Putting it all together: Cryptography

e We now have all the tools we need to understand a method for secure information
transition on the Internet.

e This is called RSA public key encryption.

e Before we look at that, let’s review the basic premises of encoding, and discuss the
differences between public and private key encryption.



Encryption

e The basic idea of encryption is to take a message (string of symbols) and to apply
a function to it, called the encryption function.

e Let A be the set of possible messages, and B be the set of possible encrypted
messages. We seek a function e : A — B which has an inverse d : B — A,
called the decryption function. There is one extra requirement: knowledge of how
to compute d should not be obtainable easily, say by looking at a lot of different
encoded messages.

e Often, some data called a key can be given telling how to compute e (the encryption
key), or how to compute d (the decryption key.)



Private key systems

e In these systems, the sender of a message uses an encryption key, and somehow
passes that key (or a key easily obtainable from it) to the receiver, to use as a
decryption key. This key transaction has to be in private.

e The real issue here is how to pass the key. Once that has happened, messages can
be sent back and forth for quite a while, presuming that a malicious attacker can
only see the message streams.

e We'll look at some examples of private-key systems.



Caesar Shift Encryption

e Start by mapping the 26 letters of the alphabet to Zo5. Thusa +— 0,0 +—1,...,2 +—
25. Call this function a.

e Fxtend « to strings of letters a; ... a, using
alay ...a,) = (a(ar),...,ala,)).
If z is a string of n letters, a(x) is a finite sequence of n numbers. As an example

a(”scrooge”) = (18,2,17,14,14,6,4).

e Now the idea is to shift all the letters over a certain number of spaces. Thus,
a+— d, b— e, ...,w— z,x+— a This can be described by the shift function
S3 1 Loy — Los: s3(m) = (m+3) mod 26. This function can be defined on n-tuples:

ss(my,...,my) = ((my +3) mod 26, ..., (m, + 3) mod 26).
e 'To encode a string w we just compute
e(w) = (o™ o s30a)(w),
where a1 is the inverse function of a.. So e(”scrooge”) = a~1(21,5,20,17,17,9,7) =
"v furrjgh’.

e The decoding function d is
ato S93 O (.

e The encoding key is 3, and the decoding key is 23, once it’s known that shifting is
being used.



Security

e Shifting might have been OK for Caesar, but it’s completely insecure. For one
thing, there are only 26 encoding functions.

e We could get fancier, using s(z) = (ax + b) mod 26, where a and 26 are relatively
prime, but still these are easily cracked.

e [s there a completely secure private-key code? YES.



The one-time pad

e Instead of mapping characters to Zss, we map characters to bitstrings of a fixed
length. Say a +— 00000001,b +— 00000010, and so on. (This allows a lot more
characters to be encoded.)

e A message then maps to a sequence of bitstrings, or just one long bitstring.

e When the sender has digitized the message this way, he uses a random number
generator to generate a one-time key k, a bitstring exactly as long as the message.
This private key is somehow delivered to the receiver.

e Let m be the digitized message. Then put
er(m)=meak
where @. is the (bitwise) exclusive or function.

e The decoding function dn) = n @ k. That is, the same key can be used to decode.
To see this, note that

di(er(m))=(mek)ek=ma&(kdk)=me0=m.

e Furthermore, if the original message can be recovered from the encoded one, then
so can the key. This is because

ex(m)@m=modkdm=modm)Sk=0+k==F.

Thus if the key is really transmitted securely, and the message is very long, there’s
no way to decode it an any reasonable amount of time.



DES private-key encryption

e The one-time pad depends on the message being sent. DES (Data Encryption
Standard) does not depend on this — it uses fixed size keys, but of a size big enough
to foil decryption in almost every practical case.

e rom the Internet:

DES has a 64-bit block size and uses a 56-bit key during execution (8 parity
bits are stripped off from the full 64-bit key). DES is a symmetric cryptosys-
tem, specifically a 16-round Feistel cipher, and was originally designed for
implementation in hardware. When used for communication, both sender
and receiver must know the same secret key, which can be used to encrypt
and decrypt the message.

Feistel ciphers are a special class of iterated block ciphers, where the cipher-
text is calculated from the plaintext by repeated application of the same
transformation or “round function”. In a Feistel cipher, the text being en-
crypted is split into two halves. The round function f is applied to one half
using a subkey and the output of f is exclusive-ored with the other half.
The two halves are then swapped. Each round follows the same pattern
except for the last round where there is no swap. A nice feature of a Feistel
cipher is that encryption and decryption are structurally identical, though
the subkeys used during encryption at each round are taken in reverse order
during decryption.



Public Key Cryptosystems

e A persistent problem with private key systems is the need to exchange the private
keys. Once this is actually done, short-term security (say for an internet session
transmitting a credit card number) can be established with DES.

e You can use another method, called public key cryptography, to encrypt the private
key to send to another recipient. (You can also use the method for continuing
messages, but it is more expensive and time-consuming. )

e Public key systems work in the following way. There is a sender (Bob) who wishes
to get encrypted messages from members of a large group. He does this by creating
two keys, one for encryption and one for decryption. He keeps the decryption key
secret, and publishes the public one to the group. Anybody in this group (say
Gloria) can send Bob an encrypted message using Bob’s published key. Bob can
decrypt the message with his secret key:.

e The crucial point is that anyone seeing the public key has no way of figuring out
the private, secret key in any time short of millions of years.



Digital Signatures

e Public key cryptography has another nice feature: you can use the system to elec-
tronically sign a message in such a way that the recipient knows that it was you
who sent it.

e Go back to Bob. Bob can send a signed message to Gloria (the message is not
encoded, so watch it, Bob :) He does this as follows. He encrypts a message m
using his decryption key d and sends Gloria both d(m) and m.

e Gloria computes e(d(m)) using Bob’s public key. Since e and d are inverse functions,
the result should be m. If it is, then Gloria knows that m came from Bob.

e This assumes that Bob’s public key really came from him. There are ways to
guarantee this, which is where companies like Verisign get into the act — they
generate so-called digital certificates for people like Bob.

e All of this is incorporated into your browser. The most common protocol is called
SSL — Secure Sockets Layer.



A Public Key

————— BEGIN PGP PUBLIC KEY BLOCK----- Version: 2.6.2 mQCNAy/CUuAAAAEE

nu8r/1GCWcrAGE3ZMUZmTETAWUWNPN6LG/Op7iQRWESyK194KK1vnDmwQEZpuZ2c
tBbDaHJpcyB0ZXdtYW4gPGNocmlzbitAY211LmVkdT6JAJUDBRAx4w9OPab+6fmjZ
ZY6Xb6brrpypQOHK1WIxTgUvM/ jxf10Wc0id2pdzWYTp/kwtaBFZq/bZ6HSCFR/G
Kme2PYuvFdQ95QEBOPsD/3Q0kPYSF1pA90e3R4kYn77ryfy9tEWyyXVB8hNOHILS
Mck2mAh3kvDzTAEQYgw2dP5qEDy51Kazdu6F5TkmAUE jRvxidj2rtgqi/U20N301
jYSG9xzCF785wYTH7/qnvR87eDUAUDC0ZdoA6/4308118k9EuWmiyYkA1QMFEC/D
JnWqGrfRGthe jXplzHeKRyw99 jMayT1160Zm21UCVVZCCnx0PZs(ZkynpNHuGbfn
iQCVAWUQMdtkwaky2tFFGIJm1AQF6IQQAiTALF68UJnkfDYK/Prg7nzr7z17bESYy
/REIMcDjHWv2U4anaggZZrxk jBwGy4uXMiebZFZm+wy JMEfuBsVpRpHVDOFrOyTw
IYOhNemuf SQrFhM1bWmtn3zSJ2pU5Ghd2Nsk6ZuogcGYWU jb4fyK1/80vb09GmkV
OuVkqyYp68PLxzC9pkxajYkAVQIFEDDKIf1SMVxYLwenQQEBo3gB/R57M1dr8L7e
HgbCkAOoStaJAJUDBRAwZzCqi4uW74fteFRKBATYVBACqdefiRT160Br5fqA1ALNnU
fud4vWljmjSh7B63fLbQZDB3ZeDCOPbl1+JNg8BtuoNExoEsiyNJcYqCxLtXP2fQjJ
CVMsBMcst j+GWZZ/9W8Sk4eQG6Rqkq6yTKDR7RRTznFi9T7F50v jO0au2WNev09uN
KED4Y8w/f91AfcBOOPKLefeWFqQyXxrAi(BVAgUQL84STCHgNn+d30DNAQGBSwH+
TbRzPXs+FHWt jTqJNd1XXIkA1QMFEDCPv+/whgABgdZIZQEB1e4D/ix1WDnyf4yC
FzFFbgbXf jhk1pi2fHILE7t jumMYRS62z4tURpV38VOVzJelxptxVKLaqLEogccuZz
U9AFMe jLlor(zoxrwxgXilFstHKG)7(PrxWg28mFduKgAYx5+1BCLP+PG8bBlyzR
mY348dDji8dg30igT01eBowESU1VckWVNd jMpnM1lmMmJAJUDBRAwFE/£DTCC1xNF
02eA0cV66JtX/9ek11iAJxXP+YwrNZ9ArKfDmuv4I6b953pGZWesrTpCNtgsKcNg
43Q0hMOLJ1ujO0uQEBmvVEEAKSJzinc/PTsGLAAGTTxtbLfaz7umbJLQRgPKNDZDkFH

10

s1DY
LNkB
Llgr
2+elU
iQBV
d/9b
Z20q0
RhTU
RhLq
AHFB
1m+T
wKeY
01WC
zlpJ
Lcbd
JyrN
AQcv
iomr
MJEB
Soge
DOXn



tSjit/BjADSaVEixGrZUdOWt7zD4oRBJf2DvIQJm7YFV24L+xYRCWGUtWAY2x85rx iQCV
a7VjnnjmhvHmhqqAAO7DBEEhR/0ogt9uCusBr8a51YWOfNaKIgE/CZtHYS jN65PX9 UKGE
tRF+18M5PAmJAJUDBRAwh+aXqS78h8RKpnkBAdszBADDf bmazmCT(QsPF5769C2n3 p61K
W1MCOHNONr2/GgcTMb54zgAScAhDJkigerUa20s5RA1vqLgBMGVoOr6uj/8bf7qw EvnV
tXYWMfz4NXNn9QgjTFREtwx7U/GDk4GvBPIDxA2f 15L/T1d100y9a6K3a16440KY ubln
ERhIYIoIjX1zmikjn/yY/aMWnfAcEaE8TuNaZ0eipXcTUP8eMeXmcB/Fs56UhlpN LNAP
AhkBAedwAvoC2iNsqw4zuvRxUJ4XsVsNe2jse9y8MUs3vx+txfBOb2AvbIx0191i 4Jcu
h36Bi0M78a6JAJUDBRAwh50DF jW+UJpn240BASTDA/wPv0TZdcCQP8CCvDKG17rH Ia+G
u09V1RNuW5z0w14JTTgu7VM2rPa2C5RPIFWBL8ZreOHd12HZGX6GyZ8ynzvDNWJI wCha
ozgh8f7e+a2aRhlhrayigiBmGBke0ol jXYbtmzaW0xRq08xi0g9ZW1KW/1+IUglf AlYo
Ngp+KnjCiFAqVQEB3s(QEAJ5a6aQcGD7HZPGBsWBxUuVADKyoxMOP736xohHAhzYk 88FZ
+8CnLPRtZ0s5bKCOQwZxhg+zgqiv4ZRBtyrcqMR1AxSAO03r0251qJKep58f0phO9u 1QCV
u+YzL3+RVm1lcImOMOdOrIHI+d0exvpJpl1lStK/WcTZewapbQaOAkoz2xtZtbVpHM ImHO
00dQMTgyHpmJAJUDBRAwhuADAOCD9+WgeSkBAbLP+A/4sPXJG2x5HTNfb5+GEtvbz W9in
mENDG2TOwiF+sNMQghW7XbfwZtoEeQyPjV6uf2p74jjZsAI/51DB6BOA8vV2A0q1D esJ3
owx8IFhv904AXtxKF8F7 jHXUzrcqcT9ckwEOQP6368Hp42hN/1QVn5al4ScAbNpK OuNt
bsgt+sbfxBLDntNzUdJ1RYOHDqwjkGcoiQCVAwWUQMIb5z8qsqg0TiAmRAQHYyGwP/ S8dC
vvCXsri+r/5XsbSKG7uBifUGoz9CoBEtyz6Ztxfq380f5uuF4TKK32¢ci4YXTgKdg Eg2a
x4sBAVCYArkBhCiofkbjcAfQ8g5+6T8YoQbEYoHvsilKrR/00TZHAT3nZZtQook6 DZFb
iQBVAwUQL8YfaEay+y02I8eRAQE7/AH/XCCOgh9Ff jAjVgOcRws7e0bAhOpCTVAx ABDm
OMXFLUdtDb+QbQEBGPsD/2j3/3njMcqiQM9tAgLJ+prqaaBlmI76WPuGsdyALhSb eDUZ
VkZnUy(QPxsnZEb73DU0Upf0hGideqJYPged6J9zhLDDR+WM39eFrKPQoZz6rTGOp 1iQCV
n9DeWfHj6WyUDkJZebAjTpywn9ey212R1fCUtmqlIxIJQTS99vug7/iRU1ptVsMvm8 7C+W



RSA Encryption

e Public key cryptography was introduced in 1974 by Diffie and Hellman, at Stanford.
They proposed a public key system which, as it turns out, was easy to break.

e In 1976 Rivest, Shamir, and Adleman (MIT) proposed the RSA system. It still is
used today. (Visit www.rsa.com.)

e Their method uses the number theory we've been learning.

e Here’s how you get an encryption key. Secretly find two huge prime numbers p
and ¢ Test primality using probabalistic primality tests. Then find another number
e, relatively prime to (p — 1)(¢ — 1). This is not hard either; fairly small prime
numbers usually work.

e Publish the pair of numbers (pq, €). That’s your public key. Note that if you don’t
say what p and ¢ are, then factoring pq is thought to be an impossible task.

12



RSA encryption

e To encrypt a message:
e Fincode the message into strings of numbers; e.g. “STOP” = 18191415.

e Break the message into blocks depending on the length of the representation of pq.
For example, when p =43, ¢ = 59, and e = 13:

pq=2537: M, = 1819: My = 1415,

e Encode each block separately using
e(M) = M* mod pq.

e For example, e(M;) = (1819" mod 2537 = 2081, and e(Ms) = (1415)" mod
2537 = 2182. Send e(M;) followed by e(Ms), etc.

13



RSA decryption

e You are the creator of the public key (pq, €), and you know p and q.
e Using Euclid, find a multiplicative inverse s of e modulo (p — 1)(¢ — 1).

e Let C be (the value of) an encrypted block. To decrypt, calculate d(C') = C* mod
pq.

e We need to do two things: we need to show how modular exponentiation can be
carried out rapidly, and we need to prove that e and d are functional inverses of
each other.

14



