the DSP devices have been upgraded the code has been also migrated

and updated. The FFTs were always done using canned code supplied by the

board manufacturers. A constant was the display device.

The last three semesters we have been slowly phasing in the use of field

programmable gate arrays (FPGAs) as adjuncts to the TI DSP processors currently

being used (TMS320VC5510). This semester we have become more aggressive

about the use of FPGAs for doing DSP.

The C5510 code forms a 1024 value FFT. Without too much effort this FFT

size can be expanded to 8192 values. The FFT code uses the TI DSPlib CFFT32

routine, no scaling.
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23.1.1 Implementing an FFT on the Spartan-3 Starter Board

Xilinx has available an FFT entity in their core generator. Free. There also are

FFT entities available on the OpenCores web site, http://www.opencores.org.

Why not use one of these? This feels like being given a fish. I want to learn how

to fish. Perhaps I want to be able to move on to other ponds. Maybe I want to

better understand how to use FPGA resources. I do want to learn how to think

about what is needed in order to create such entities.

Anyway, in order to not stray too far, the basic design goal is to implement

and use an FFT entity on the S3-SB. It should, at a minimum, be able to form

1024 value FFTs.

This section assumes a basic understanding about radix-2 and/or radix-4

decimation-in-time algorithms and a bit of knowledge about the S-3 and its

Starter Board.

23.1.2 Memory needs

The AIC23 Codec chip used on the C5510 DSK produces 16-bit samples. The

high speed (1 MSPS) A/D Pmod module produces 12-bit samples. We will design

for a 16-bit sample. The 12-bit samples will be converted into 16 bit form by

simply placing them into the top 12 bits of a 16-bit word (low bits set to 0).

The S3 Block RAM contain 18K bits and can be configured to use varying word

sizes. The lab systems use the S3-1000 chip which contain 24 BRAM blocks.

It is desired to generate a display having a dynamic range sufficient to dis-

plays levels down to, or near, the noise floor caused by quantization noise. In

terms of A/D counts (quanta) the quantization noise variance is σ 2 = 1/12 bit2.

When using the standard DFT definition (1/N factor on the inverse transform)

and making some basic simple assumptions about the nature of quantization

noise, the variance of the noise on the frequency values (or spectral lines, or

lines) is N times the input quantization noise. Similarly the amplitudes of the

signal lines increases by a factor of N as well.

A quick aside. Assuming real valued data the signal-to-noise ratio on a given

line of amplitude A at the input is:

SNR = K
N2A2

Nσ 2
= K

NA2

(1/12)
.

The K factor is to account for any constants that show up when is being more

careful. There is a processing gain, relative to quantization noise, that increases

as N increases.

Consider N an integer power of two, N = 2M . For a 1024 value (point) FFT,

M = 10 and sixteen bit values can grow to 26 bits (larger is possible, but not too
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much larger). The noise variance also grows by a factor N as well. However, there

isn’t anything smaller than the noise level that makes sense to display. So, the

through is to scale the FFT values by
√
N that the variance of the quantization

noise contributions are reduced by 1/N becoming once gain 1/12 bit. Doing this

reduces the growth of the signal lines to 21 bits for a 1024 point FFT.

The basic DIT radix-2 FFT algorithm can be performed in place.

If we choose a word size of 24 bits then complex values require 48 bits. Three

16 bit by 1024 word BRAMs can safely be used to hold the input, intermediate

and final values.

Another memory need is for the twiddle factor values,

Wn
N = e

−j2πn/N = cos(2πn/N)− j sin(2πn/N), n = 0,1, . . . ,N − 1.

Various methods exist that can be used to calculate values on demand. Al-

ternatively the needed values can simply placed into a ROM and read as needed.

We will pursue the ROM reading technique.

The largest word size usable with a single BRAM is 18-bits. Let’s use it and

investigate the cost later. The problem to worry about is the effect of the num-

ber of bits used to represent the cos/sin values on the noise level and perhaps

spurious signal outputs. Actually I’m cheating here. I’ve already run some simu-

lations using MATLAB and have decided to accept a slight increase in noise level.

If the final implementation doesn’t work as expected, it won’t be the final one.

For N = 1024 two BRAMs can be used, one for the cosine and one for the

-sine. Better, one BRAM can be used to hold, say, cosine and -sine values can be

read by using the a shifted value of index.

Peeking ahead it is found that only the first N/2 values of the above set of

values are needed. One idea is to partition the ROM placing the cosine values in

one half and the -sine values on the other half. Because the BRAM ROMs are dual

port cosine and sine values can be read simultaneously.

A unwritten (until this point) want is to actually have supported FFT sizes to

at least 2048 points.

The cosine and sine waveforms are shifts of each other and have lots of sym-

metry. If we know the values of the sine over the first quarter cycle (n=0,1,. . . ,

N/4-1), the values over a full cycle can easily be determined. Using a 1024 word

BRAM as the twiddle factor memory we can in effect generate twiddle factors for

transforms of up to 4096 points.

How to do this (i.e., what’s our cost)? Assume a P word table containing

samples of sin(2πn/4P), n = 0,1, . . . , P − 1. Sketching the sine and cosine

waveforms (eventual figures) one finds for m = 0,1, . . . ,4P that
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− sin(2πm/4P) = −table(m mod P/4) for 0 ≤m < P/4− 1,

= −table(P/4− (m mod P/4)) for P/4 ≤m < P/2− 1,

= +table(m mod P/4) for P/2 ≤m < 3P/4− 1,

= +table(P/4− (m mod P/4)) for 3P/4 ≤m < P − 1,

cos(2πm/4P) = +table(P/4− (m mod P/4)) for 0 ≤m < P/4− 1,

= −table(m mod P/4) for P/4 ≤m < P/2− 1,

= −table(P/4− (m mod P/4)) for P/2 ≤m < 3P/4− 1,

= +table(m mod P/4) for 3P/4 ≤m < P − 1 .

Comments:

Only sine and cosine values for m though P/2− 1 are needed by the

FFT.

It might be reasonable to program the ROM using − sin rather than

+ sin.

The addressing logic should be simpler placing a half period in the

ROM (for a given sized ROM this reduces the largest usable value of

N by half).

For values of N < 4096 there will be left over BRAM which can be

used elsewhere. The S3 BRAM is dual ported simplifying independent

use of free space by another application.

All values in the ROM have the same sign allowing use of a Q18 num-

ber format. Sine/cosine values are effectively 19-bits.

The P/4-0 value is basically 1 and need not actually be stored in the

table.

There are ways that can be used to do away of use of a table and there

are ways to interpolate between values. One can trade between ROM,

logic support hardware and designer effort. A 1024 point quarter pe-

riod table should be relatively susceptible to interpolation to higher

densities. An interesting project would to investigate the relation be-

tween table size, number size, interpolation method and accuracy.

Having opened the door to considering values of N > 1024 we need to deter-

mine how this affects the memory needs. A 24-bit word size and gain scaling by

a factor of 1/
√

2 is assumed.

First checking for problems with a 24-bit word size. For N = 2048 we have

a nominal maximum output level of 16 + 5.5 = 21.5 bits. No problem. For

N = 4096 we have a nominal maximum output level of 16+ 6 = 22 bits. Again,

no problem.
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Next checking data set storage needs. N = 1024 data fits exactly into 3 BRAM

units, N = 2048 data fits into 6 BRAM units and N = 4096 data fits into 12 BRAM

units. There lab S3SB systems possess 24 BRAM units. Once again, no problem.

When the data to be transformed is real valued it is possible to use a N/4

complex valued point DFT/FFT to compute the DFT/FFT of a N real valued data

set.

One still does need the N valued twiddle factor values. This is done by prop-

erly placing half of the sample values into the real part and the other half into

the imaginary part of the values to be transformed. A processing is pass in made

through the N/2 DFT results to calculate the final values. Assuming conjugate

symmetry in the frequency domain, the inverse DFT?FFT can be accomplished in

like manner.

When working with real data, the spectrum is conjugate symmetric around

0 Hz. A basic baseband spectrum analyzer needs only display the positive fre-

quencies. The above half size transform method easily generates only these.

Basically taking N real value samples into N/2 complex values corresponding

the positive frequency portion of the spectrum. There is a nominal reduction of

transform time of one-half as well. Nominal because of the need of one more

pass through the data to get the positive frequency portion of the N transform.

There are many applications, such as IF processing in a software defined

radio (SDR) where one has complex data and the above procedure is not useful.

What to choose to do? This is a first effort. Probably should keep it reason-

ably straight forward, leave something to do in a future effort (extra credit?). So,

somewhat arbitrarily, decide to:

Use a half period table of Q19 sine values that fits into a single BRAM

unit. This supports transform sizes up to 2048 points. Take the

transform of complex data. The data memory will then use 6 BRAM

units.

23.1.3 Whose arithmetic support to use?

The VHDL support will implement add/subtract logic directly. Or we can use

our own. The S3 has off-fabric 18 bit multipliers, 24 in our hardware. Or we can

implement our own. Decide to:

Use VHDL +/- sparingly, pretty much implement our own add/sub/multiply

circuits, use bit serial arithmetic.

Learning how things work and how to make them work. Can always up a level

or two in abstraction later.
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23.1.4 Estimated execution time

A guess at this point is that using bit-serial arithmetic it should be possible to

do a radix-2 butterfly calculation in, say, 50 clock tics or less. Ignoring trivial

cases, there are N log2(N)/2 butterflies per transform. For N = 1024 there are

5120 butterfly evaluations at a total cost of 256,000 clock tics. For a 50 MHz

clock this corresponds to a transform time of 5.12 ms. If we were continuously

flowing samples without gaps the maximum sample rate would be 200 kHz. The

current lab exercise uses the AIC23 codec at a sample rate of 48 kHz. For this

application, all appears well.

23.2 The OFDM communication system

An end of the structured exercises OFDM motivated lab exercise has been on the

want list for the last several semesters. This exercise would combine significant

parts of the preceding lab exercises into a single application. In Winter 2007

term a combined group, EECS 452 and EECS 555 implemented a 802.11a-like

OFDM transmitter and receiver. This was done using a 24 kHz carrier and a

ultrasonic acoustic channel. Based on the experience gained by this group a

goal for summer 2007 is to create a corresponding lab exercise. A side effect is

expected to be to shaping what is done in the earlier labs to lead readily toward

this application.

23.2.1 Implementing a model OFDM system

The two key problems when implementing an OFDM communication system are

synchronization and tracking of clocks between the transmitter and receiver. To

some extend the IFFT and DFT are minor concerns. However, focus in this note

is on the IFFT and FFT aspects.

23.2.2 IFFT and FFT needs

802.11a basically implies use of a 64 point IFFT at the receiver and a 64 point

FFT at the receiver. However, larger transforms can be used as long as the same

spectral lines are produced.

Why would one want to use an IFFT having more than 64-values?

At the transmitter the IFFT values will eventually feed a D/A converter. The

D/A process results in images centered at multiples of the sample rate. In a

channelized system these images will interfere with waveforms in nearby chan-

nels. To minimize this there will be analog filters at the D/A output. The higher

the D/A sample rate the further separated the images will be and the easier the

filtering task to accomplish.
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Many OFDM systems follow the IFFT by sample rate up conversion. This

typically consists of doing a interleaved zero fill followed by a digital filter. The

zero filling process increases the effective sample rate and the filter remove

images. Even in this process the task of the filter is eased if the sample rate

prior to zero filling is increased. One way to accomplish this is to simple use a

large IFFT. If the resources are available to use a sufficiently large IFFT the need

for the digital filter might be eliminated. Reasonable alternate IFFT sizes are 128

and 256. The large IFFTs essentially bandlimited interpolate the samples that

would be produced by a 64 point IFFT.

In order to better illustrate the filtering needs discussed above, the OFDM lab

exercise system will use 64 and 128 point IFFTs and no following digital filter.

It should be possible to put a tuned front end on the real spectrum analyzer

and show the spectrum as seen at the D/A converter output. At the least we

presently have the capability to spool a 1 MHz sample stream to the C5510 DSK.

We can capture data sets and use C5510 to write them to a PC file for processing

and display using MATLAB.

Reference [?] is an extremely good source of information on sample rate con-

version.

23.3 Review of the DFT and the FFT

With a touch of arrogance I initially decided to implement the FFTs and IFFTs

using radix-4 butterflies. Radix-2 was too “simple”. “Anyone” could do radix-

2. I got as far as looking at implementing the radix-4 butterfly in VHDL. On

reflection I decided that maybe life would be a bit simpler and more clear if

radix-2 were used instead. This is not to mean that people are not implementing

radix-4 or even radix-8 based hardware, just that radix-4 might have too many

trees in its forest for our intended use. I left the radix-4 material in the memo so

I could find it later, if I wanted to, and because it might be of interest to someone

downstream. The radix-4 discussion was written prior to the radix-2 discussion.

I don’t know which suffers because of the order used.

23.3.1 The DFT

Given a set of N values, x[n], n = 0,1, . . . ,N −1, the Discrete Fourier Transform

(DFT) of this set is

X[k] =
N−1
∑

n=0

x[n]e−j2πkn/N , k = 0,1,2, . . . ,N − 1.

The inverse Discrete Fourier Transform (IDFT) is
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x[n] =
1

N

N−1
∑

k=0

X[k]ej2πkn/N , n = 0,1,2, . . . , N − 1.

Frequently e−j2π/N is written as WN .

Often the x[n] are values of a time waveform uniformly sampled at rate fs
Hz. For this case, the sample times are tn = 0,1/fs, . . . , (N−1)/fs . The duration

of the sample set is Td = N/fs . The frequency spacing between adjacent values

in the DFT is ∆f = 1/Td = fs/N Hz.

The k = 0 is the 0 Hz value (or line) and is also often referred to as the DC

line. The k = 1 value (or line) is associated with fs/N Hz. The K = N − 1 value is

associated with −fs/N Hz.

When plotting the results of an FFT it is often desirable to place the 0 Hz

value/line at the center of the plot. MATLAB provides a function, fftshift, to

rearrange the values in an array to do so.

JR Q
E~F

JR Q
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â
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Figure 23.1: The k values for FFT lines, (a) N = 10 and (b) N = 11.

It is a matter of professional pride to be able to correctly associate frequen-

cies with the k values. With little thought on the user’s part, the MATLAB function

linspace makes it easy to do so incorrectly. Figure 23.1 illustrates the locations

of the negative and positive frequencies for N = 10, an even number of lines,

and N = 11, an odd number of lines.

For N = 10 the represented frequencies go from −5fs/10 = −fs/2 through

4fs/10 = 2fs/5. The end values do not go from −fs/2 to fs/2. For N = 11

the frequencies go from −5fs/11 though 5fs/11. In this case neither end value

attains the value fs/2. Using MATLAB one way of generating an array of frequency

values to be associated with a shifted FFT array is

frequencies = (-floor(N/2)+[0:N-1])*fs/N;

23.3.2 Dividing and conquering

If N is not prime, at the least, we can express it as the product of two factors,

N = LM . The values of L and M might also be factorable.
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One can count from 0 to N − 1 by writing n in the form

n =mL+ l, 0 ≤m ≤M − 1, 0 ≤ l ≤ L− 1

or alternatively

n = lM +m, 0 ≤m ≤M − 1, 0 ≤ l ≤ L− 1.

These these two indexings express a one-dimensional list of values in two

dimensional form. For each value of n there is a unique set of values, l and m

such that n = f(l,m). Only the simple linear combinations of l and m listed

above are considered here.

If we write the DFT replacing values n using one of these representations and

k using the other we have

X[qL+ p] =
L−1
∑

l=0

M−1
∑

m=0

x[lM +m]W (lM+m)(qL+p)
N ,

=
L−1
∑

l=0

M−1
∑

m=0

x[lM +m]W lqLM
N W

lpM
N W

mqL
N W

mp
N ,

=
M−1
∑

m=0



W
mp
N

L−1
∑

l=0

x[lM +m]W lp
L



W
mq
M ,

where 0 ≤ l, p ≤ L− 1 and 0 ≤m,q ≤M − 1.

Let xm(l), m = 0,1, . . . ,M − 1, be the set of L sample values formed by

starting at the m-th sample and taking every M-th. Write Xm[p] the DFT of the

m-th set. Then

X[qL + p] =
M−1
∑

m=0

(

W
mp
N Xm[p]

)

W
mq
M . (23.1)

Next we work through the steps indicated by the above equation.

The re-sampled data values can be thought of as having been reordered in

the form of a M × L array

x[0] x[M] x[2M] · · · x[(L− 1)M]

x[1] x[M + 1] x[2M + 1] · · · x[(L− 1)M + 1]
...

...
...

...

x[M − 1] x[2M − 1] x[3M − 1] · · · x[L− 1] .

The L-value DFTs are formed of each row.

X0[0] X0[1] X0[2] · · · X0[L− 1]

X1[0] X1[1] X1[2] · · · X1[L− 1]
...

...
...

...

XM−1[0] XM−1[1] XM−1 · · · XM−1[L− 1] .
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Next the values are multiplied by the W
mp
N (referred to as twiddle factors).

X0[0] X0[1] X0[2] · · · X0[L− 1]

W 1×0
N X1[0] W 1×2

N X1[1] W 1×3
N X1[2] · · · W

1×(L−1)
N X1[L− 1]

...
...

...
...

W
(M−1)×0
N XM−1[0] W

(M−1)×1
N XM−1[1] W

(M−1)×2
N XM−1 · · · W

(M−1)×(L−1)
N XM−1[L− 1] .

Finally, L M-value DFTs are formed on the columns.

X[0] X[1] X[2] · · · X[L− 1]

X[L] X[L+ 1] X[L+ 2] · · · X[2L − 1]
...

...
...

...

X[(M − 1)L] X[(M − 1)L+ 1] X[(M − 1)L+ 2] · · · X(ML− 1) .

Lots of work. Did we accomplish anything? What metric do we use by which

to decide?

Using the definition of the DFT, ignoring all sorts of possible efficiencies, a

total of N2 complex multiplications is required.

Again, ignoring obvious efficiencies such as not counting multiplications by

1 and the like, there are M × L2 complex multiplications used in the row trans-

forms, N twiddle factor multiplications and L × M2 complex multiplications

used in the column transforms. The total number of complex multiplications

is (L +M + 1)N. The fractional savings is (L +M + 1)/N. If N = 6 there isn’t

any savings. If N = 15 the complex multiplication count is reduced by a factor

of 6/15.

If N has more than two factors (e.g. 210) the above process can be repeated

recursively.

23.3.3 Consider N = 2R

What follows is a commonly encountered development of the radix-2 decimation

in time FFT algorithm. Recall, the DFT of a set of ordered samples, x[n], is

defined as

X[k] =
N−1
∑

n=0

x[n]e−j2πkn/N , k = 0,1,2, . . . ,N − 1.

Divide the input samples into two sets, one set consisting of the even num-

bered samples and the other the odd numbered ones.
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X[k] =
N/2−1
∑

m=0

x[2m]e−j2πk2m/N +
N/2−1
∑

m=0

x[2m + 1]e−j2πk(2m+1)/N ,

=
N/2−1
∑

m=0

x[2m]e−j2πkm/(N/2) + e−j2πk/N
N/2−1
∑

m=0

x[2m + 1]e−j2πkm/(N/2).

The N point DFT has been converted into a weighted sum of two N/2 point

DFTs. Doing a brute force count of complex multiplications, the original DFT

requires N2, the split version N2/4+N. The number of complex multiplications

has been reduced.

The splitting process can be done again on the two N/2 point DFTs. This

results in four N/4 value DFTs. Moving between splitting levels sometimes is

referred to as moving between layers of the computation. For a N = 2R value

DFT there will be R = log2(N) layers.

Figure 23.2 illustrates the computational flow for N = 8. 23.3 illustrates the
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Figure 23.2: Computational flow for a decimation in time FFT, N = 8. The N

subscripts on the Ws are not shown.

computational flow for N = 8. Note that

e−jπm(k+N/2)/(N/2) = −e−j2πmk/(N/2).
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Figure 23.4: Basic radix-2 decimation in time butterfly.

Applying this to the diagram in Figure 23.2 yields the modified diagram in Figure

23.3. The computation has been divided into a series of combinations of two

values at a time. The structure of these is shown in Figure 23.4 which is termed

a “butterfly”. The W r
N values are referred to as “twiddle factors”. Looking at

the signal flow diagrams it can be observed that the results of each butterfly

operation can replace the inputs. That is, the calculation can be done in-place.

At each layer there will be 2N−1 butterfly calculations. The total number of

butterfly calculations (including the trivial ones) is

Nb = N log2(N)/2.

The repeated even/odd separations result in the input values being placed

in an order that corresponds to bit reversing the binary representation of their

index values. The signal flow shown in Figure 23.3 can be reordered so that

the data values are in normal order and the output values in bit-reverse index
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order with the in-place capability retained. In place calculation is not possible

for normal order input and output indices. We will place the data into bit-reverse

order prior to transforming giving the resulting output values in normal order.

23.3.3.1 Radix-2 FFT pseudo-code

Using Figure 23.3 we can create a word description of a subroutine/hardware for

calculating a DIT FFT. The block diagram was developed working from right to

left. We now work from left to right.

• Loop over R layers counting r = 0,1, . . . , R − 1.

• At layer r there are 2N−r−1 2r+1 point DFTs to be formed. For example, at

layer 0 there N/2 2 point DFTs to be formed. These are generated from

the bit-reversed indexed input samples. The calculation is in place with the

results serving as the inputs to the layer 1 calculation. The value ofW 0
N is 1.

The butterflies use only additions and subtractions. These are referred to

trivial butterflies. The spacing between butterfly inputs is one. The spacing

between FFTs is 2.

• At layer one there will be 2N−2 FFTs to be formed having size 4. The twiddle

factor values in involved are 1 and j. Again only addition and subtractions

are needed. The butterflies at this layer are also considered trivial. The

spacing between butterfly inputs is 2. The separation between FFTs is 4.

• And so on.

This leads to the pseudo code (sort of C with complex arithmetic):

nFFTs = N/2; FFTsize = 2;
for(r = 0; r < R; r++) {

for(fft = 0; fft < nFFTs; fft++) {
for(butterfly = 0; butterfly < (FFTsize/2); butterfly++) {

top_index = fft*FFTsize+butterfly;
bot_index = top_index+(FFTsize/2);
w_index = butterfly*nFFTs;
temp = W[w_index]*data[bot_index];
data[bot_index] = data[top_index]-temp; // update bot first!
data[top_index] = data[top_index]+temp; // now update top

}
}
nFFTs = (nFFTs/2); FFTsize = (FFTsize*2);

}

The above pseudo-code was used to create a test program in C which was

used to verify the desired result.
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The FFT is formed using three loops. The outer loop moves the processing

left to right a layer at a time. The next loop is over the number of DFTs being

formed for the current layer. The inner loop evaluates the butterflies associated

with the current sub-FFT. This code illustrates the loop control structure, the

data and twiddle factor indexing and butterfly structure.

Next, we rewrite the above code making it more VHDL friendly.

nFFTs = N/2; FFTsize = 2;
for(r = 0; r < R; r++) {

FFTstart = 0;
for(fft = 0; fft < nFFTs; fft++) {

w_index = 0;
for(butterfly = 0; butterfly < (FFTsize/2); butterfly++) {

top_index = FFTstart+butterfly;
bot_index = top_index+(FFTsize/2);
temp = W[w_index]*data[bot_index];
data[bot_index] = data[top_index]-temp; // update bot first!
data[top_index] = data[top_index]+temp; // now update top
w_index = w_index+nFFTs;

}
FFTstart = FFTstart+FFTsize;

}
nFFTs = (nFFTs>>1); FFTsize = (FFTsize<<1); // shifts are easy to do

}

Multiplications associated with index calculations have been replaced by ad-

ditions. The values of FFTsize/2 are are essentially free at the VHDL level (why

might one think this?).

23.3.3.2 Implementing the DIT radix-2 butterfly

The radix-2 butterfly is shown in Figure 23.4. It requires one complex multi-

plier and two adders. These are to be implemented using bit-serial arithmetic.

Normally the product two complex numbers a+ jb and c + jd is written

(a+ jb)(c + jd) = ac − bd+ j(bc + ad).

There are four real multiplication and two add/subtract operations.

The number of multiplications can be reduced to three,

(a+ jb)(c + jd) = a(c − d)+ (a− b)d+ j[b(c + d)+ (a− b)d].

Other three multiplier orderings are possible, for example [?],

(a+ jb)(c + jd) = a(c + d)− d(a+ b)+ j[a(c + d)− c(a− b)].

There is even a relatively recent patent (cite) that appears to patent a three

multiplier hardware configuration. I believe there is prior art [?].
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The three multiplier replaces a multiplier with several adders. As always,

there are side effects when generating the required sum and differences.

We will use the four multiplier configuration. It’s simple and straight forward.
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Figure 23.5: Complex multiplier using the SPmult entity and full adders with

memory.
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Figure 23.6: A bit serial radix-2 DIT butterfly implementation. .

Figure 23.5 shows a parallel/serial multiplier based complex multiplier. The

adders are single bit adders with a delay, D, connecting the carry out back to the

carry in. The delays on the adders are to be initialized with logic 0s and those

on the subtractors with logic 1s.
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Figure 23.6 contains the logic for implementing a DIT radix-2 butterfly. The

two constant multipliers in the butterfly top part are part of the automatic scal-

ing support and with an additional delay stage time align the top and bottom

bit streams. This configuration uses 6 serial/parallel multiplier entities and 6

one-bit add/subtract units. The Ks and the twiddle factor inputs are planned to

be parallel. The butterfly top and bottom values are planned to be bit serial. The

associated shift registers are not included. It might be reasonable to loop the

output values back into the shift registers used to hold the input values.

Earlier it was decided that the FFT should have a gain of 1/
√
N. This can

be accomplished by multiplying the output of each layer calculation by 1/
√

2 =
0.7071 . . . . One way to accomplish this is to scale the coefficient value by 1/

√
2.

In order for this to work the top butterfly values also need to be multiplied by

K = 1/
√

2. The cost is loss of one-half bit of accuracy in the coefficient values.

The scale factor does not have to be precisely K = 1/
√

2. As long as the actual

scale factor is known, the final results can be adjusted accordingly. This opens

up the opportunity to replace the constant multipliers with simpler logic. For

example, we can scale a bit serial number by 45/64 = 0.703125 using a 6-bit

shift register and three full bit adders.

Whatever the scale factor, the value needs to be built into the sine/cosine

table.

23.3.3.3 Rounding of intermediate and final values

To be done. Use simple two’s complement or convergent rounding?

23.3.4 Consider N = 4R

Consider N = 4R where R is an integer greater than 1. If R = 2 we would

divide the 16 samples into four 4-point data sets, form the DFT of each and then

combine to obtain the 16-point transform. Similarly if R = 3, we would divide

the 64-value data set into four 16-value data sets, divide each 16-value into four

4-values sets and then transform. The 4-values sets would be combined into

16-value transforms and then those into the desired 64-value transform.

There are R transforms layers numbered 0 (the lowest, left most, basic 4-

point transforms) to R − 1 (the one, right most, where four 4R−1 transforms are

combined to give a N = 4R value transform). At each layer the required number

of 4-point transforms is 4R−1 for a total number of 4R−1R per transform.

Basically there are three things that we want to understand:

1. How data values move around as we go from the largest to the smallest

transform.

2. How to efficiently implement the basic 4-point DFT.
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3. How to combine individual transforms as we move the 4-point transform

layer to the top layer.

Consider the 64 point transform, R = 3. Dividing up the top layer into four

16-point transforms reorder the indices giving:

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60,

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 52, 57, 61,

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 53, 58, 62,

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 54, 59, 63.

Reordering the values within the 16-point sub transforms:

0, 16, 32, 48, 4, 20, 36, 52, 8, 24, 40, 56, 12, 28, 44, 60,

1, 17, 33, 49, 5, 21, 37, 53, 9, 25, 41, 57, 13, 29, 45, 61,

2, 18, 34, 50, 6, 22, 38, 54, 10, 26, 42, 58, 14, 30, 46, 62,

3, 19, 35, 51, 7, 23, 39, 55, 11, 27, 43, 59, 15, 31, 47, 63.

00 00 00
01 00 00
10 00 00
11 00 00
00 01 00
01 01 00
10 01 00
11 01 00
00 10 00
01 10 00
10 10 00
11 10 00
00 11 00
01 11 00
10 11 00
11 11 00
00 00 01
01 00 01

.

.

.

Figure 23.7: Reordered data indices written in binary.

The first several index values are shown in Figure 23.7 written in binary. After

a bit of puzzlement it is seen that the values are organized in base-4 digit reverse
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order. Figure 23.8 shows how one might use C to generate an indexing array for

use in placing samples into radix-4 digit reverse order.

// set up digit reversed index array

for (ctr = 0; ctr < N; ctr++) {
utemp = ctr;
index[ctr] = 0;
for (idx = 0; idx < NLayers; idx++) {

index[ctr] = (index[ctr]<<2) | (utemp&0x3);
utemp >>= 2;

}
}

Figure 23.8: C code to generate the indexing array for a radix-4 FFT. The variable

NLayers corresponds to R.

Having the data in proper order the next order of business in forming the

4-point DFTs.

X[k] =
3
∑

n=0

x[n]e−j2πkn/4, k = 0,1,2,3.

This can be written in matrix form


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A computational savings can be had [?] if one factors the above matrix so that
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






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.

Finally, we need to puzzle out the twiddle factor multiplications as we work

through the layers.

We will start with Eq. 23.1, assume N = 64 (R=3, 3 layers), M = 4 and see how

things and then generalize.

The top layer is formed by taking the 4-point DFTs of the four 16-point DFTs

obtained interleave decimating the input data values by four.
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Figure 23.9: Twiddle factor weighted radix-4 butterfly.

Figure 23.9 shows a block diagram representation of these equations.

At the last layer (layer 2) there are four 16-point DFTs that have to be com-

bined into one 64-point FFT. The value of N is 64 and the p values range from 0

through 15.

At layer 1 there four 16-point DFTs that have to be formed. Each is to be

formed from four 4-point DFTs. For each the value of N is 16 and the p values

range from 0 through 3.

At layer 0 there are sixteen 4-point DFTs that need to be formed. For each

the value of p is 0. The twiddle factors are all equal to 1.

Extrapolating to arbitrary R, let r be the layer count running from 0 at the

4-point DFT layer to R − 1 at the final layer.

At layer R − 1 there will be four 4R−1 value DFTs that will combined into a

single N = 4R value DFT.

At layer R − 2 there are four N = 4R−1 value DFTs that need to be formed.

Each from four 4R−2 value DFTs.

And so on.
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When implementing the transform one starts at layer 0 and works toward

layer R−1. At layer 0 there are 4R−1 four point DFTs that need to be formed. At

layer 1 there will be 4R−2 16 point DFTs formed. At layer 2, 4R−3 64 value DFTs

formed. At layer R − 1 only one 4R value DFT is formed. In general, at layer r ,

0 ≤ r ≤ R − 1, the number of DFTs to be formed is 4R−r−1 each of size 4r+1.

At layer r the size of the DFT being formed is Nr = 4r+1. The twiddle factor

values used areW
mp
Nr wherem = 0,1,2,3 and 0 ≤ p ≤ 4r−1. Often one has avail-

able a size N = 4R twiddle factor table. Recall that WNr = exp(−j2π/Nr ). The

value of Nr can easily be changed by multiplying numerator and denominator of

the complex exponential by the same factor. In particular

mp

4r+1
×

4R−r−1

4R−r−1
=
mp4R−r−1

4R
.

Using a fixed 4R value table the twiddle factor values needed at layer r are

W
mp
4r = Wmp4R−r−1

4R .

The values of km used to index the table need only be shifted left by 2(R−r−1)

bits in order to use the larger table. An alternative is to multiply the values of

mp by 4R−r−1 which also is the number of DFTs being formed at layer r .

loop on layer, r
loop on number of DFTs being formed by this layer

loop on butterflys in DFT size
do radix-4 butterfly

end loop
end loop

end loop

A test program was written using floating point. Appendix 23.5 contains the

C source code. The program uses “random” numbers and writes the input and

output values into files for verification using MATLAB. No attempt was made to

exploit efficiencies. The basic goal was to get the loop indexing correct and the

twiddled radix-4 butterfly to work properly. Somewhat surprisingly the FFT code

worked on the first try.

23.3.5 What about the inverse?

To be written.

23.4 Radix-2 FFT development first steps

A “reasonable” amount of time was spent in sketching on a legal pad various

ways the yaFFT2 entity might be implemented. When doing the paper studies

the following considerations were kept in mind.
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• One reason for doing this project is to gain experience. This is a starter

project. It is expected that mistakes and, maybe, a few not so good de-

cisions will be made. It expected that, eventually, a new version will be

created based upon experience gained from this version.

• As a first FFT project, it should be useful but not complicated. Get it right

first, go for performance later.

• Initial testing will be either use either the C5510 linked via McBSP/SPI or

MATLAB on a PC using a USB/FIFO interface, or both.

• The design will divided into modules with low intercommunication needs.

The serial/parallel radix-2 butterfly appears to require minimal FPGA resources.

Its main drawback is the number of clock tics that it needs. One way to speed up

its performance is to use multiple units. If there were two units one unit could

be doing its arithmetic while the other was being loaded and unloaded.

With this thought in mind the yaFFT2 entity will be implemented using a

single butterfly unit but using a bus structure that will hopefully permit ready

addition of additional butterfly units. Figure 23.10 illustrates the organization

being thought about.
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Figure 23.10: Initial block diagram for the yaFFt2 entity showing basic address-

ing and data flow. Control signals not shown (well, actually not defined at this

point).

Design generally balances thought versus action. Too little thought generally

results in a lot of useless action. To much thought and nothing is accomplished,

at least not at a useful rate.

Anyway, the itch for action is present, it’s going to be scratched. A reasonable

starting point is to implement the butterfly entity along with the twiddle factor

memory and a rudimentary controller. A USB/FIFO controller will be used to

move data and commands between the FPGA and a PC (most likely via a MATLAB

test program).
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23.4.1 Butterfly entity

• 48-bit bidirectional data/twiddle bus.

• load signal to copy 36-bit complex twiddle factor into twiddle factor regis-

ter.

• load signal to copy 48-bit complex data value into shift register.

• request line to initiate processing.

• ack/ready line to acknowledge start of processing and when it has been

completed.

• output enable line to place contents of the 48-bit result register onto the

data lines.

• reset and clock lines.

The lab spmult entity will be used to implement the multipliers.

23.4.2 Twiddle factor ROM

MATLAB will be used to generate the initialization portion of the twiddle BRAM

entity. 1024 18-bit values of one half period of the sine function will be stored

using a single block RAM. The values will be scaled by 1/
√

2.

23.4.3 USB/FIFO controller

Unit purchased from SparkFun. Implements a USB to 8-bit FIFO link. Drivers for

the Pc are included that can be used to develop control/access software. At the

other end the unit looks like two FIFOs, one for data from the PC and one for

data to the FIFO.

23.4.4 Testing and the results
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23.5 Radix-4 floating point FFT test C code
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24.1 Introduction

Lab exercise 7 involves implementation and use of FFT real time spectrum anal-

yser/display.

Uses the XVGA display system.

C5510 portion

Pretty much based on current lab. Acquired data, take FFT and display in real

time. Investigate leakage and windowing.

S3SB portion

Really want to be at the point where we, at the least, do the butterfly in the S3

and link via USB to MATLAB in order to evaluate numeric performance. Look at

effects of number of bits in rotator, kept after mac, rounding method.

Suggested reading

24.2 C5510 exercise

24.2.1 Prelab

Prelabs are to be done individually and are to be handed in at the

start of the lab period. Handwritten work will not be graded.

1. What is the name of the variable that is used in RTFFT.c to choose between

windowed and non-windowed (actually rectangular window) processing?

2. What is the name of the variable that is used in RTFFT.c to choose between

a Hamming window and a Chebyshev window?

3. What is the name of the array that is to be used to hold Q15 values for a

Chebyshev window?

4. Use MATLAB and generate a set of window weights in Q15 format for the

Chebyshev window (MATLAB’s chebwin function) with a R value of 100 (the

default value). These are for use in RTFFT.c. Use the value of N is as used

in the version whose listing is included in this write-up.

5. Give some thought on what you are going to for “free choice” portion of

this exercise. Gather what materials that you feel will help. Write a brief

description on what you plan to attempt and why you believe you will suc-

ceed. Coordinate your choice with your lab partner. You may both turn in

the same response to this particular part of the prelab.

Chapter 24 396 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

24.2.2 Exercise
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Figure 24.1: Signal generator, DSK and oscilloscope arrangement for RTFFT.

You have a working program, the source code and three hours to devote, do

something interesting and neat. Hopefully learning something in the process.

Source files that form the program:

• AIC23int_01.asm
• cbrev32.asm
• cfft32_noscale.asm
• intvec.asm
• log2_64.asm
• no_isr.asm
• rsquared64.asm
• RTFFT.c
• setup_codec.c
• twiddle32.inc

The file twiddle32.inc file is “included” by cfft32_noscale.asm and should

not appear in the source file list used by Code Composer Studio. It is listed here

only to make you aware that it is needed.
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You will also have to incorporate the RTS library and a linker command file.

See the set of files supplied in the folder named lab7. As always, make a copy

of the files to work with in your user directory.

Because we are supplying our own interrupt vector there is the potential of

a conflict at build time with the interrupt vector contained in the RTS library.

When this happens the error message

error: can’t allocate vectors

will result.

The work around is to use the compilers option to specify the link order.

Simply select all the modules and add them to the link list. Then drag and drop

the RTS library so that it is last on the list.

24.2.3 Things to be done

1. How much time does it take RTFFT to generate the display using floating

point and the C library log10 function?

2. How much time does it take to generate the display using the fixed point

R2 and approximate log2 functions?

3. Add program support to read the DIP switches to allow manual setting of

the switch variables used to select between windowed and un-windowed

displays and for the windowed displays between the Hamming and Cheby-

shev windows. Also support the switch variable used to select between

floating point and fixed point display generation.

4. Install the Chebyshev window coefficient values that you generated for the

pre-lab. Look at the displays generated using the rectangle, Hamming, and

Chebyshev R=100 windows. Demonstrate to your lab instructor your pro-

cessing when using the Chebyshev window.

5. Modify the program in some manner to increase it’s performance, utility,

ease of use, etc. The grade on this part of the lab will depend on the appar-

ent effort and success that you achieve. Do something nontrivial and the

points awarded will match. Some ideas are given in the following section.

24.2.4 Some things that might be done

• In lecture a equiripple polynomial approximation to log2(m) was found

and a suggested (untried) set of instructions to implement it was shown.

This approximation is also the focus of a homework problem using MATLAB
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to simulate the rounding error that results implementing the approxima-

tion using fixed point arithmetic. Assuming that the results of that home-

work are positive the next step is to generate a assembly language function

and test it on the C5510. The function would accept Q15 m values in the

range [0.5,1) and generate Q12 16-bit values.

; EECS 452 Q12 log2(m) test study
;
; version 1.0 October 29, 2003 .. KM
;
; int log2test(m)
;
; m is assumed to be in Q15
;
; on call Q15 m is in T0
; on return Q12 log2 is in T0

.global _log2test

_log2test:
psh mmap(st0_55) ; save status register 0
psh mmap(st1_55) ; save status register 1

bset frct ; in st1

; here be dragons

pop mmap(st1_55) ; restore status register 1
pop mmap(st0_55) ; restore status register 0
ret

.end

A suggested test procedure would be to

– To write a small test program using C that calls the assembly function.

– Generate an array of say 200 to 500 or so m values in Q15 form.

– Use the assembly language function to convert the m values to log

values. The C code would save the resulting values into an array,

– Either using probe points or simple C fprintf statements move both

the m and the log arrays to files on the PC. Be careful to retain suf-

ficient digits so that this part of the procedure does not affect the

accuracy of the m and log values.
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– Use MATLAB to read the files, compute log2 values using the same m

values used on the C5510, compare the C5510 generated log2 values

producing an error plot,

– Compare the error plots generated using the C5510 data against the

error plot made for the homework.

– Assuming all goes well, modify log2_64 to use the polynomial and

test. Don’t forget that an extra shift will probably be needed because

log2_64 puts out Q9 values. The resulting function will be produc-

ing values as accurate as possible for the given number format. A

noteworthy achievement!

• The oscilloscope display hops about depending upon the values displayed.

This is caused by the AIC23 codec output being AC coupled. The average

of the display voltage must be zero. For example, if the display contains

a predominance of negative values the display shifts up to compensate.

At present the portion of the display between the end of the display values

and the start of the immediately following data (gap) is set to zero. It might

be possible to compute the DC value of the active portion of the display and

set the level of the gap to result in an zero DC level. The expectation is that

this would minimize the display hopping around.

• The program presently uses all available samples to generate successive

displays. No samples are ever lost. This means a data set starts up at

what ever point the previous one ended at. This causes a jumping round

of the display that could be reduced if one triggered the data acquisition

in the same manner as are oscilloscopes. This would involved monitoring

the data stream waiting for the input voltage to traverse a threshold level

either in the positive or negative going direction.

• The cbitrev32 function requires alignment of the FFT results in order to

work properly. How difficult is removing this restriction? Removal is cer-

tainly possible, what is the cost in execution time and is it worth it?

• The cfft32 function is probably “no holds barred” optimized code. The

program makes use of a pre-computed twiddle factor table. In addition to

taking up room in memory this table is probably the limiting factor in the

size of DFT that can be formed. There are many simple algorithms that

use a very small table of twiddle factor seeds and recursively calculate the

values as needed. This adds time overhead but does free up memory. It is

a very common situation where one can, in a sense, make a trade between

memory and execution time. How difficult would it be to modify cfft32 to

make use of a much smaller table?
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• The oscilloscope presently done include an indication of the range of dB

being displayed. A simple stair step pattern can be appended (or post-

pended) to each display to allow dB levels to be fairly easily determined.

The display currently (I believe) covers an impressive approximate 192 dB

range. Diplays steps of say 40 dB should allow useful interpretation of the

levels being displayed.

• The cfft2 function presently is limited to forming DFTs of 1024 complex

values or less. The present display program acquires real valued data and

converts to complex form by appending zero imaginary parts. After the

DFT has been formed the negative frequency components are discarded

and only the positive frequency DFT values are used to form the display.

An algorithm exists that allows one to use a N complex valued DFT to be

used to compute the DFT of a 2N real valued data set. Basically the N value

DFT is one layer short of forming the full DFT. The algorithm makes one

pass through the N value DFT to complete the 2N valued result. Only the

positive frequency values need to be computed.

• There are better ways to do this but· · · . At present the right channel is

used to trigger the oscilloscope display synchronizing the C5510 with the

oscilloscope display. This can also be done using the display itself. If the

right channel can be freed up then it can be used for other tasks.

For example it can be used to output a sinusoid for use in making transfer

function measurements. Data can be acquired on both the left and right

channels. Rather than generate a sinusoid pseudo-random noise can be

produced and statistical signal processing techniques can be used to make

broadband transfer and coherence measurements.

• There appears to be so much time left over from acquiring the data and

generating the display one should be able to implement digital filters in the

C5510 as part of the program itself and display transfer functions without

ever having to put samples though the AIC23.

• The only (non-rectangle) windowing supported by the program in its cur-

rent state is the Hamming window. This window has a simple mathematical

form and is easily generated using the standard C floating point functions.

Two window functions that have been found fairly effective are the Cheby-

shev and the Kaiser window. The Kaiser window being considered by many

as the most superior among superior windows.

It should be easy to generate, say, Chebyshev window weights for say 256,

512 and 1024 for data sets and simply build them into the program. A

more elegant solution to compute them as needed. Once computed there

is no need to recompute them until the data set size is changed.
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• The C5510 DSK is quite limited in supporting interactive user input. How-

ever there are four DIP switches that could be used to control the program

operation in real time. For example two switches could be used to select be-

tween four possible window functions. Rectangle (no window), Hamming,

Chebyshev, and one other would be good choices. Or, perhaps the fourth

setting could be used for some other action.

With some imagination and thought (both of which the current author is

lacking) other uses can be found for the remaining two switches.

• The way the AIC23 input and output is presently programmed the left and

right values move lock step with each other. The program can be organized

to buffer either or both the input and output splitting the left and right

channel data. This might be useful when setting up for making transfer

function measurements.

• The program as presently configured is operating using a 48 kHz data rate.

The A/D and D/A portions of the AIC23 are delta-sigma converters. I’m

quite surprised that pulses one or two sample times long are being gen-

erated as well as they are. Possibly one way to improve the display is to

repeat display values. In order to do this would require to drop the input

sample rate while keeping the display rate high. This is easily done by

simply skipping every second sample. Each display value can be repeated

twice, hopefully improving the display. This does reduce the display from

0 to 24 kHz to 0 to 12 kHz. Adequate for many tasks. Keeping one sam-

ple and skipping two drops the sample rate to 16 kHz giving a Nyquist

frequency of 8 kHz. Useful for many telephony applications.

• There are no doubt many other modifications that can be done to the cur-

rent software that result in useful program. Use your imagination. Experi-

ment.

24.2.5 Report

Provide information and detail sufficient to convince the grader that you deserve

a good grade for the exercise. If you deviate from you prelab plan note how and

why. It is likely that what you do will change from the prelab once you actually

start working with the actual code and ideas occur. The idea is for the prelab to

give some structure to your efforts but not so much structure that you are in a

straight jacket.
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24.3 S3SB exercise

24.3.1 Prelab

24.3.2 Exercise

24.3.3 Report

24.4 Other versions are available

This section contains information that is not directly relevant to this exercise.

It is included here for completeness and to make the information available for

potential use by projects.

In addition to the analyzer code used in this lab exercise there exist two

variations.

• A large memory model analyzer that supports FFT sizes up to 8K values.

• A simple modification of the lab code that generates its display on a PC run-

ning a terminal emulator (TeraTerm) that supports Tektronix 4010 graph-

ics.

It should also be possible to readily modify the code to use an 8K complex

FFT to calculate the spectra of a 16K real valued data set. Information on how to

do so can be found in many DSP texts and will be touched on in lecture.

24.4.1 Large memory model 8K data set size

A check of the TI 32-bit FFT code indicated that the size FFT size limit is deter-

mined by the size of the twiddle factor table contained in the twiddle32.inc
file.

The contents of the TI twiddle32.inc factor file were studied and a MATLAB

script written to generate larger tables using the same format. This script is

included in Figure 24.2.

This script generates an assembly language (.asm) file rather than an include

(.inc) file. The code supplied by TI built the twiddle table into the assembly

of the FFT code using an include file. Changing the maximum size of the table

required reassembling the FFT code. Given an FFT object module (.obj) there

was no easy way to determine the maximum size FFT it supported. The decision

was to assemble the twiddle factor table separately from the FFT code. This was

accomplished without having to make any modifications to the TI FFT code. A
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% Script to compute cfft32 twiddle factor table
%
% 10apr2004 .. initial version .. K.Metzger

clear all;

M = 13; % 13 => 8192 size table
MB = M-1;

N = 2^M;
ang = pi/N; % table values use this step size
sf = 2^31-1;
fid = fopen(’twiddle32.asm’,’w’);
fprintf(fid, ’;***************************************\n’);
fprintf(fid, ’; EECS 452 V1.0 10Apr2004 .. KM\n’);
fprintf(fid, ’;***************************************\n’);
fprintf(fid, ’ .sect "SARAM2 ; place into second on-chip SA RAM block"\n’);
fprintf(fid, ’ .def _twiddle32\n’);
fprintf(fid, ’_twiddle32:\n’);

for idx = 0:N-1
ridx = 0;
test = idx;
for idx2 = 0:M-1 % bit reverse the index value

if mod(test,2) == 1
ridx = 2*ridx+1;

else
ridx = 2*ridx;

end
test = floor(test/2);

end
c = cos(ang*ridx);
chex = round(sf*c);
if chex < 0 chex = chex+2^32; end
fprintf(fid, ’ .long 0x%08x ; [%d]; %.6f\n’, chex, ridx, c);

s = sin(ang*ridx);
shex = round(sf*s);
if shex < 0 shex = shex+2^32; end
fprintf(fid, ’ .long 0x%08x ; [%d]; %.6f\n’, shex, ridx, s);

end

fclose(fid);

Figure 24.2: MATLAB script used to generate large FFT twiddle factor tables.
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.global _twiddle32

Figure 24.3: Wrapper include file contents allowing separate assembly of the

twiddle factor table and the 32-bit FFT code.

wrapper include file (twiddle32.inc) was used to determine the table as an

externally define entity. The contents of this file are shown in Figure 24.3.

An attempt was made to use a 16K data set size but this was not successful.

A 16K 32-bit complex FFT should be possible given the C5510’s 64K word page

size. The reason for the failure was not investigated.

24.4.2 1K version generating display on a PC

This version required modifying approximately 9 lines of code in the original

version and adding a function for generating Tektronix 4010 graphic commands

and support for sending data to a serial RS-232 port (on a daughter board).

The Tektronix 4010 graphics terminal was a commonly used display device

twenty or so years ago. It supported simple pen-up and pen-down commands

and was easily programmed using the ASCII character set. Even today there exist

many applications that make use of the 4010 command set. These applications

are supported by terminal emulator software that mimic the 4010 operation.

One free emulator is found in the TeraTerm package.

Our contribution was a small set of functions was written in C to allow draw-

ing lines and simply repositioning the drawing “pen”. Character strings can also

be included in the generated display.

Because of the slowness of the RS-232 port this version, while it works well,

does not necessarily process the input without gapping the input data.

24.5 TI DSPlib manual pages

See Figures 24.4 and 24.5 for the cfft32 description and Figures 24.6 and 24.7

for the cbitrev32 description.

24.6 List of codes

24.6.1 RTFFT.c
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cfft32

4-19 Function Descriptions

32-Bit Forward Complex FFTcfft32

Function void cfft32 (LDATA *x, ushort nx, type);

Arguments

x[2*nx] Pointer to input vector containing nx complex elements (2*nx
real elements) in normal-order. On output, vector x contains
the nx complex elements of the FFT(x) in bit-reversed order.
Complex numbers are stored in the interleaved Re-Im
format.

nx Number of complex elements in vector x. Must be between 4
and 1024.

type FFT type selector. Types supported:

� If type = SCALE, scaled version selected

� If type = NOSCALE, non-scaled version selected

Description Computes a complex nx-point FFT on vector x, which is in normal order. The
original content of vector x is destroyed in the process. The nx complex ele-
ments of the result are stored in vector x in bit-reversed order.

Algorithm (DFT)

y[k] � 1
(scale factor)

� �
nx�1

i�0

x[i] � ��2 * � * i * k
nx 	� j sin�2 * � * i * k

nx 		
Overflow Handling Methodology If scale==1, scaling before each stage is implemented for over-

flow prevention.

Special Requirements
� This function requires the inclusion of fine “twiddle.inc” which contains the

twiddle table (automatically included).

� Data memory alignment (reference cfft.cmd in examples/cfft32 directory):

� Alignment of input database address: (n+1) LSBs must be zeros,
where n=log2(nx).

� Ensure t hat the entire array fits within a 64K boundary (the largest
possible array addressable by the 16-bit auxiliary register).

� For best performance, the data buffer has to be in a DARAM block.

Implementation Notes
� Radix-2 DIT version of the FFT algorithm is implemented. The imple-

mentation is optimized for MIPS, not for code size.

� If scale == 0, the first two stages are combined and implemented in radix-4
for MIPS optimization.

Figure 24.4: First page of the DSPlib CFFT32 function description. (From

SPRU422F.)
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cfft32

4-20  

� If scale == 1, the first two stages are not combined, but they are separately
implemented to save multiplication operations for MIPS optimization. The
last stage is also separately implemented because it doesn’t need scaling
operation.

Example See example/cfft32 subdirectory

Benchmarks
� 12 cycles for radix-2 butterfly in non-scaled version; 15 cycles for radix-2

butterfly in scaled version

� 21 cycles for radix-4 butterfly in non-scaled version

� 10 cycles for stage 1 loop in scaled version; 10 cycles for group 1 of stage
2 loop in scaled version; 13 cycles for group 2 of stage 2 in scaled version

CFFT32 - SCALE

FFT Size Cycles † Code Size (in bytes)

16 715 504

32 1712 504

64 4038 504

128 9412 504

256 21618 504

512 48960 504

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

CFFT – NOSCALE

FFT Size Cycles † Code Size (in bytes)

16 601 337

32 1461 337

64 3460 337

128 8083 337

256 18594 337

512 42161 337

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

Figure 24.5: Second page of the DSPlib CFFT32 function description. (From

SPRU422F.)
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cbrev32

4-15 Function Descriptions

Benchmarks (preliminary)

Cycles† Core:
2 * nx (off-place)
4 * nx + 6 (in-place)
Overhead: 17

Code size
(in bytes)

81 (includes support for both in-place and off-place
bit-reverse)

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

32-Bit Complex Bit Reversecbrev32

Function void cbrev32(LDATA *a, LDATA *r, ushort)
(defined in cbrev32.asm)

Arguments

x[2*nx] Pointer to complex input vector x.

r[2*x] Pointer to complex output vector r.

nx Number of complex elements in vector x.

� To bit-reverse the output of a complex (i)FFT, nx should be
the complex (i)FFT size.

� To bit-reverse the output of a real (i)FFT, nx should be half
the real (i)FFT size.

Description This function bit-reverses the position of elements in complex vector x into out-
put vector r. In-place bit-reversing is allowed. Use this function in conjunction
with (i)FFT routines to provide the correct format for the (i)FFT input or output
data. If you bit-reverse a linear-order array, you obtain a bit-reversed order
array. Ifyou bit-reverse a bit-reversed order array, you obtain a linear-order
array.

Algorithm Not applicable

Overflow Handling Methodology Not applicable

Special Requirements
� Alignment of input database address: (n+1) LSBs must be zeros, where

n = log 2 (nx).

� Ensure that the entire array fits within a 64K boundary (the largest possible
array addressable by the 16-bit auxiliary register).

Figure 24.6: First page of the DSPlib CBITREV32 function description. (From

SPRU422F.)
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cfft

4-16  

Implementation Notes x is read in normal linear addressing and r is written with bit-reversed address-
ing.

Example See example/c(i)fft32 subdirectory

Benchmarks

Cycles† Core:
5*nx (off-place)
11*nx (in-place)

Code size
(in bytes)

75 (includes support for both in-place and off-place
bit-reverse)

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

Forward Complex FFTcfft

Function void cfft (DATA *x,  ushort nx, type);
(defined in cfft.asm)

Arguments

x [2*nx] Pointer to input vector containing nx complex elements (2*nx
real elements) in normal order. On output, vector contains
the nx complex elements of the FFT(x) in bit-reversed order.
Complex numbers are stored in interleaved Re-Im format.

nx Number of complex elements in vector x. Must be between
16 and 1024.

type FFT type selector. Types supported:

� If type = SCALE,  scaled version selected

� If type = NOSCALE,  non-scaled version selected

Description Computes a complex nx-point FFT on vector x, which is in normal order. The
original content of vector x is destroyed in the process. The nx complex ele-
ments of the result are stored in vector x in bit-reversed order. The twiddle table
is in bit-reversed order.

Algorithm (DFT)

y [k] � 1
(scale factor)

� �
nx�1

i�0

x [i] � �cos�2 * � * i * k
nx 	� j sin �2 * � * i * k

nx 		

Overflow Handling Methodology If type = SCALE is selected, scaling before each stage is imple-
mented for overflow prevention

Figure 24.7: Second page of the DSPlib CBITREV32 function description. (From

SPRU422F.)
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24.6.2 rsquared64.asm

24.6.3 log2_64.asm

24.6.4 Buffered I/O support for the AIC23

;File name: AIC23int_01.asm
;
; EECS 452 buffered AIC23 codec support for the C5510DSK
;
;
; 11Oct2003 .. initial version .. K.Metzger
; 11Apr2004 .. made small/large model independent .. KM
; 8Feb2005 .. move no_isr to its own file .. KM
;

.c54cm_off ;don’t want compatible with c54

.ARMS_on ;enable assembler for ARMS=1

.CPL_on ;enable assembler for CPL=1

.mmregs ;enable mem mapped register names

.global _startup, _no_isr, _resetv, _c_int00

.global Mc2R_int, Mc2X_int

.global _AD_flag, _DA_flag

.global _Mc2X_put, _Mc2X_put_setup

.global _Mc2R_get, _Mc2R_get_setup

.data

.bss Mc2X_buf_adr,2,1,4 ; aligned

.bss Mc2X_app_buf_off,1

.bss Mc2X_int_buf_off,1

.bss Mc2X_buf_size,1

.bss Mc2X_counter,1

.bss Mc2X_running_flag,1

.bss Mc2R_buf_adr,2,1,4 ; aligned

.bss Mc2R_app_buf_off,1

.bss Mc2R_int_buf_off,1

.bss Mc2R_buf_size,1

.bss Mc2R_counter,1

.text

.asg 0001100000000000b,my_ST0_55
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.asg 0110100100000000b,my_ST1_55

.asg 1001000000000000b,my_ST2_55

.asg 0001000000000010b,my_ST3_55

; Setup McBSP channel 2 codec interrupt support
;
; for now assumes setup_codec() has been called
;

_startup:
pshboth xar0
mov #_resetv >> 8, ac0 ; get int vector address page
mov ac0,mmap(ivpd) ; set up DSP int address
mov ac0,mmap(ivph) ; set up host int address
amov #Mc2R_int,xar0 ; set up McB port 2 rcvr addr
mov xar0,dbl(*((_resetv+0x60)/2))
amov #Mc2X_int,xar0 ; set up McB port 2 xmtr addr
mov xar0,dbl(*((_resetv+0x68)/2))
or #0x3000,mmap(ifr0) ; clear Mc2 interrupt flags
or #0x3000,mmap(ier0) ; enable Mc2TX and Mc2RX interrupts
mov #0,port(#0x3003) ; start Mc transmitter running
popboth xar0
ret

; Support for codec interrupt driven data transfers

Mc2R_int:
psh mmap(st3_55)
psh mmap(T0)
psh mmap(T1)
pshboth xar0
pshboth xar1
mov #my_ST0_55,mmap(st0_55) ; now configure the machine
mov #my_ST1_55,mmap(st1_55)
mov #my_ST2_55,mmap(st2_55)
mov #my_ST3_55,mmap(st3_55)

amov #Mc2R_buf_adr,xar1 ; get buffer address address
mov *ar1(Mc2R_counter-Mc2R_buf_adr),T0 ; get # L&R values in buffer
mov *ar1(Mc2R_buf_size-Mc2R_buf_adr),T1 ; get number allowed
cmp T0==T1,TC1 ; if equal full
bcc R2I_LA,!TC1 ; branch if room
mov port(#0x3001),T0 ; clears the receive flag
b Mc2R_exit ; and exits...samples onto the floor

R2I_LA:
mov dbl(*ar1), xar0 ; get buffer address
add *ar1(Mc2R_int_buf_off-Mc2R_buf_adr),ar0 ; and calculate where to place
add *ar1(Mc2R_int_buf_off-Mc2R_buf_adr),ar0 ; pairs of values
mov port(#0x3000),T0 ; get left value
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mov T0,*ar0+ ; and place into buffer
mov port(#0x3001),T0 ; get right value...and clear flag
mov T0,*ar0 ; place into buffer
add #1,*ar1(Mc2R_counter-Mc2R_buf_adr) ; increment count of pairs present
mov *ar1(Mc2R_int_buf_off-Mc2R_buf_adr),T0 ; now update offset circularly
add #1,T0 ; increment
cmp T0==T1,TC1 ; see if needs to be reset to buffer start
bcc R2I_LB,!TC1 ; branch if not
mov #0,T0 ; reset to buffer start

R2I_LB:
mov T0,*ar1(Mc2R_int_buf_off-Mc2R_buf_adr) ; and update in memory

Mc2R_exit:
popboth xar1
popboth xar0
pop mmap(T1)
pop mmap(T0)
pop mmap(st3_55)
nop ; 6 nops stops remarks 99 and 100
nop
nop
nop
nop
nop
reti

; Support to fetch codec sample values L&R pair

_Mc2R_get:
pshboth xar2 ; use it, save it
pshboth xar3 ; use it, save it
amov #Mc2R_buf_adr,xar3 ; get in sample buffer address address

Mc2R_wait:
mov *ar3(Mc2R_counter-Mc2R_buf_adr),T0 ; get count of pairs in buffer
bcc Mc2R_wait,T0==#0 ; wait if there aren’t any
mov dbl(*ar3),xar2 ; set up buffer address
add *ar3(Mc2R_app_buf_off-Mc2R_buf_adr),ar2 ; we are working with pairs
add *ar3(Mc2R_app_buf_off-Mc2R_buf_adr),ar2
mov *ar2+,T0 ; fetch L value
mov T0,*ar0 ; and place in caller’s location
mov *ar2,T0 ; fetch R value
mov T0,*ar1 ; and place in caller’s location
sub #1,*ar3(Mc2R_counter-Mc2R_buf_adr) ; indivisible decrement of count
mov *ar3(Mc2R_app_buf_off-Mc2R_buf_adr),T0 ; now update offset circularly
add #1,T0 ; increment
mov *ar3(Mc2R_buf_size-Mc2R_buf_adr),T1 ; get limiting value
cmp T0==T1,TC1 ; if equal need to reset to 0
bcc R2_LA,!TC1 ; branch if not equal
mov #0,T0 ; zero to start of buffer

R2_LA:
mov T0,*ar3(Mc2R_app_buf_off-Mc2R_buf_adr) ; and update in memory
popboth xar3
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popboth xar2
ret

; Mc2R_get_setup(*buffer, size);

_Mc2R_get_setup:
amov #Mc2R_buf_adr,xar1
mov xar0,dbl(*ar1) ; get the A/D in buffer address
mov T0,*ar1(Mc2R_buf_size-Mc2R_buf_adr) ; get the L&R pair count
mov #0,*ar1(Mc2R_app_buf_off-Mc2R_buf_adr) ; initialize application level
mov #0,*ar1(Mc2R_int_buf_off-Mc2R_buf_adr) ; initialize interrupt level buffer
mov #0,*ar1(Mc2R_counter-Mc2R_buf_adr) ; nothing present yet
ret

;---------------------------------------------------------------------------------------
;
; Support to send L&R sample values to the AIC23 codec

Mc2X_int:
psh mmap(st3_55)
psh mmap(T0)
psh mmap(T1)
pshboth xar0
pshboth xar1
mov #my_ST0_55,mmap(st0_55) ; now configure the machine
mov #my_ST1_55,mmap(st1_55)
mov #my_ST2_55,mmap(st2_55)
mov #my_ST3_55,mmap(st3_55)

amov #Mc2X_buf_adr,xar1 ; get TX buffer address address
mov dbl(*ar1),xar0 ; get TX buffer address
mov *ar1(Mc2X_counter-Mc2X_buf_adr),T0 ; get count of pairs pesent in buffer
bcc X2I_LA,T0==0 ; if none nothing to do
sub #1,*ar1(Mc2X_counter-Mc2X_buf_adr) ; we will send a LR pair reducing
add *ar1(Mc2X_int_buf_off-Mc2X_buf_adr),ar0 ; and add in offset
add *ar1(Mc2X_int_buf_off-Mc2X_buf_adr),ar0 ; count is in pairs
mov *ar0+,T0 ; get L value from buffer
mov T0,port(#0x3002) ; and send to L in TX
mov *ar0,T0 ; get R value from buffer
mov T0,port(#0x3003) ; and send to R in TX and clear flag
mov #1,*ar1(Mc2X_running_flag-Mc2X_buf_adr) ; note we expecting an interrupt
mov *ar1(Mc2X_int_buf_off-Mc2X_buf_adr),T0 ; now need to up interrupt buffer
add #1,T0 ; circularly
mov *ar1(Mc2X_buf_size-Mc2X_buf_adr),T1 ; compare offset with buffer
cmp T0==T1,TC1 ; if equal need to reset to 0
bcc X2I_LB,!TC1 ; branch if not needed to reset to 0
mov #0,T0 ; get the zero

X2I_LB:
mov T0,*ar1(Mc2X_int_buf_off-Mc2X_buf_adr) ; and update the value in memory
b X2I_exit ; all done so exit

Chapter 24 413 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

X2I_LA:
mov #0,*ar1(Mc2X_running_flag-Mc2X_buf_adr) ; note we are not expecting an interrupt

X2I_exit:
popboth xar1
popboth xar0
pop mmap(T1)
pop mmap(T0)
pop mmap(st3_55)
nop ; 6 nops stop remarks 99 and 100
nop
nop
nop
nop
nop
reti

; Application level function to send L&R values to DAC
;
; 32 bit value in AC0 left in high right in low

_Mc2X_put:
mov T0,mmap(ac0h) ; save left value
mov T1,mmap(ac0l) ; save right value

XL2_LC:
amov #Mc2X_buf_adr,xar1 ; point to buffer address address
mov *ar1(Mc2X_counter-Mc2X_buf_adr),T0 ; number values present
mov *ar1(Mc2X_buf_size-Mc2X_buf_adr),T1 ; number of spaces available
cmp T0==T1,TC1 ; see if they are equal
bcc XL2_LC,TC1 ; wait if no room
mov dbl(*ar1),xar0 ; get buffer address
add *ar1(Mc2X_app_buf_off-Mc2X_buf_adr),ar0
add *ar1(Mc2X_app_buf_off-Mc2X_buf_adr),ar0 ; two word offset needed
mov HI(ac0),*ar0+ ; store left value into buffer
mov ac0,*ar0 ; store right value into buffer
bset intm ; disable interrupts
add #1,*ar1(Mc2X_counter-Mc2X_buf_adr) ; increment count
mov *ar1(Mc2X_running_flag-Mc2X_buf_adr),T0
bcc X2_LA,T0!=0 ; branch if xmtr running
intr #0xD ; trigger the interrupt if not

X2_LA:
bclr intm ; reenable interrupts
mov *ar1(Mc2X_app_buf_off-Mc2X_buf_adr),T0; ; now update buffer offset
add #1,T0 ; increment
cmp T0==T1,TC1 ; may need to reset
bcc X2_LB,!TC1 ; not yet
mov #0,T0 ; put back to buffer start

X2_LB:
mov T0,*ar1(Mc2X_app_buf_off-Mc2X_buf_adr) ; update the putting offset

X2_exit:
ret
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; Mc2X_put_setup(*buffer, size);

_Mc2X_put_setup:
amov #Mc2X_buf_adr,xar1 ; point to buffer address address
mov xar0,dbl(*ar1) ; save address of L&R output
mov T0,*ar1(Mc2X_buf_size-Mc2X_buf_adr) ; save number of L&R pairs
mov #0,*ar1(Mc2X_app_buf_off-Mc2X_buf_adr) ; initialize application level
mov #0,*ar1(Mc2X_int_buf_off-Mc2X_buf_adr) ; initialize interrupt level
mov #0,*ar1(Mc2X_counter-Mc2X_buf_adr) ; nothing in the buffer yet
mov #0,*ar1(Mc2X_running_flag-Mc2X_buf_adr) ; and the TX is not going to
ret

24.6.5 Interrupt vector

This interrupt vector is designed to transfer control to a default interrupt rou-

tine if an interrupt is caused by an unsupported device. An unsupported device

is one for which an interrupt handler has not been supplied and which somehow

managed to cause an interrupt. One really wants to know about such happen-

ings.

24.6.6 Interrupt support error, no_isr.asm

This file contains the support for interrupts that are not supported. Any time an

interrupt occurs for a device which has not been properly supported a branch is

made to _no_isr. This prevents the computer wandering too far.
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25 : Acoustic OFDM Communication

System

Almost the ultimate DSP application. FFTs, filtering, sample rate conversion up

and down, modulation, demodulation and much much more. Whan to buy one?

Not planned as a lab exercise but if a student wants to treat it as such, well

. . .
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26 : PicoBlaze

Introduction and overview of Ken Chapman’s PicoBlaze microcomputer for Xil-

inx FPGAs.

Does not duplicate the existing documentation but does give a short overview

and gives pointers to the documentation on the course CD. Also gives the in-

structions for down loading the executable directly into the FPGA without having

to create a new bit file. This results in a huge time savings when debugging the

program code.
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A : Listings of common TI units

Include the .cmd file and other assembler and C files that have common use.
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B : Listings of common VHDL units

This appendix contains listings of the VLHD entities and other VHDL associated

files that are planned to be common across the lab exercises.

B.1 Spartan-3 Starter Board UCF file

B.2 Digital clock manager (DCM) entity

This entity was generated by the Xilinx software. It was modified to allow ready

specification of the clock multiply and divide factors. There is a clock in, a reset

is usually connected to a logic ’0’, and a clock out. The clock out is generated

by one of the global clock buffers.

This unit appears to work correctly when used with either the Spartan-3 or

Spartan-3E FPGA and does not seem to be sensitive to either the chip size or the

package.

B.3 16xN FIFO

The FIFO is 16 words by N bits. This is a modification of the FIFO entity that Ken

Chapman uses in the UART support supplied with the PicoBlaze.

The two modifications were: making the number of bits in the word size

generic, and, adding an almost full signal (becomes a one when there is one

location available). The almost full signal operation has not yet been tested.

The implementation is at a very low level, i.e., very to the basic FPGA archi-

tecture. Chapman fits the FIFO into as a small part of the FPGA as is possible.

A great piece of code to study in order to see how this can be done. Note the

patent warning included in the code.
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C : Listings for Chapter 7 : Spartan-3

Starter Board

Text, formatting and includes will go here.
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D : Listings for Chapter 9 : Fixed

point arithmetic

Listings and other materials go here.
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E : Chapter 12 appendices : Serial

peripherals and data transfers

E.1 Single supply level shifting circuit

A recurring problem when working with single supply devices such as theA/D

converter used on the PMod board is driving them with zero referenced inputs

which swing between positive and negative voltage levels. This note analyzes

an op-amp circuit that can be used to shift a zero volt referenced input to a

reference equal to one-half the supply voltage.

The resistors included in the workstation boxes have an accuracy of ±5%.

This means there will be a small amount of level shift and gain error. In a more

“real” situation one might to use more accurate resistors or an integrated circuit

designed specifically for this application.

The output impedance of any signal source used with this circuit will also

have an effect.

E.1.1 Analysis

The op-amp in Figure E.1 is assumed to be powered using the same supply volt-

age, vs as the devices that follow it.

oN

oO

oQ

oP

oR

H

J

îá
îç

îë

î~

Figure E.1: Single supply op-amp level shifting circuit.
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Summing the currents flowing into the positive input’s node gives

vi − va
R3

+
vs − va
R5

=
va

R4

vi
R3
+
vs
R5
= va

(

1

R3
+

1

R4
+

1

R5

)

va =
(

vi

R3
+
vs

R5

)

R3R4R5

R3R4 + R3R5 + R4R5

The voltage between the plus and input nodes is assumed to be zero. Giving

vo = va
R1 + R2

R1

vo =
(

vi
R3
+
vs
R5

)

R3R4R5(R1 + R2)

R1 (R3R4 + R3R5 + R4R5)

The gain to vs is

gs =
R3R4(R1 + R2)

R1 (R3R4 + R3R5 + R4R5)

The gain to vi is

gi = gs
R5

R3
.

The equation for gs gives the relation

gsR1 (R3R4 + R3R5 + R4R5) = R3R4(R1 + R2) .

The goal in this note is to center the output level at vs/2 which gives

(R3R4 + R3R5 + R4R5)

R3R4
=

2(R1 + R2)

R1
.

1+
R5

R4
+
R5

R3
= 2

(

1+
R2

R1

)

The values of R3 and R5 are related by the desired signal gain gi.

R5

R4
+ 2gi = 1+

2R2

R1

If R4 = R5 then

gi =
R2

R1
.
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E.1.2 A design procedure

Choose a signal gain gi and a value for R3. Then

R4 = R5 = 2giR3 .

The R1 and R2 values are related as

R2 = giR1 .

Typically one keeps the Rn ≥ 10k, n = 1,2,3,4,5.

E.1.3 Choice of op-amp device

Almost all of the manufacturers making integrated circuit op-amp devices sell

low voltage, rail-to-rail devices. Many of these will work over unity gain band-

widths of 5 MHz and higher.

EECS currently using the Burr-Brown (TI) 8-pin OPA2340 dual op-amp. One

of the reasons this was chosen was because it was still avaiable at DigiKey in

8-pin DIP package. Though hole components such as the 8-pin DIP package are

slowing vanishing.

1

2

3

4

8

7

6

5

V+

Out B

–In B

+In B

Out A

–In A

+In A

V–

OPA2340

A

B

  

Supply voltage 2.7V to 5.5V

Unity gain bandwidth 5.5 MHz

Figure from the Burr Brown OPA340 data sheet.

It is strongly recommended that a bypass capacitor on the order of 0.1 µF be

placed across Vcc and ground as close to the chip as feasible. Using the white

plug boards it is easy to mount the capacitor bridging the chip and straddling its

sides. This is done to enhance stability (i.e., to prevent it from oscillating) and

to perhaps improve a noise performance.
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E.1.4 White board construction

This is an example of how

NOT to build one channel

of level shifting. Notice

the disc bypass capacitor

is not bypassing the chip

but a piece of wire. TO-

TALLY in the wrong place.

This unit was claimed to

be “noisy”.

This is an example of a

good implementation of

one channel of level shift-

ing. Notice the disc bypass

capacitor is bridging the

op-amp chip. The single

wire sticking up was used

to connect a scope probe

ground.

This picture includes the

BNC connector board and

the power supply unit.

MAKE SURE THE POWER

SUPPLY IS SET TO OUT-

PUT 3.3 Volts!!!. The

position of the BNC con-

nector board could have

planned better. Make a

sketch first then plug. Do-

ing stream of conscious-

ness plug-and-chug is not

a good idea.
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F : Listings for Chapter 13 : Direct

Digital Synthesis

F.1 BRAM 16-bit word size dual access template

Of interest for in this section is the organization of the values used to initialize

the block ram. If one never writes a value into a location block RAM, it effectively

becomes a word of ROM.

-- RAMB16_S18_S18 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : (RAMB16_S18_S18_inst) and/or the port declarations
-- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
-- : All inputs and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exist.

Library UNISIM;
use UNISIM.vcomponents.all;

-- <-----Cut code below this line and paste into the architecture body---->

-- RAMB16_S18_S18: Virtex-II/II-Pro, Spartan-3/3E 1k x 16 + 2 Parity bits Dual-Port RAM
-- Xilinx HDL Language Template version 8.2.2i

RAMB16_S18_S18_inst : RAMB16_S18_S18
generic map (

INIT_A => X"00000", -- Value of output RAM registers on Port A at startup
INIT_B => X"00000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"00000", -- Port A ouput value upon SSR assertion
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SRVAL_B => X"00000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL
-- The follosing INIT_xx declarations specify the intiial contents of the RAM
-- Address 0 to 255
INIT_00 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_01 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_02 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_03 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_04 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_05 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_06 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_07 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_08 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_09 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_0A => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_0B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_0C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_0D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_0E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_0F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 256 to 511
INIT_10 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_11 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_12 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_13 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_14 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_15 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_16 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_17 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_18 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_19 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1A => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 512 to 767
INIT_20 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_21 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_22 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_23 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_24 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_25 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_26 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_27 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_28 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_29 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2A => X"0000000000000000000000000000000000000000000000000000000000000000",
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INIT_2B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 768 to 1023
INIT_30 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_31 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_32 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_33 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_34 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_35 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_36 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_37 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_38 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_39 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3A => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 255
INITP_00 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_01 => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 256 to 511
INITP_02 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_03 => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 512 to 767
INITP_04 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_05 => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 768 to 1023
INITP_06 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_07 => X"0000000000000000000000000000000000000000000000000000000000000000")

port map (
DOA => DOA, -- Port A 16-bit Data Output
DOB => DOB, -- Port B 16-bit Data Output
DOPA => DOPA, -- Port A 2-bit Parity Output
DOPB => DOPB, -- Port B 2-bit Parity Output
ADDRA => ADDRA, -- Port A 10-bit Address Input
ADDRB => ADDRB, -- Port B 10-bit Address Input
CLKA => CLKA, -- Port A Clock
CLKB => CLKB, -- Port B Clock
DIA => DIA, -- Port A 16-bit Data Input
DIB => DIB, -- Port B 16-bit Data Input
DIPA => DIPA, -- Port A 2-bit parity Input
DIPB => DIPB, -- Port-B 2-bit parity Input
ENA => ENA, -- Port A RAM Enable Input
ENB => ENB, -- PortB RAM Enable Input
SSRA => SSRA, -- Port A Synchronous Set/Reset Input

Chapter 6 435 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

SSRB => SSRB, -- Port B Synchronous Set/Reset Input
WEA => WEA, -- Port A Write Enable Input
WEB => WEB -- Port B Write Enable Input

);

-- End of RAMB16_S18_S18_inst instantiation

F.2 Block RAM sine table entity

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 20:51:58 09/21/2006
-- Design Name:
-- Module Name: sine_rom - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
library UNISIM;
use UNISIM.VComponents.all;

entity sine_rom is
Port ( address_a : in STD_LOGIC_VECTOR (7 downto 0);

data_a : out STD_LOGIC_VECTOR (15 downto 0);
address_b : in std_logic_vector(7 downto 0);
data_b : out std_logic_vector(15 downto 0);
clk : in STD_LOGIC);

end sine_rom;

architecture Behavioral of sine_rom is
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signal DOA, DOB : std_logic_vector(15 downto 0);
signal ADDRA, ADDRB : std_logic_vector(9 downto 0);

begin

ADDRA <= "00" & address_a;
data_a <= DOA(15 downto 0);
ADDRB <= "00" & address_b;
data_b <= DOB(15 downto 0);

-- RAMB16_S18_S18: Virtex-II/II-Pro, Spartan-3/3E 1k x 16 + 2 Parity bits Dual-Port RAM
-- Xilinx HDL Language Template version 8.2.2i

RAMB16_S18_S18_inst : RAMB16_S18_S18
generic map (

INIT_A => X"00000", -- Value of output RAM registers on Port A at startup
INIT_B => X"00000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"00000", -- Port A ouput value upon SSR assertion
SRVAL_B => X"00000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL
-- The follosing INIT_xx declarations specify the intiial contents of the RAM
-- Address 0 to 255

INIT_00 => X"AE11AB1FA826A528A2239F1A9C0B98F995E292C88FAB8C8C896A864883248000",
INIT_01 => X"D842D5F5D39BD133CEBFCC3FC9B4C71CC47AC1CEBF17BC56B98CB6BAB3DFB0FB",
INIT_02 => X"F504F3B5F254F0E2EF5EEDC9EC23EA6DE8A6E6CFE4E8E2F1E0EBDED7DCB3DA82",
INIT_03 => X"FFF5FFD8FFA6FF61FF09FE9CFE1DFD89FCE3FC29FB5CFA7CF989F884F76BF641",
INIT_04 => X"F76BF884F989FA7CFB5CFC29FCE3FD89FE1DFE9CFF09FF61FFA6FFD8FFF5FFFF",
INIT_05 => X"DCB3DED7E0EBE2F1E4E8E6CFE8A6EA6DEC23EDC9EF5EF0E2F254F3B5F504F641",
INIT_06 => X"B3DFB6BAB98CBC56BF17C1CEC47AC71CC9B4CC3FCEBFD133D39BD5F5D842DA82",
INIT_07 => X"83248648896A8C8C8FAB92C895E298F99C0B9F1AA223A528A826AB1FAE11B0FB",
INIT_08 => X"51EF54E157DA5AD85DDD60E663F567076A1E6D3870557374769679B87CDC8000",
INIT_09 => X"27BE2A0B2C652ECD314133C1364C38E43B863E3240E943AA467449464C214F05",
INIT_0A => X"0AFC0C4B0DAC0F1E10A2123713DD1593175A19311B181D0F1F152129234D257E",
INIT_0B => X"000B0028005A009F00F7016401E30277031D03D704A405840677077C089509BF",
INIT_0C => X"0895077C0677058404A403D7031D027701E3016400F7009F005A0028000B0001",
INIT_0D => X"234D21291F151D0F1B181931175A159313DD123710A20F1E0DAC0C4B0AFC09BF",
INIT_0E => X"4C214946467443AA40E93E323B8638E4364C33C131412ECD2C652A0B27BE257E",
INIT_0F => X"7CDC79B87696737470556D386A1E670763F560E65DDD5AD857DA54E151EF4F05",

-- Address 256 to 511
INIT_10 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_11 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_12 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_13 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_14 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_15 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_16 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_17 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_18 => X"0000000000000000000000000000000000000000000000000000000000000000",

Chapter 6 437 October 16, 2007



D
R
A

FT

EECS 452 Digital Signal Processing Design Laboratory Fall 2007

INIT_19 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1A => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_1F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 512 to 767
INIT_20 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_21 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_22 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_23 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_24 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_25 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_26 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_27 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_28 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_29 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2A => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_2F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 768 to 1023
INIT_30 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_31 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_32 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_33 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_34 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_35 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_36 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_37 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_38 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_39 => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3A => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3B => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3C => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3D => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3E => X"0000000000000000000000000000000000000000000000000000000000000000",
INIT_3F => X"0000000000000000000000000000000000000000000000000000000000000000",
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 255
INITP_00 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_01 => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 256 to 511
INITP_02 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_03 => X"0000000000000000000000000000000000000000000000000000000000000000",
-- Address 512 to 767
INITP_04 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_05 => X"0000000000000000000000000000000000000000000000000000000000000000",
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-- Address 768 to 1023
INITP_06 => X"0000000000000000000000000000000000000000000000000000000000000000",
INITP_07 => X"0000000000000000000000000000000000000000000000000000000000000000")

port map (
DOA => DOA, -- Port A 16-bit Data Output
DOB => DOB, -- Port B 16-bit Data Output

-- DOPA => DOPA, -- Port A 2-bit Parity Output
-- DOPB => DOPB, -- Port B 2-bit Parity Output

ADDRA => ADDRA, -- Port A 10-bit Address Input
ADDRB => ADDRB, -- Port B 10-bit Address Input
CLKA => CLK, -- Port A Clock
CLKB => CLK, -- Port B Clock
DIA => X"0000", -- Port A 16-bit Data Input
DIB => X"0000", -- Port B 16-bit Data Input
DIPA => "00", -- Port A 2-bit parity Input
DIPB => "00", -- Port-B 2-bit parity Input
ENA => ’1’, -- Port A RAM Enable Input
ENB => ’1’, -- PortB RAM Enable Input
SSRA => ’0’, -- Port A Synchronous Set/Reset Input
SSRB => ’0’, -- Port B Synchronous Set/Reset Input
WEA => ’0’, -- Port A Write Enable Input
WEB => ’0’ -- Port B Write Enable Input

);

-- End of RAMB16_S18_S18_inst instantiation

end Behavioral;

Chapter 6 439 October 16, 2007



D
R
A

FT
Wasted space, consider adding helpful text to this chapter.


	Preface
	Introduction
	Overview of the chapters
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 7
	Chapter 9
	Chapter 12
	Chapter 13
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 21
	Chapter 23
	Chapter 25

	Where to find information?
	DSP resources
	VHLD resources
	Various technical resources

	Resources used to generate this document

	Some DSP basics
	Filters
	Sampling
	Reconstruction
	Amplitude quantization
	Simple view of statistics
	Quantization noise level
	Overview of transforms

	Introduction to TI TMS320C5510 DSP and its DSK
	Overview of the chapter
	The C5510 DSP processor and the DSK
	C5510 architecture
	C5510 memory spaces
	Program address space
	Data address space
	IO address space

	C5510 addressing modes
	C5510 memory mapped registers
	C5510 memory page structure
	Small and large memory models
	Small memory model
	Large memory model
	Comparisons


	Peripherals on the C5510 DSP
	The McBSP serial channels
	Plan the memory usage
	C5510 pipeline structure
	The C5510 Clock

	The C5510 DSK
	Code Composer Studio

	Lab Exercise 1 -- Code Composer Studio tutorial
	Introduction
	Comments on the lab installation
	Objectives of this exercise

	Prelab
	Exercise
	Report

	Using the C5510
	Overview of the chapter
	Using C5510
	Access the memory
	Far peek and poke
	How to place arrays into arbitrary 64K memory pages?
	Accessing I/O address space from C
	Accessing the on-chip sine ROM

	Timers in C5510
	TIMn
	PRDn
	TCRn
	PRSCn

	Setup the clock
	Multichannel buffered serial port (McBSP)
	DMA controller


	Lab Exercise 2 -- basic operations on C5510 DSK
	Introduction
	Prelab
	C5510 Architecture
	Far peeking and poking
	About the memory
	Addressing modes
	Registers
	McBSP channels
	Chip revision number
	DSK peripherals
	Fixed-point arithmetics

	Exercise
	Access C5510 memory
	Far peeking and poking
	The memory map and the data section declaration
	Access the I/O memory space
	Accessing and using the silicon version number

	Timers in C5510
	Accessing the Timers
	Using the timer

	Investigating the DPLL and the CLKMD register
	C5510 DSK peripherals
	Accessing the DSK DIP switches and LEDs
	Fixed-point arithmetics
	MANT::NEXP


	Report
	Listings
	peekpoke.asm
	CPLDreadS.c
	CPLDreadL.c
	IOport.c
	freerun.c
	CPUclock.c
	mant_nexp_test.asm
	mantnexptest_assembly.c
	mantnexptest.asm
	mantnexptest_intrinsic.c


	Introduction to the Spartan-3 starter board and VHDL
	Overview of the chapter
	The Spartan-3 Starter Board
	Xilinx ISE WebPACK
	Tutorial

	VHDL Programming
	Digital system design
	System design flow
	System description
	Levels of abstraction
	Digital circuits

	What is VHDL?
	VHDL basics
	Library
	Entity
	Architecture
	Process and Sequential Statements
	How to include an existing entity?
	Finite state machine


	Sanp together projects
	Exercises
	ISE WebPACK Implementation Basics
	Prelab
	Exercise
	Report

	VHDL programming basics
	Prelab
	Exercise
	Report

	Spartan-3 Starter Board Basics
	Prelab
	Exercise
	Report
	LEDs and slide switches
	Prelab
	Exercise
	Report

	7-segment LED displays
	Prelab
	Exercise
	Seven-Segment Display Module (SSD01.vhd)
	Use the Seven-Segment Display Module
	Report

	Processes and sequential statements
	Prelab
	Exercise
	Report

	Push buttons and debouncing
	Prelab
	Exercise
	Report

	The VGA display
	Prelab
	Exercise
	Report

	A push button timer with display
	Prelab
	Exercise
	Report


	Code

	Lab exercise 3 -- basic operations on Spartan-3 starter board
	Introduction
	Prelab
	ISE WebPACK Implementation Basics
	VHDL programming basics
	Spartan-3 Starter Board Basics

	Exercise
	LEDs and slide switches
	7-segment LED displays
	Seven-Segment Display Module (SSD01.vhd)
	Use the Seven-Segment Display Module

	Processes and sequential statements
	Push buttons and debouncing
	The VGA display
	A push button timer with display

	Report
	Listings
	sw_led.vhd
	sw_led.ucf
	SSD01.vhd
	SSD_top.vhd
	spartan3.ucf
	pb_debounce.vhd
	pb_db_top.vhd
	VGA_top.vhd
	DCM_config.vhd
	timer01.vhd


	Working with Fixed Point
	Examples
	Calculating frequency tuning values
	Moving average filter


	Fixed point homework exercise
	C5510
	S3SB

	Bit--serial data movement between whatevers
	Overview of bit-serial methods
	The Serial Peripheral Interface
	RS232
	Others
	Crossing clock domain boundaries

	The TI McBSP bit-serial interface
	McBSP overview
	Accessing the McBSP registers using C
	Receiving values
	Transmitting values

	RS232 on the C5510 DSK
	Accessing the PC from the DSK
	S3B Serial I/O
	S3SB RS232
	Cables and connectors
	S3SB A1 connector
	S3SB A2 connector to C5510 DSK EPI connector 
	S3SB B1 connector to MIB

	Examples:
	DSK (master) to S3SB seven segment display
	Programming the McBSP transmitter
	VHDL to display bit-serial data

	DSK/S3SB loop back exercise
	C5510 to S3SB half-duplex link with handshake
	C5510/S3SB full duplex metastability demonstration
	S3SB transfers to/from the PC


	C5510 and S3SB A/D and D/A conversion
	The C5510 and the AIC23 A/D--D/A
	User connections to the AIC23
	AIC23 internals
	AIC23 configuration
	The data interface

	The DSK interface between the AIC23 and the C5510
	McBSP channel 1 setup for use with AIC23

	Using McBSP port 1 to initialize the AIC23
	McBSP channel 2 setup for use with AIC23
	Changing sample rates on the fly
	McBSP programming when using interrupts


	A/D, D/A and bit-serial I/O support on the S3SB
	Connecting to the ``real' world
	MIB
	Single supply level shifting

	The Digilent PMod-AD1 A/D module
	PMod-AD1 pin assignments
	PMod-AD1 analog input
	Sample and SPI interface timings
	A bit-serial A/D interface implementation

	The Digilent PMod-DA2 D/A module
	PMod-DA2 pin assignments
	D/A analog output
	Load and SPI interface timings
	A bit-serial D/A interface implementation

	Connecting via a UCF file
	Changing sample rates

	Snap together projects
	Project 1
	Project 2


	Direct Digital Waveform Synthesis
	References
	Basic DDS operation
	Modulating a DDS generated waveform
	Implementing a DDS in the C5510
	Implementing a DDS in the Spartan-3
	Measuring DDS artifact performance
	Other digital waveform generation techniques
	Exercises

	Exercise 4
	Overview
	Implementing DDS using the S3SB
	Implementing a sine table in a Spartan-3 block RAM

	Prelab
	Specific to the AIC23
	Specific to the DSK & AIC23
	Specific to the DDS/DTMF
	Specific to the PMod AD1 module
	Specific to the PMod input op-amp circuit
	Specific to S3SB DDS

	Specific to the PMod DA2 module
	Specific to metastability

	Exercise
	Simple tone test
	Listening tests
	DDS and DTMF waveform generator
	The PMod AD1 level shifting circuit
	The PMod A/D--D/A loop
	DTMF on the Spartan-3 Starter Board
	Use of Block RAM as ROM
	Metastibility of a C5510-S3SB-C5510 loop

	Listings
	McBSP_452.h
	setup_codec.c
	C5510 tone generator: tone.c
	M0.8plus0.8minus0.8120.8ATLAB sine table generator
	M0.8plus0.8minus0.8120.8ATLAB Direct Digital Synthesizer
	quantization.c
	Listing for the C5510 delta/sigma modulator
	Listing of MATLAB BRAM sine table generator
	Listings for the S3SB AD-DA test
	Top level
	AD1 PMod support
	DA2 PMod support
	LED driver
	Sample timing support
	DCM support

	Metastability demonstration C and VHDL
	Metastability demonstration C5510 main
	Metastability C5510 codec setup
	Metastability demonstration top
	Metastability demonstration main VHDL
	Metastability demonstration UCF file



	XVGA Display System
	Introduction
	Commands
	Line drawing commands
	Bits 14-13 equal to 00
	Bits 14-13 equal to 01
	Bits 14-13 equal to 10
	Bits 14-13 equal to 11

	Control and character drawing commands
	Bits 14-8 equal to 0000001
	Bits 14-8 equal to 0000010
	Bits 14-8 equal to 0000011

	Bits 14-8 equal to 0000100

	In the C5510
	Setting working and display pages
	Drawing lines
	Drawing characters
	Configuring and using the C5510 McBSP channel

	Working with the VHDL

	Modulation and Demodulation
	Measuring Magnitude and Phase
	Finite Impulse Response Filtering
	Lab exercise 5 -- C5510 FIR filter design and implementation
	Introduction
	Finite impulse response filters
	Transfer function measurement
	Group delay
	Theory
	Moving theory into practice

	C5510 exercise
	Prelab
	FIR filter
	The TF test program
	Group delay

	Exercise
	FIR function testing
	Measuring a transfer function
	Group delay

	Report

	Support documents and listings
	TI DSPlib manual pages
	Intrinsics information
	FIR function test program
	myFIR.c starter code
	Source code for the DSPlib FIR function
	Source code for the TF test program


	Lab exercise 5 -- S3SB MAC entity implementation
	Introduction
	Bit-serial multiplier
	Bit-serial accumulator

	The MAC test entity and its use
	MAC entity port signals
	Spartan-3 board device usage

	Discarding bits and rounding
	The exercise
	The MAC entity
	Adding convergent rounding
	Extending the unit

	Listings
	MAC test entity source code
	The MAC entity VHDL
	The serial-parallel multiplier entity VHDL
	One-bit full adder entity VHDL


	Infinite Impulse Response Filtering
	Lab exercise 6 -- IIR filter design and implementation
	Introduction
	Infinite impulse response filters
	Theory

	Recursive sine/cosine oscillator
	Theory

	Transfer function measurement
	C5510
	Prelab
	The IIR filter
	The sine/cosine oscillator
	Measuring transfer functions
	Exercise
	The TDF2 biquad IIR cascade
	Sine/Cosine oscillator
	Report

	S3SB
	Prelab
	Exercise
	Report

	DSPlib IIRCAS5 manual pages
	List of codes
	IIR Transfer function Mark 2
	IIR filter function test support
	myDF2IIR source code
	IIRCAS5 source code
	myTDF2IIR source starter code
	DisplayTest00 source code
	draw_characters source code
	setup_McBSP_plot source code
	Output to XVGA via McBSP 0 source code
	Interrupt support, AIC23int_00.asm
	Interrupt vector
	Interrupt support error, no_isr.asm
	Main function for recursive sine/cosine oscillator
	Starter code for recursive sine/cosine oscillator

	Working with FFTs
	Comments on levels of abstraction
	Comments on the design process

	The real-time spectrum analyzer and display
	Implementing an FFT on the Spartan-3 Starter Board
	Memory needs
	Whose arithmetic support to use?
	Estimated execution time

	The OFDM communication system
	Implementing a model OFDM system
	IFFT and FFT needs

	Review of the DFT and the FFT
	The DFT
	Dividing and conquering
	Consider N=2R
	Radix-2 FFT pseudo-code
	Implementing the DIT radix-2 butterfly
	Rounding of intermediate and final values

	Consider N=4R
	What about the inverse?

	Radix-2 FFT development first steps
	Butterfly entity
	Twiddle factor ROM
	USB/FIFO controller
	Testing and the results

	Radix-4 floating point FFT test C code

	Lab exercise 7 -- real-time Fast Fourier Transform
	Introduction
	C5510 exercise
	Prelab
	Exercise
	Things to be done
	Some things that might be done
	Report

	S3SB exercise
	Prelab
	Exercise
	Report

	Other versions are available
	Large memory model 8K data set size
	1K version generating display on a PC

	TI DSPlib manual pages
	List of codes
	RTFFT.c
	rsquared64.asm
	log2_64.asm
	Buffered I/O support for the AIC23
	Interrupt vector
	Interrupt support error, no_isr.asm


	Acoustic OFDM Communication System
	PicoBlaze
	Listings of common TI units
	Listings of common VHDL units
	Spartan-3 Starter Board UCF file
	Digital clock manager (DCM) entity
	16xN FIFO

	Listings for Chapter 7 : Spartan-3 Starter Board
	Listings for Chapter 9 : Fixed point arithmetic
	Chapter 12 appendices : Serial peripherals and data transfers
	Single supply level shifting circuit
	Analysis
	A design procedure
	Choice of op-amp device
	White board construction


	Listings for Chapter 13 : Direct Digital Synthesis
	BRAM 16-bit word size dual access template
	Block RAM sine table entity


