
Recursive definitions of sets

• We saw last time how to define the set of proposi-

tional expressions recursively.

• The method extends to other kinds of sets: Let S be

the subset of N defined by the following rules:

1. 3 ∈ S;

2. if x ∈ S and y ∈ S then x + y ∈ S;

3. No number is in S unless it can be shown to be

there using (1) and (2).

• Example:

– 3 ∈ S (rule 1)

– 6 = 3 + 3 ∈ S by 1. and rule 2

– 9 = 6 + 3 ∈ S by 2. and rule 2.
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Using induction along with recursive

definitions

Proposition The set S on the last slide is the set

of positive multiples of 3.

Proof: Let P be the set of positive multiples of 3. We

show P ⊆ S and S ⊆ P . For the first inclusion, we show

that every integer of the form 3n, for n ≥ 1, is in S. We

do this by induction on n.

Basis. When n = 1, the number 3 · 1 ∈ S by rule 1.

Induction step. Assume that 3k is in S. We want

3(k + 1) ∈ S. But 3(k + 1) = 3k + 3. By inductive

hypothesis 3k ∈ S, and 3 is already in S, so 3k + 3 ∈ S

by rule 2.
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Proof continued: S ⊆ P .

To show this, we rely on rule 3, which says nothing is in

S unless you can show it in a finite number of uses of

rules 1 and 2. Let n be the number of uses of these rules.

We show by induction on n that the integer proved to be

in S is in fact a positive multiple of 3.

Basis. We just apply one rule, which has to be rule

1. This rule shows 3 ∈ S, and 3 is a positive multiple of

3.

Induction step (strong form). Assume that when-

ever we show that p ∈ S by using k or fewer steps, then p

is a positive multiple of 3. Consider a “proof” using k+1

steps. The last rule used in this proof is rule 2, which says

that if x and y are in S, so is x+ y. Now x was shown in

S by ≤ k steps, and so was y. By inductive hypothesis

(twice), we know that x and y are positive multiples of

3, and therefore so is x + y.
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Relations

Chapter 6

• Intuitively, relations are properties that hold among

things in a world.

• For example:

– “loves”

– “uncle-of”

– “friend-of”

– “left-of”

– “small”

• All except the last of these hold between two things.

They are called binary relations. “Small” is a unary

relation.

• You can also have ternary relations, etc.
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Relations involving more than one world

• For example, students and courses:

John, EECS303

Ed, EECS376

John, EECS280

Mary, Math606

Mary, Math747

Paul, Math747

John, Math606

• You can look at each row of the table as an ordered

pair, and the table as a set of ordered pairs.

• That’s the official definition of “binary relation be-

tween two sets.”
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Official Relation Definitions

• Definition Let A, B be sets.

– A binary relation between A and B is a subset

R of A×B.

– A binary relation on A is a subset of A× A.

• Example

S = {John,Ed,Mary, Paul}
C = {E203, E376, E280, M606, M747}

ENROLLED = {(John,E203), (John,E376), (Ed, E280),

(Mary,M606), (Mary,M747), (Paul, M747)}

• The relation ENROLLED ⊆ S × C.

• Notation: we write a R b to mean (a, b) ∈ R. Thus,

John ENROLLED E376.
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Picturing Relations

Enrollment - a relation between studentsand courses

"Offered-by'' - a relation between coursesand departments

John
Ed

Mary
Paul

EECS203
EECS376
EECS280

Math606
Math747

EECS203

Math747
Math

Ling.

EECS

Math606
EECS376EECS280

STUDENTS COURSES

COURSES DEPARTMENTS
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Array (matrix) representation of relations

• The “enrolled” information can be presented:

S/C E203 E376 E280 M606 M747

John 1 1 0 0 0

Paul 0 0 0 0 1

Mary 0 0 0 1 1

Ed 0 0 1 0 0

• This can be seen as a function from S×C to {0, 1}:

FENR(s, c) =

{
1 if (s, c) ∈ ENR,

0 otherwise.
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Relations as maps to a powerset

• A relation from A to B can be thought of as a func-

tion from A to P(B).

•

John 7→ {E203, E376}
Paul 7→ {M606}

Mary 7→ {M606, M747}
Ed 7→ {E280}

• There are lots of mathematical ways to model rela-

tions.
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Relations on a set

• The set can be infinite.

• Example: A = N+; DIV = {(m, n) | m divides n}.

• Some ordered pairs: (1, 10), (3, 6), (4, 20) . . . .

• We write m | n to indicate that (m,n) ∈ DIV .

Thus 1 | 10, 3 | 6, 4 | 20, . . . .

• The “less-than-or-equal-to” relation on R is another

example of a binary relation on an infinite set.
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Picturing a relation on a finite set A

Don't need two copies of
the set:

A A

Suppose A = {a,b,c,d,e} and
R = {(d,a), (d,c), (a,b), (b,c),(b,e),(e,e)}.

d

a
c

b

eA

Just work with one copy of A:
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Properties of Relations on a set

• Definition A binary relation R on a set A is

said to be reflexive if (∀a ∈ A)(a R a)).

• In terms of the graph picture, there is a self-loop at

every node:

• Example On every set A, there is the identity

relation

idA = {(a, a) | a ∈ A}.

• Other examples:

– the “less-than-or-equal-to” relation ≤ on R;

– the subset relation on P(X), because Y ⊆ Y for

any set Y ;

– the “divides” relation | on N+.
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Symmetric Relations

• Definition A binary relation R on a set A is

said to be symmetric if

(∀a, b ∈ A)(a R b → b R a).

• In terms of pictures:

Symmetric

Not Symmetric

Not Symmetric

• Example The “mutual friend of” relation is

symmetric. The “sister” relation isn’t. The “sib-

ling” relation is. The identity relation is. The ≤
relation isn’t.
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Transitive Relations

• Definition A binary relation R on a set A is

said to be transitive if

(∀a, b, c ∈ A)(a R b ∧ b R c → a R c)
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.

• The pictures:

a

a

b

b

c

c
d

This is ok:

This isn't:

This picture holds everywhere
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Examples of Transitive Relations

• The ≤ relation on N.

• The divisibility relation on N+.

• The subset relation ⊆ on P(X).

• The relation of logical equivalence on the set of propo-

sitional expressions.

• NOT the “father-of” relation on the set of people.

• NOT the “acquainted-with’ relation on the set of

people.

• How about the “sister-of” relation?
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