
Antisymmetric Relations

• Definition A relation R on A is said to be an-

tisymmetric if

(∀a, b ∈ A)(a R b ∧ b R a → a = b).

• The picture for this is:

Except For

• Example The ≤ relation on R: if a ≤ b and

b ≤ a then a = b.

• Example The subset relation ⊆ on P(X): if

A ⊆ B and B ⊆ A then A = B.
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Operations on Relations

• Because relations are sets of ordered pairs, we can

combine them using set operations of union, intersec-

tion, and complement. These are called the Boolean

operations on relations.

• Example Let A = {a, b, c}; R = {(a, b), (a, c)},
and S = {(c, a)}. Then R∪S = {(a, b), (a, c), (c, a)};
R ∩ S = ∅, and

R = (A×B)\R = {a, a), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.

• Example Let A be the set of people. Let B =“brother-

of” and S =“sister-of”. Then B ∪ S = “sibling-

of”, and B ∩ S = ∅.
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Composing relations

• Because relations are generalizations of functions, it

makes sense to ask if we can compose them like func-

tions.

• Consider the “enrolled-in’ relation and the “offered-

by” relation. The first one is between students and

courses, and the second is between courses and de-

partments.

• We can compose the two relations to find out which

students participate in which departments.

• Let E stand for the “enrolled-in” relation, and O be

the “offered-by” relation. We picture on the next

slide the composition O ◦ E.

• Even though E is the “first” relation, we respect the

conventions for functional composition. (Recall that

F ◦G(x) = F (G(x)).)
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Defining relational composition

• Definition Let R be a relation between A and

B, and S be a relation between B and C. In this

case the composition S ◦R can be defined, and is

given by the following:

S◦R = {(a, c) ∈ A×C | (∃b)((a, b) ∈ R and (b, c) ∈ S)}.

• This definition says that in order to relate a to c

all the way across fom A to C, there has to exist a

“bridge element” b in the set B.

• This suggests that there is some connection between

the operation of relational composition and the con-

cept of transitivity.
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Relational Composition related to

Transitivity

• If R is a relation on a set A (a subset of A×A) then

we can always compose R with itself. In this case

R ◦R = {(a, c) | (∃b)((a, b) ∈ R and (b, c) ∈ R)}.

• Recall that R is transitive iff for all a, b, c, if (a, b) ∈
R and (b, c) ∈ R, then (a, c) ∈ R.

• Theorem A relation R on A is transitive if and

only if R ◦R ⊆ R.

The proof is in two parts.

(i) Assume that R is transitive. Let (a, c) ∈ R ◦ R.

We show (a, c) ∈ R. Because (a, c) ∈ R◦R, there is

a b so that (a, b) ∈ R and (b, c) ∈ R. By transitivity

of R, (a, c) ∈ R.

(ii) Conversely, assume R ◦ R ⊆ R. We must show

that R is transitive. Applying the definition of tran-

sitivity, let (a, b) ∈ R and (b, c) ∈ R. Then (a, c) ∈
R ◦ R. Since R ◦ R ⊆ R, we get (a, c) ∈ R, as we

wanted. (QED)
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Relational Composition and Boolean Matrix

Multiplication

• If you use the Boolean matrix representation of re-

lations on a finite set, you can calculate relational

composition using an operation called matrix multi-

plication. See Chapter 2 for some background.

• Let R be a relation on a finite set A with n elements.

The Boolean matrix of R will be denoted [R] and is

an n× n array [R](i, j), where (i, j) ∈ A× A, and

[R](i, j) =

{
1 if (i, j) ∈ R,

0 otherwise.

• Example Let A = {1, 2, 3} and let

R = {(1, 2), (2, 3), (3, 2), (3, 3)}. Then

[R] =

 0 1 0

0 0 1

0 1 1

 .
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Example continued

• Further, let S = {(1, 3), (3, 1)}, so that the matrix

of S is

[S] =

 0 0 1

0 0 0

1 0 0

 .

• We get the matrix for S ◦ R by taking the matrix

product [R] ∗ [S]. This is given by the formula

([R] ∗ [S])(i, k) =

n∨
j=1

([R](i, j) ∧ [S](j, k)).

• Note the similarity to the relational composition def-

inition

(i, k) ∈ S◦R ↔ (∃j, 1 ≤ j ≤ n)((i, j) ∈ R∧(j, k) ∈ S).
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Example concluded

• Recall [R] =

 0 1 0

0 0 1

0 1 1

 and [S] =

 0 0 1

0 0 0

1 0 0

 .

• For example, to get the (1,3) entry of [R] ∗ [S]) we

take row 1 of [R], which is (0, 1, 0), and column 3 of

S, which is

 1

0

0

, and form

(0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0) = 0,

using the truth tables for ∧ and ∨.

• You have to repeat this “row i by column k” for each

entry (i, k) of the product.
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Closures of relations

• Sometimes you have a relation which isn’t reflexive,

or isn’t symmetric, or isn’t transitive.

• For each of these properties, we can add ordered pairs

to the relation, just enough to make it have the given

property. The resulting relation is called the reflex-

ive closure, symmetric closure, or transitive closure

respectively.

• Another way to say this is that for property X , the

X closure of a relation R is the smallest relation

containing R that has property X , where X can be

“reflexive” or “symmetric” or “transitive”.

• We denote the reflexive closure of R by refc(R), the

symmetric closure of R by symc(R), and the tran-

sitive closure by tc(R). Another popular notation,

though, for the last is R+.
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Reflexive and Symmetric Closures

• These are easy, and also are not used a lot.

• Definition The reflexive closure of a relation R

on a set A is defined to be refc(R) = R ∪ idA.

• Example If R = {(1, 2), (2, 3), (3, 2), (3, 3)}, then

refc(R) = {(1, 2), (2, 3), (3, 2), (3, 3), (1, 1), (2, 2)}.

• Definition The symmetric closure of a relation

R on a set A is defined to be symc(R) = R ∪ R̆,

where R̆ = {(y, x) | (x, y) ∈ R}.

• Example If R = {(1, 2), (2, 3), (3, 2), (3, 3)}, then

symc(R) = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 3)}.
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Transitive Closure

• This is more interesting; adding ordered pairs is an

iterative process

• Transitive closure on directed graphs shows where

you can go using some number of arcs.

• To get the transitive closure, you first add all arrows

that traverse (jump) two original arrows; then those

that traverse three, and so forth.

• We illustrate on the next slide.
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Graphical construction of transitive closure
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Recursive Definition of Transitive Closure

• Given a binary relation R on a set A, we use the

following rules to construct the relation tc(R).

1. “Basis”: if (x, y) ∈ R, then (x, y) ∈ tc(R).

2. “Induction”: if (x, y) ∈ tc(R) and (y, z) ∈ tc(R),

then (x, z) ∈ tc(R).

3. No pair is in tc(R) unless it is shown there using

a finite number of applications of rules 1 and 2.

• Example Using these rules on the example on

the last slide, we first use rule 1 three times to

put (a, b), (b, c), and (c, d) into tc(R).

• We add the “two-jumps” with two uses of rule 2:

once from (a, b) and (b, c) to get (a, c), and then

from (b, c) and (c, d) to get (b, d).

• We then use rule 2 from (a, c) and (c, d) to get

(a, d), the three-jump.

• We need rule 3 to insure that tc(R) is the smallest

transitive relation containing R. For example, S =

A×A is a much bigger transitive relation containing

R.
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Proving that tc(R) is what’s advertised

• We have to show (i) that tc(R) is transitive, and (ii)

that if R ⊆ S and S is transitive then tc(R) ⊆ S.

• Proving (i) is easy. If (x, y) and (y, z) are in tc(R)

then they got there by some finite number of rule

applications. Just one more application of rule 2 puts

(x, z) into tc(R).

• The proof of (ii) is a little harder. Let (x, z) ∈ tc(R).

We use induction on the number n of rule applica-

tions necessary to get (x, z) ∈ tc(R), to show that

(x, z) ∈ S. The proof continues on the next slide.
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Proof continued

Basis: n = 1. Then we used rule 1, which says (x, z) ∈
R. Since R ⊆ S we have (x, z) ∈ S, completing the

basis case.

Induction step. Assume that whenever (u, v) can

be put into tc(R) by using k or fewer rule applications,

then (u, v) ∈ S. Suppose we can put (x, z) into tc(R)

using k + 1 rule applications. The last rule we use is

(without loss) rule 2, so we had an (x, y) ∈ tc(R) using

k or fewer applications, and also a (y, z) in tc(R) using

k or fewer applications. By inductive hypothesis (twice)

(x, y) ∈ S and (y, z) ∈ S. But S is transitive, so (x, z) ∈
S, as we wanted. (QED)
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Characterizing tc(R) other ways

• Since transitivity is connected to composition, it makes

sense to see if there’s a way to express tc(R) using

composition.

• There is a formula to that effect, which leads to a

matrix algorithm for calculating transitive closure.

• The formula requires defining powers of a relation

inductively.

• Definition Let R be a binary relation on A. For

j ≥ 1 we define the powers Rj of R: put R1 = R

and Rj+1 = Rj ◦R.

• Theorem

tc(R) =

∞⋃
j=1

Rj

= R1 ∪R2 ∪ . . . ∪Rj ∪ . . .

You can prove by induction on n that if (x, z) gets

into tc(R) by n or fewer rule applications then for

some p, (x, z) ∈
⋃p

j=1 Rj. Conversely, if (x, z) is in

Rn, then there is a proof using some finite number of

steps showing that (x, z) ∈ tc(R).
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A formula for the transitive closure

• if A has only n elements then

tc(R) =

n⋃
j=1

Rj.

. (This can be proved by induction.)

• Let [R] be the matrix of R. Then the matrix of the

transitive closure

[tc(R)] =

n∨
j=1

[R]j.

• Here we define, for two square Boolean matrices M

and N ,

(M ∨N)(i, j) = M(i, j) ∨N(i, j),

i.e., just the elementwise “or” of the two matrices.

• This can be seen to give an O(n4) algorithm to find

the transitive closure. With better bookkeeping, one

can derive an O(n3) algorithm.
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