
Putting it all together: Cryptography

• We now have all the tools we need to understand a method for secure information

transition on the Internet.

• This is called RSA public key encryption.

• Before we look at that, let’s review the basic premises of encoding, and discuss the

differences between public and private key encryption.

1



Encryption

• The basic idea of encryption is to take a message (string of symbols) and to apply

a function to it, called the encryption function.

• Let A be the set of possible messages, and B be the set of possible encrypted

messages. We seek a function e : A → B which has an inverse d : B → A,

called the decryption function. There is one extra requirement: knowledge of how

to compute d should not be obtainable easily, say by looking at a lot of different

encoded messages.

• Often, some data called a key can be given telling how to compute e (the encryption

key), or how to compute d (the decryption key.)

2



Private key systems

• In these systems, the sender of a message uses an encryption key, and somehow

passes that key (or a key easily obtainable from it) to the receiver, to use as a

decryption key. This key transaction has to be in private.

• The real issue here is how to pass the key. Once that has happened, messages can

be sent back and forth for quite a while, presuming that a malicious attacker can

only see the message streams.

• We’ll look at some examples of private-key systems.

3



Caesar Shift Encryption

• Start by mapping the 26 letters of the alphabet to Z25. Thus a 7→ 0, b 7→ 1, . . . , z 7→
25. Call this function α.

• Extend α to strings of letters a1 . . . an using

α(a1 . . . an) = (α(a1), . . . , α(an)).

If x is a string of n letters, α(x) is a finite sequence of n numbers. As an example

α(”scrooge”) = (18, 2, 17, 14, 14, 6, 4).

• Now the idea is to shift all the letters over a certain number of spaces. Thus,

a 7→ d, b 7→ e, . . . , w 7→ z, x 7→ a. This can be described by the shift function

s3 : Z25 → Z25: s3(m) = (m+3) mod 26. This function can be defined on n-tuples:

s3(m1, . . . ,mn) = ((m1 + 3) mod 26, . . . , (mn + 3) mod 26).

• To encode a string w we just compute

e(w) = (α−1 ◦ s3 ◦ α)(w),

where α−1 is the inverse function of α. So e(”scrooge”) = α−1(21, 5, 20, 17, 17, 9, 7) =

”vfurrjh”.

• The decoding function d is

α−1 ◦ s23 ◦ α.

• The encoding key is 3, and the decoding key is 23, once it’s known that shifting is

being used.

4



Security

• Shifting might have been OK for Caesar, but it’s completely insecure. For one

thing, there are only 26 encoding functions.

• We could get fancier, using s(x) = (ax + b) mod 26, where a and 26 are relatively

prime, but still these are easily cracked.

• Is there a completely secure private-key code? YES.

5



The one-time pad

• Instead of mapping characters to Z25, we map characters to bitstrings of a fixed

length. Say a 7→ 00000001, b 7→ 00000010, and so on. (This allows a lot more

characters to be encoded.)

• A message then maps to a sequence of bitstrings, or just one long bitstring.

• When the sender has digitized the message this way, he uses a random number

generator to generate a one-time key k, a bitstring exactly as long as the message.

This private key is somehow delivered to the receiver.

• Let m be the digitized message. Then put

ek(m) = m⊕ k

where ⊕. is the (bitwise) exclusive or function.

• The decoding function d(n) = n⊕ k. That is, the same key can be used to decode.

To see this, note that

dk(ek(m)) = (m⊕ k)⊕ k = m⊕ (k ⊕ k) = m⊕ 0 = m.

• Furthermore, if the original message can be recovered from the encoded one, then

so can the key. This is because

ek(m)⊕m = m⊕ k ⊕m = (m⊕m)⊕ k = 0 + k = k.

Thus if the key is really transmitted securely, and the message is very long, there’s

no way to decode it an any reasonable amount of time.

6



DES private-key encryption

• The one-time pad depends on the message being sent. DES (Data Encryption

Standard) does not depend on this – it uses fixed size keys, but of a size big enough

to foil decryption in almost every practical case.

• From the Internet:

DES has a 64-bit block size and uses a 56-bit key during execution (8 parity

bits are stripped off from the full 64-bit key). DES is a symmetric cryptosys-

tem, specifically a 16-round Feistel cipher, and was originally designed for

implementation in hardware. When used for communication, both sender

and receiver must know the same secret key, which can be used to encrypt

and decrypt the message.

Feistel ciphers are a special class of iterated block ciphers, where the cipher-

text is calculated from the plaintext by repeated application of the same

transformation or “round function”. In a Feistel cipher, the text being en-

crypted is split into two halves. The round function f is applied to one half

using a subkey and the output of f is exclusive-ored with the other half.

The two halves are then swapped. Each round follows the same pattern

except for the last round where there is no swap. A nice feature of a Feistel

cipher is that encryption and decryption are structurally identical, though

the subkeys used during encryption at each round are taken in reverse order

during decryption.

7



Public Key Cryptosystems

• A persistent problem with private key systems is the need to exchange the private

keys. Once this is actually done, short-term security (say for an internet session

transmitting a credit card number) can be established with DES.

• You can use another method, called public key cryptography, to encrypt the private

key to send to another recipient. (You can also use the method for continuing

messages, but it is more expensive and time-consuming.)

• Public key systems work in the following way. There is a sender (Bob) who wishes

to get encrypted messages from members of a large group. He does this by creating

two keys, one for encryption and one for decryption. He keeps the decryption key

secret, and publishes the public one to the group. Anybody in this group (say

Gloria) can send Bob an encrypted message using Bob’s published key. Bob can

decrypt the message with his secret key.

• The crucial point is that anyone seeing the public key has no way of figuring out

the private, secret key in any time short of millions of years.

8



Digital Signatures

• Public key cryptography has another nice feature: you can use the system to elec-

tronically sign a message in such a way that the recipient knows that it was you

who sent it.

• Go back to Bob. Bob can send a signed message to Gloria (the message is not

encoded, so watch it, Bob :) He does this as follows. He encrypts a message m

using his decryption key d and sends Gloria both d(m) and m.

• Gloria computes e(d(m)) using Bob’s public key. Since e and d are inverse functions,

the result should be m. If it is, then Gloria knows that m came from Bob.

• This assumes that Bob’s public key really came from him. There are ways to

guarantee this, which is where companies like Verisign get into the act – they

generate so-called digital certificates for people like Bob.

• All of this is incorporated into your browser. The most common protocol is called

SSL – Secure Sockets Layer.

9



A Public Key

-----BEGIN PGP PUBLIC KEY BLOCK----- Version: 2.6.2 mQCNAy/CUuAAAAEEAPMZtKal+ZIozS8puv3ykxoh0GG/msPjVFZbFtginv9geBcN

nu8r/lGCWcrAGE3ZMUZmTET4WUWNpN6Lq/0p7iQRW8SyKl94KK1vnDmwQEZpuZ2c s1DYRhT6BbcvNXwIOKTdrMxTdiaRO9SsOSrS4cVLMLGEUGcT6Wufun5o2SzZAAUR

tB5DaHJpcyBOZXdtYW4gPGNocmlzbitAY211LmVkdT6JAJUDBRAx4w9Pa5+6fmjZ LNkBAZuGBADvkir2a73CCm4JiyZT8/DmGGI4HHi7G5z/iGQIW2VhYSAhp0uVER0H

ZY6Xb6brrpypQ0HKlWIxTgUvM/jxflOWcOid2pdzWYTp/kwtaBFZq/bZ6H8CFR/G LlgrsP8TL8eSptnRTafBxpOmuykDaRC0rAcOgsz+TZGbQzxHlWR6TIkAlQMFEDEN

Kme2PYuvFdQ95QEB0PsD/3QOkPY5F1pA9Oe3R4kYn77ryfy9tEWyyXV88hN0HIL5 2+eUB93pLBuOLnVIRs+GJ96zaBNFDXwNeOGagml8Z81A4IV9q1z3R87v7+2UqbTh

Mck2mAh3kvDzTAEQYgw2dP5qEDy5lKazdu6F5TkmAUEjRvxidj2rtgqi/U2oN3OI iQBVAgUQMM1lKjPwVTwXXgE5AQG4cgH+O6kq7bYIIJomVM7+jpHf/wA0K+Hgp5R2

jYSG9xzCF785wYTH7/qnvR87eDUAUDC0ZdoA6/43O81l8k9EuWmiyYkAlQMFEC/D d/9bV7tpd/HZMQEBGGwD/RLxcUUB1JtpNKmOB4eSQZ+0C8OplWxFVVGE2Ips2J9X

JnWqGrfRGthejXplzHeKRyw99jMayT1l6OZm21UCVVZCCnx0PZsQZkynpNHuGbfn ZOq00LGqk55rIxTxS9HSsYhwibkJXfmhIcUlKcMrxDc6vZ1+3COirr1kGxei5Ouv

iQCVAwUQMdtkwaky2tFFGJm1AQF6IQQAiTALF68UJnkfDYK/Prg7nzr7zl7bE5Yy RhTUHk+Bn2Bx+WtLzsCUOVaBH5hn9AJf2ANouBocFgtk6NhWbV/McOa+SSFmzFJ2

/kEIMcDjHWv2U4anaggZZrxkjBwGy4uXMiebZFZm+wyJMEfuBsVpRpHvD0FrOyTw RhLqcma2+xWJAJUDBRAw33AThxvAWY8bGaUBAaHTBACQR4trXtz+qnA/f1oP7IYN

IY0hNemufSQrFhM1bWmtn3zSJ2pU5Ghd2Nsk6ZuogcGYWUjb4fyK1/80vb09GmkV AHFBa65ia7uIDrURNkDd7MPYmRac8PJ3T7ppKR5slT7eExaqRUKOLQftu9oJJsn9

0uVkqyYp68PLxzC9pkxajYkAVQIFEDDKIf1SMVxYLwenQQEBo3gB/R57Mldr8L7e lm+TBVAfelEofgH/zXMN8L0/8xnAeIC8S9BS6AmUtwtsso/FTen714czVnVyOt2L

HgbCkAOoStaJAJUDBRAwzCqi4uW74fteFRkBATYVBACqdefiRTl60Br5fqAlALnU wKeYsLwKWMTOqUNeaoxc/+ZDOt/pcecQ3w4OpFK9Q8N22UGtq2Q3bp3kCosy/WXt

fu4vW1jmjSh7B63fLbQZDB3ZeDCOPbl+JNg8BtuoNExoEsiyNJcYqCxLtXP2fQjJ 0lWCRrJNHPUO0SQeqrO8r4kAlQMFEC/MiFFA6jhOfwHRZQEBwo4D/31aWGGP521o

CVMsBMcstj+GWZZ/9W8Sk4eQG6Rqkq6yTKDR7RRTznFi9T7F5OvjOau2WNevO9uN z1pJTR/b+v6U7uuHcKiNxXqQlr69axIdeekR/AicoyAzOvn9vSmhGJ/V27DOAe0K

KED4Y8w/f9lAfcB0OPKLefeWFqQyXxrAiQBVAgUQL84STCHgNn+d3oDNAQGBSwH+ Lcb4tx4MJegkj3d3uXydlWksa3EKFq0Gp+vMcZrhT3P6rQGgVwIG1IU1sWyGIakF

7bRzPXs+FHWtjTqJNdlXXIkAlQMFEDCPv+/whgABgdZIZQEB1e4D/ix1WDnyf4yC JyrNOQANkFzDMUBqM4+S0rhIOgEh/F/Evpwkce4MCCB21jFOE1yBPk4m6a0JMhB7

FzFFbgbXfjhk1pi2fHIL67tjumMYRS6z4tURpV38V0VzJelxptxVKLaqLEoqccuZ AQcvm0J3SSputuwHVS/tcjeCmIC8xgRFiQCVAwUQMI1iBPx0xvcAHqIpAQHsBwP/

U9AFMejL1orQzoxrwxgXi1FstHKGj7QPrxWg28mFduKgAYx5+lBCLP+PG8bB1yzR iomr2sxaUARiYDY7/iM6YIMS3p2g041gXo2moCj9BBb5h/R4v/Mjf8i11tzumd4i

mY348dDji8dg3oigT0leBowE5UlVckWVNdjMpnMlmMmJAJUDBRAwjE/fDTCC1xNF MJEBASy2BACgyVCPAQqKP8P25qlF7I+zZFO7xoNd2rohmQgWQRZRN4b5dtAXur3k

O2eAOcV66JtX/9ek1liAJxXP+YwrNZ9ArKfDmuv4I6b953pGZWesrTpCNtgsKcNg SSgeTWl/hYFPTFi1ZxP8FCxZ5ilmHOjg4uQIMfBq5szuo0mgqKTrgYkAlQMFEDCL

43QhMOLJlujOuQEBmvEEAKSJzinc/PTsGLAA6TTxtbLfaz7umbJLQRgPKNDZDkFH D0Xn24A9LhVS1R2Hu67wH/D72mq6oqoINOGC76uT1QjWN+9Jo4DPf+jzgv4WCuIn

10



tSjit/BjADSaVfxGrZUdOWt7zD4oRBJf2DvJQJm7YFV24L+xYRCWGUtWAY2x85rx iQCVAwUQMIlYSXcEMs4QLy7BAQFNDQP/SPGYQZv9G3gCdhRXUBhP9BeL8KRur48c

a7VjnnjmhvHmhqqAA07DBEEhR/ogt9uCusBr8a5lYWOfNaKIqE/CZtHYSjN55PX9 UK5EgjYnxYoXK4AelWbr8kAK9aXR5SzCm1err9XYlkd+0XdHogU8uHF3Lrn80heX

tRF+i8M5PAmJAJUDBRAwh+aXqS78h8RKpnkBAdszBADDfbmazmCTQsPF5769C2n3 p6lKCc6wf8yVIGNpWxIhcU00QPFmDYdUl7OoXe2R/6VJHCC5narLIurQtp5hbgul

WlMC9HN0Nr2/GgcTMb54zgAScAhDJkigerUa20s5RAlvqLgBMGVoOr6uj/8bf7qw EvnVRSQHb8XxlfRGg8BUoIkAVQMFEDCG0IArE/Sznzf5yQEB0hUB/izxqe9/ckB/

tXYWMfz4NXNn9QgjTFREtwx7U/GDk4GvBPIDxA2f15L/T1dl0oy9a6K3a1644oKY ub1npeXlGfaJAHUDBRAwh67WB0guOXKIhakBAa2aAwCakycqHDIeZ6wvvmEaIdQt

ERhIYIoIjX1zmikjn/yY/aMWnfAcEaE8TuNaZOeipXcTUP8eMeXmcB/Fs56UhlpN LNdPC1al1pPWaoqDgxTCwSDo67embaxYfs/ZJQFlj1SJAHUDBRAwhx5+wbYX6CL+

AhkBAedwAvoC2iNsqw4zuvRxUJ4XsVsNe2jse9y8MUs3vx+txfBOb2AvbJx0l91i 4Jcu24RbsD15g7e/2po5OOvV8+J+jOxTRsrIEdJiKE+eToobI8uJ4fUykuKZYvRd

h36Bi0M78a6JAJUDBRAwh5oDFjW+UJpn240BASrDA/wPvOTZdcCQP8CCvDKG17rH Ia+G6tZ5BYGszecyRzko+KQypg4NzmJSbppMtb9EcX2bt0X/I640xERqXBQQ8Tyg

uO9VlRNuW5z0w14JTTgu7VM2rPa2C5RPIFWBL8Zre0Hdl2HZGX6GyZ8ynzvDNWJI wChaSKYxqvPhmphNUhs05okAdQMFEDCHW+q1Ofi0EVd5KQEBcnYC/ifsFTt8h240

ozgh8f7e+a2aRh1hrayigiBmGBkeOoljXYbtmzaW0xRqO8xi0g9ZWlKW/1+IUglf AlYomAM9taXGsEJUXgJGCNOQy4bWpcSLuwOvowscG0PobpeHynvAa4kAlQMFEDCH

Ngp+KnjCiFAqVQEB3sQEAJ5a6aQcGD7HzPGBsWBxUuVADKyoxMOP736xohHAhzYk 88FZWbTeY96ZG/Kd2BHv8B1Kq2VyRtL0UsLAA1TMQmKMKB8QjO7o2rwFVFRU1SM0

+8CnLPRtZOs5bKC0QwZxhg+zgqiv4ZRBtyrcqMR1AxSAO3rO2SIqJKep58fOph9u iQCVAwUQMIcxGrsQgpCxP3QFAQHbeAP9Hny+PyTTq2RKQlGNWJZ3Hra2DfN7iE7m

u+YzL3+RVmlcIm0MOdOrIHI+dOexvpJp1lStK/WcTZewapbQa0Akoz2xtZtbVpHM ImH0JXTuuhvW3sYn1KHEbsUyZtRc6zbVx49LLxP87LTPnIoxOFg+zzNjKfoC06J/

00dQMTgyHpmJAJUDBRAwhuADAOCD9+WgeSkBAbP+A/4sPXJG2x5HTNfb5+GEtvbz W9in66snf5UWXXhHhflaoKql+OF1PeQzohravYLv0f0e5VsFsw18nVEUhhLemygR

m6NDG2T0wiF+sNMQqhW7XbfwZtoEeQyPjV6uf2p74jjZsAI/5lDB6B0A8v2A0q1D esJ3kvBb8Xl2q3tgWkkz6YkAlQMFEDCG3YSzQdelXSiGBQEBAcMEAKUxYtWv8AVs

owx8IFhv9O4AXtxKF8F7jHXUzrcqcT9ckwE0QP6368Hp42hN/lQVn5aI4ScAbNpK OuNtmCwDrrZc0ub9ksfgp3DmUFUxKXkzmfT8its3TmwsFCYNRo3iAiB2usF+tTUh

bsgt+sbfxBLDntNzUdJlRYOHDqwjkGcoiQCVAwUQMIb5z8qsqgOTiAmRAQHyGwP/ S8dCJtunQutgc77bDkVZOg4PD2bNABsz4SgIpJH1rKGzt/LdxPTTA3FleqaRTyJi

vvCXsri+r/5XsbSKG7uBifUGoz9CoBEtyz6Ztxfq38Of5uuF4TKK32ci4YXTgKdg Eg2akhq1DweBiqDbXYWrcUW8LW0D2K+49WR/eYArGcWJAG0DBRAvxiRW8k0+WzbA

x4sBAVCYArkBhCiofkbjcAfQ8q5+6T8YoQbEYoHvsilKrR/O0TZHAT3nZZtQook6 DZFb6NtBGaBA4OSopn05PlO5kULxjMynkT//hrOFk/dVfc7e6FDpvWr8zWv+WSJQ

iQBVAwUQL8YfaEay+yO2I8eRAQE7/AH/XCCOgh9FfjAjVg0cRws7e0bAhOpCTVAx ABDmaOoS8uoj3A/tpgLaE6NmZBtN2X1Qmi3FxWRpLq1g2larmEE9qYkAlQMFEC/F

OMXFLUdtDb+QbQEBGPsD/2j3/3njMcqiQM9tAgLJ+prqaaB1mI76WPuGsdyALhSb eDUZ0wNCw8zWjtaPb4fsE8nlSJVO1q2MjMs0cUH7hj0jdYpH2YrqYc5/YjhB6K7S

VkZnUyQPxsnZEb73DUOUpfOhGideqJYPged6J9zhLDDR+WM39eFrKPQoZz6rTG0p iQCVAwUQL8UQYLlrcPWzjdUFAQF9DQP/fZSgWhCb1zvHqXUtozKAeQwoJ7HqWUYC

n9DeWfHj6WyUDkJZebAjTpywn9ey2l2RlfCUtmq1IxJQTS99vug7iRU1ptVsMvm8 7C+WZ40PzBQjHzef8peBCiVmGVvGNuF58x1ZnZxHbIYxsXJXVxhYhAFCyQG6dC6n

-----END PGP PUBLIC KEY BLOCK-----

11



RSA Encryption

• Public key cryptography was introduced in 1974 by Diffie and Hellman, at Stanford.

They proposed a public key system which, as it turns out, was easy to break.

• In 1976 Rivest, Shamir, and Adleman (MIT) proposed the RSA system. It still is

used today. (Visit www.rsa.com.)

• Their method uses the number theory we’ve been learning.

• Here’s how you get an encryption key. Secretly find two huge prime numbers p

and q Test primality using probabalistic primality tests. Then find another number

e, relatively prime to (p − 1)(q − 1). This is not hard either; fairly small prime

numbers usually work.

• Publish the pair of numbers (pq, e). That’s your public key. Note that if you don’t

say what p and q are, then factoring pq is thought to be an impossible task.

12



RSA encryption

• To encrypt a message:

• Encode the message into strings of numbers; e.g. “STOP” = 18191415.

• Break the message into blocks depending on the length of the representation of pq.

For example, when p = 43, q = 59, and e = 13:

pq = 2537 : M1 = 1819; M2 = 1415.

• Encode each block separately using

e(M) = M e mod pq.

• For example, e(M1) = (181913 mod 2537 = 2081, and e(M2) = (1415)13 mod

2537 = 2182. Send e(M1) followed by e(M2), etc.

13



RSA decryption

• You are the creator of the public key (pq, e), and you know p and q.

• Using Euclid, find a multiplicative inverse s of e modulo (p− 1)(q − 1).

• Let C be (the value of) an encrypted block. To decrypt, calculate d(C) = Cs mod

pq.

• We need to do two things: we need to show how modular exponentiation can be

carried out rapidly, and we need to prove that e and d are functional inverses of

each other.

14


