Recursive definitions of sets

- We saw last time how to define the set of propositional expressions recursively.
- The method extends to other kinds of sets: Let S be the subset of N defined by the following rules:
 - 1. $3 \in S;$
 - 2. if $x \in S$ and $y \in S$ then $x + y \in S$;
 - 3. No number is in S unless it can be shown to be there using (1) and (2).

• Example:

- $-3 \in S$ (rule 1)
- $-6 = 3 + 3 \in S$ by 1. and rule 2
- $-9 = 6 + 3 \in S$ by 2. and rule 2.

Using induction along with recursive definitions

Proposition The set S on the last slide is the set of positive multiples of 3.

Proof: Let P be the set of positive multiples of 3. We show $P \subseteq S$ and $S \subseteq P$. For the first inclusion, we show that every integer of the form 3n, for $n \ge 1$, is in S. We do this by induction on n.

Basis. When n = 1, the number $3 \cdot 1 \in S$ by rule 1.

Induction step. Assume that 3k is in S. We want $3(k + 1) \in S$. But 3(k + 1) = 3k + 3. By inductive hypothesis $3k \in S$, and 3 is already in S, so $3k + 3 \in S$ by rule 2.

Proof continued: $S \subseteq P$.

To show this, we rely on rule 3, which says nothing is in S unless you can show it in a finite number of uses of rules 1 and 2. Let n be the number of uses of these rules. We show by induction on n that the integer proved to be in S is in fact a positive multiple of 3.

Basis. We just apply one rule, which has to be rule 1. This rule shows $3 \in S$, and 3 is a positive multiple of 3.

Induction step (strong form). Assume that whenever we show that $p \in S$ by using k or fewer steps, then p is a positive multiple of 3. Consider a "proof" using k+1steps. The last rule used in this proof is rule 2, which says that if x and y are in S, so is x + y. Now x was shown in S by $\leq k$ steps, and so was y. By inductive hypothesis (twice), we know that x and y are positive multiples of 3, and therefore so is x + y.

Relations Chapter 6

- Intuitively, relations are properties that hold among things in a world.
- For example:
 - "loves"
 - "uncle-of"
 - "friend-of"
 - "left-of"
 - "small"
- All except the last of these hold between two things. They are called *binary* relations. "Small" is a *unary relation*.
- You can also have ternary relations, etc.

Relations involving more than one world

• For example, students and courses:

John, EECS303 Ed, EECS376 John, EECS280 Mary, Math606 Mary, Math747 Paul, Math747 John, Math606

- You can look at each row of the table as an ordered pair, and the table as a set of ordered pairs.
- That's the official definition of "binary relation between two sets."

Official Relation Definitions

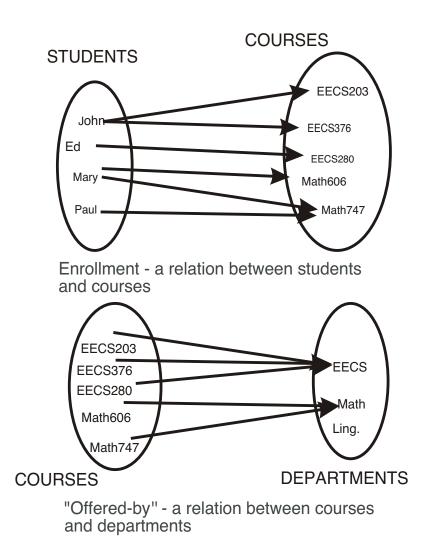
• **Definition** Let A, B be sets.

- A binary relation between A and B is a subset R of $A \times B$.
- -A binary relation on A is a subset of $A \times A$.
- Example

 $S = \{John, Ed, Mary, Paul\}$ $C = \{E203, E376, E280, M606, M747\}$ $ENROLLED = \{(John, E203), (John, E376), (Ed, E280), (Mary, M606), (Mary, M747), (Paul, M747)\}$

- The relation $ENROLLED \subseteq S \times C$.
- Notation: we write $a \ R \ b$ to mean $(a, b) \in R$. Thus, John ENROLLED E376.

Picturing Relations



Array (matrix) representation of relations

• The "enrolled" information can be presented:

S/C	E203	E376	E280	M606	M747
John	1	1	0	0	0
Paul	0	0	0	0	1
Mary	0	0	0	1	1
Ed	0	0	1	0	0

• This can be seen as a function from $S \times C$ to $\{0, 1\}$:

$$F_{ENR}(s,c) = \begin{cases} 1 \text{ if } (s,c) \in ENR, \\ 0 \text{ otherwise.} \end{cases}$$

Relations as maps to a powerset

• A relation from A to B can be thought of as a function from A to $\mathcal{P}(B)$.

•

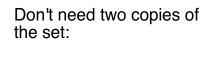
$$John \mapsto \{E203, E376\}$$
$$Paul \mapsto \{M606\}$$
$$Mary \mapsto \{M606, M747\}$$
$$Ed \mapsto \{E280\}$$

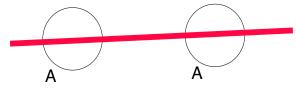
• There are lots of mathematical ways to model relations.

Relations on a set

- The set can be infinite.
- Example: $A = \mathbb{N}^+$; $DIV = \{(m, n) \mid m \text{ divides } n\}$.
- Some ordered pairs: $(1, 10), (3, 6), (4, 20) \dots$
- We write $m \mid n$ to indicate that $(m, n) \in DIV$. Thus $1 \mid 10, 3 \mid 6, 4 \mid 20, \dots$
- The "less-than-or-equal-to" relation on \mathbb{R} is another example of a binary relation on an infinite set.

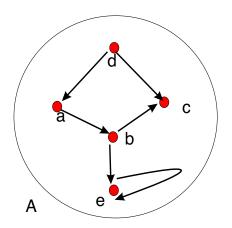
Picturing a relation on a finite set A





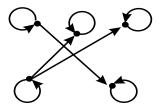
Suppose A = $\{a,b,c,d,e\}$ and R = $\{(d,a), (d,c), (a,b), (b,c), (b,e), (e,e)\}$.

Just work with one copy of A:



Properties of Relations on a set

- **Definition** A binary relation R on a set A is said to be reflexive if $(\forall a \in A)(a R a))$.
- In terms of the graph picture, there is a self-loop at every node:



• Example On every set A, there is the identity relation

$$id_A = \{(a, a) \mid a \in A\}.$$

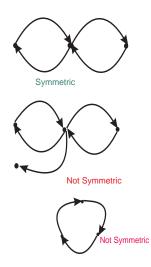
- Other examples:
 - the "less-than-or-equal-to" relation \leq on \mathbb{R} ;
 - the subset relation on $\mathcal{P}(X)$, because $Y \subseteq Y$ for any set Y;
 - the "divides" relation | on \mathbb{N}^+ .

Symmetric Relations

• **Definition** A binary relation R on a set A is said to be symmetric if

 $(\forall a,b\in A)(a \mathrel{R} b \rightarrow b \mathrel{R} a).$

• In terms of pictures:



• Example The "mutual friend of" relation is symmetric. The "sister" relation isn't. The "sibling" relation is. The identity relation is. The ≤ relation isn't.

Transitive Relations

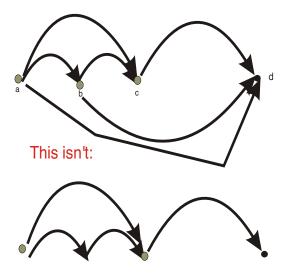
• **Definition** A binary relation R on a set A is said to be transitive if

 $(\forall a, b, c \in A)(a \mathrel{R} b \land b \mathrel{R} c \to a \mathrel{R} c)$

• The pictures:

•

This picture holds everywhere



Examples of Transitive Relations

- The \leq relation on \mathbb{N} .
- The divisibility relation on \mathbb{N}^+ .
- The subset relation \subseteq on $\mathcal{P}(X)$.
- The relation of logical equivalence on the set of propositional expressions.
- NOT the "father-of" relation on the set of people.
- NOT the "acquainted-with' relation on the set of people.
- How about the "sister-of" relation?