
Computing exponents modulo a number: Repeated squaring

• How do you compute (1415)13 mod 2537 = 2182 using just a calculator? Or how

do you check that 2340 mod 341 = 1? You can do this using the method of repeated

squaring; we’ll illustrate by calculating (1415)13 mod 2537.

• Start by looking at the exponent (13) and represent it as a sum of powers of 2. To

do this, find the largest power of 2 less than your exponent; in this case it’s 23 = 8.

Subtract 8 from 13, getting 5. Then 5 = 4 + 1 = 22 + 20. So 13 = 8 + 4 + 1.

• Now

(1415)13 mod 2537 = (1415)(1+4+8) mod 2537.

So all I have to do is to calculate the numbers

(1415)1 mod 2537, (1415)4 mod 2537, and (1415)8 mod 2537

and multiply them together, then take the product mod 2537. I already have the

first number: 1415. I could raise it to the 4th power and take the result mod 2537,

but to be systematic I’ll square it, take the result mod 2537, and then repeat that

same process.

• 14152 mod 2537 = 2002225 mod 2537 = 532. So to get 14154 mod 2537 I square

532 = 283024 and take this mod 2537 = 1417.

• To get (1415)8 mod 2537 I square (1415)4 mod 2537 and take the result mod 2537.

So I square 1417, getting 200789 which mod 2537 is 1122.

• Multiply 1415 · 1417 · 1122 and take the result mod 2537. The result is 2182.
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Correctness of RSA

• Now we are ready to prove that the RSA encryption and decryption functions are

inverses of each other. We’ll check that d(e(M)) = M , where

e(M) = M e mod pq, and d(C) = Cs mod pq,

where s is an inverse of e modulo (p − 1)(q − 1).

• To do this, we’ll need Fermat’s Little Theorem, together with a simple lemma:

• Lemma If p and q are distinct primes, N ≡ M (mod p), and N ≡ M

(mod q), then N ≡ M (mod pq).

Proof: By hypothesis N − M = jp for some j, and N − M = kq for some k.

Thus p | kq. But p is a prime, and cannot divide q, so p | k. Thus k = lp and so

N − M = lpq, which is what we need. �

(The easy way to see this, of course, is to use the uniqueness part of the Chinese

Remainder Theorem.)

• We now want to show d(e(M)) = M , and writing this out:

Cs mod pq = M, where C = M e mod pq.

To do this we’ll show Cs ≡ M (mod p) and Cs ≡ M (mod q). The conclusion

then follows from the lemma.

2



RSA Correctness, continued

• Our goal is now to show Cs ≡ M (mod p), where s is an inverse of e modulo

(p − 1)(q − 1). We also need Cs ≡ M (mod q), but the proof will be exactly the

same.

• Now

Cs = (M e mod pq)s ≡ M es (mod pq).

We claim

Cs ≡ M es mod p;

this is because Cs − M es = jpq = (jq)p for some j.

• What is M es mod p?

• Since s is an inverse of e modulo (p− 1)(q − 1), we have es = 1 + k(p− 1)(q − 1)

for some k. Therefore

M es = M 1+k(p−1)(q−1) = M 1 · (M (p−1))k(q−1).
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RSA Correctness, continued

• From last slide

M es = M 1+k(p−1)(q−1) = M 1 · (M (p−1))k(q−1).

We are trying to prove Cs ≡ M (mod p). On the last slide we showed Cs ≡ M es

(mod p).

• We take both sides of the top equation mod p, because we want M es mod p. We

get

M es mod p = ((M 1·(M (p−1))k(q−1)) mod p = (M ·(M (p−1) mod p)k(q−1)) mod p.

• There are now two cases. It’s possible that p|M so that M mod p = 0. But then

M es mod p = 0, so that Cs = M es ≡ M (mod p). This is our desired conclusion,

so we consider the case that p does not divide M .

• In this case, by Fermat’s little theorem, M (p−1) mod p = 1. Thus

M es mod p = (M · 1k(q−1)) mod p = M mod p.

Thus in this case, Cs ≡ M (mod p) as well, finishing the proof.
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Summing up

• Let’s look at what math we needed to do this RSA encryption.

• Correctness depended on Fermat’s little theorem, whose proof depended on the idea

of a one-to-one and onto function.

• None of the ideas made any sense without the notion of an equivalence relation

(congruence mod n in our examples).

• Feasibility depended on the gcd algorithm extended to find multiplicative inverses.

The extended algorithm was proved correct by strong induction (actually proving

the sm + tn theorem), and the inductive proof gave the formulas we needed.

• In that inductive proof, we gave a formal statement of a proposition P (n), using

logic and quantifiers.

• Analyzing the efficiency involved another theorem (Lame) whose proof was by strong

induction.

• GCDs exist using the lattice of positive integers under the divisibility ordering.

• So, almost all of the discrete math ideas we introduced were exemplified in under-

standing the application.
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What’s next?

• Encryption functions are a special case of what are called computable functions

from strings to strings.

• In EECS 376 you learn about what kinds of functions can be computed at all.

Most functions, in a precise sense, cannot be computed – there is no program even

conceivable that could calculate them.

• You also learn about useful things like finite-state automata. These have applica-

tions everywhere in computer science.

• Specifying different kinds of (theoretical models of) computation requires all of the

discrete math ideas we have learned.

• We have not done things like counting and combinatorics. You do learn these

things in a probability course. The discrete math ideas help understand this stuff

too. Don’t forget about it!
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