The Division Theorem

e Theorem Letn be a fized integer > 2. For any
2z € 4 we can find unique integers q,r such that

z=qn+r where 0 <r <n-—1.

e ¢ is called the quotient and r the remainder modulo
m.

e Another way to put the Division Theorem is that ¢ is
the largest integer such that gn < z, and r = 2z —qgn.

Examples

e 17=3-54+2,q=3,7r=2.
e 39=(-8)-5+1;qg=-8r=1
o [f z=qgn+r weput zmodn =r and z divn =gq.

e Thus 17mod 5 =2, =39 mod 5 =1, —39 div 5 =
—8.

Characterizing congruence mod n

e Theorem For any integers x and y, x = y
(mod n) if and only if x mod n = y mod n.

e We prove the = direction.

e Assume that * = y (mod n). By definition this
means that © — y = kn for some k € Z. Use the
Division Theorem twice to write

r = qn+mr
Yy = @Qn+1r

where we may as well suppose 1 > 79; otherwise
just interchange the role of z and y. Therefore, by
subtraction,

r—y = (@1 —q2) n+(r1—r) where 0 < ry —ry < n.

But
r—y=kn=~kn+0

so by uniqueness in the Division Theorem, 71 —ry =
0, or 71 = r9 as we wanted.

e The <« proof is left to you!

More on congruences modulo n

e Proposition Ifa=0b and c=d (mod n) then
(1) a+c=b+d and (2) ac = bd (mod n).

e Proof: (1) Assume the hypotheses. Write

a—b = kn for some k

c—d = [n for some [
Then by adding these equations
(a+c)—(b+d)=(k+1D)n
which is conclusion (1).

e For (2), we use a trick. Using a —b = kn we multiply
both sides by ¢, getting ac — bc = ckn. Likewise
we multiply the equation ¢ — d = In by b, getting
bc — bd = bin. Adding the two derived equations
gives us ac — bd = (ck + bl)n, which gives us (2).

Arithmetic modulo n

o Let Z,=1{0,1,...,n—1}. For a,b € Z, define
a®,b=(a+0b) modn

and
a® b= abmod n.

e For example, when n = 3

©0/1]/2 ®|0]1]|2
0101112 010/0]0
111120 11012
212/0]1 210121

Application of modular ideas: Hashing

Suppose every student has a 10-digit student id num-
ber, but there are only 35,000 student records you
wish to store in a fixed amount of array space, say in
an array with 50,000 lines.

If you in fact had 10' lines in the array, you could
use the student id number itself as an index into it.
But you don't.

In this case, when actual memory is limited, you can
perform a function, called a hashing function on the
student id numbers to come up with a new index into
the limited array. So, you think of the id number as
an integer m, and hash it using the function

h(m) = m mod 50, 000.

This is an easy number to compute. And even though
the function h is not one-to-one, we almost never get
a collision h(m) = h(p) for m # p. If we do, there
are tricks to store the superfluous index.

This is what we do when we put your grades on the
web using the last 4 digits of your id.

A second application: Pseudo-random
numbers

e You can get a computer to produce a really random-
looking sequence of numbers. This is useful when
you want to simulate a real-life experiment on the
machine.

e Such a sequence is called a pseudo-random sequence,
and the procedure that produces it is called a pseudo-
random number generator.

e Simple pseudo-random number generators can be given
using modular arithmetic. We choose a large modu-
lus, often related to word size in memory, like 231 —1.
Then we choose an integer seed ag, using it as the
base case for an inductive definition

ans1 = (16,807 - a,) mod (2°! — 1).
(The number 16,807 is carefully chosen here.)
e There are many generators of the form
ani1 = (b a, +c) mod m

They are called linear congruential generators.

Towards a cryptography application:
Fast greatest common divisors

e We now begin studying the number theory we need
to understand a basic method for encrypting Internet
messages.

e This involves several concepts and algorithms. We
begin by studying a very old algorithm, due to Eu-
clid, for finding greatest common divisors.

e You can theoretically do this by factoring the two
numbers and taking minimum exponents. But fac-
toring huge numbers is an extremely time-consuming
process, and nobody knows how to do it in a way that
can be implemented at all.

e Fuclid’s ged algorithm is both simple and fast!

Euclid’s GCD algorithm

function gcd(m:N*; n:N); %(ged(m,0) =m)

{
a := m;
b := n;

while b !'= 0 do % gcd(a,b) = ged(m,n)

r := a mod b;
{

a := b;

b :=r;}

gcd(m,n) := a

}
Example: ged(91, 287).

a 91 287 91 14 7
b 287 91 14 7 O
r 7 91 14 7 0

The ged is a = 7.

Why does this work?

e Rewrite the program a little more compactly as
function gcd(m:N*; n:N);
{
(a, b) := (m, n);
while b !'= 0 do % ged(a,b) = ged(m,n)
(a,b) := (b, a mod b);
gcd(m,n) := a

}

e Lemma For any x,y:
ged(z, y) = ged(y, mod y).

e This means that the statement in the comment at
the head of the while-loop is always true no matter
how many times around the loop you go. So when
you come out of the loop, a = ged(m, n).

e We prove the lemma on the next slide.

10

Proving the lemma

Proof: We show that the set Ib(z,y) = Ib(y, x mod y),
where [b(x,y) is the set of common divisors of x and ¥,
i.e., lower bounds of x and y in the | ordering. It follows
that the two numbers x and y have the same greatest
common divisor as y and x mod y.

To show Ib(x,y) C Ib(y,x mod y) let k € Ib(x,y).
Then k | x and k | y. By the Division Theorem, z =
yq + r, so that r = © — yq. Since k | y, k | yqg. But
k| zsothat k| 2 —yqg =r = xmody. Thus k €
[b(y, x mod y).

Conversely, let k | y and k | » = © — yq. Then
(x —yq) = ck and y = dk for some ¢ and d. Therefore

r = ck + yq = ck + dkq = k(c + dq)

so that x is a multiple of k, or k € Ib(x, y) as desired.l]

11

How fast is Euclid’s algorithm?

e [t really only depends on the number n we give it,
because in the very first time through the loop, it
computes a remainder modulo n.

e We'll measure the time it takes, using the number of
times the loop is executed as our measure of “time”.
(We're really deriving an O-estimate.)

e We'll see that Euclid’s algorithm is exponentially faster
than simple factoring using, say, factor trees as in
grade school.

e The running time is (amazingly) intimately related
to the Fibonacci numbers

f():Oafl:17f2:17f3:27'°'7fk3+1:fk:+fk:—1-

12

Fibonacci and Euclid — first encounter.

Proposition For any n > 1, Fuclid’s algorithm
takes n—1 trips through the loop to compute ged(fr, fu_1)-
Proof: By induction on n. First let’s review the algo-
rithm:

function gcd(m:N*; n:N);

{

(a, b) := (m, n);

while b !'= 0 do % gcd(a,b) = ged(m,n)

(a,b) := (b, a mod b);

gcd(m,n) := a

h
Basis: n = 1. To compute ged(f1, fo) = ged(1,0) =1
we go 0 =n — 1 times through.
Induction step: Assume that we go through the loop
k—1 times to compute ged(fx, fr—1). To compute ged(fri1, fr)
we compute ged(fr, frr1 mod fi). But

frv1=Te + fic1 =1 fi + fi-1,

so by the Division Theorem, f;.1 mod fi = fi_1. By
induction hypothesis it takes £k — 1 times through the
loop for this, then one more trip for a total of k as we
wanted.]

13

Fibonacci and Euclid: second encounter via
Lamé

Theorem (Lamé). For any k > 1, if Euclid’s
algorithm takes k trips to compute ged(m,n), where
m >n, thenn > fii1.

Proof. By strong induction on k.

Basis: k= 1. If we went through the loop once then
certainly n > 1 = f5. And when k = 2 we went through
the loop twice, son > 1, and thus n > 2 = f3.

Induction step: Assume for all integers < k that if
we go through the loop k times, then n > fr.1. We
must prove the same statement with k& replaced by &£+ 1.
Suppose that it takes k + 1 trips to compute ged(m, n).
Write out the first two trips

ged(m,n) = ged(n, m mod n)

= gcd(m mod n, n mod (m mod n))

14

Continuing the proof

By induction hypothesis
m mod n > fi

and

n mod (m mod n) > fi_1.
We can simplify this using the Division Theorem: m =
¢in + r1 and n = @ory + 79, where r; = m mod n and

ro = n mod r; = n mod (m mod n).

Note that 1 = m mod n < n so that ¢o > 0. By IH,
r1 > fr and ro > fi_1. Therefore

n = qoro + 11 > 19+ 11 (because qu > 0)
> fr_1+ fr by the two induction hypotheses)
= fr1 by the inductive definition of Fibonacci.

15

Towards an O-estimate for Euclid

e Lamé’s theorem restated: For any k,n, m such that
k > 1 and m > n, if it takes Euclid k steps to
compute ged(m,n) then n > fri1. (A “step” is an
iteration of the loop.)

e This is logically equivalent to saying that if n <
fri1, then it takes at most & — 1 steps to compute
ged(m,n).

e In our first example of strong induction proofs, we
showed

(Vk > 2)(fr > o*7?)
where a = (1 ++/5)/2.

e Soif n < o' then n < fi41 and so it takes at
most k — 1 steps to compute ged(m,n).

16

Finishing the O-estimate for Euclid

e We may restate the conclusion on the last slide as
saying that for any k, m, and n, if n < oF, then it
takes at most k steps to compute ged(m,n).

e We know

k

n<a < log,n <k.

o Let k = [log, n], so that log, n < k <log,n+ 1.

e Then it takes at most log, n + 1 steps to compute
ged(m, n).

e Since log,n = logyn - log, 10, this gives us an
O(logyyn) algorithm for the ged. This is propor-
tional to the number of decimal digits in n.

e Compare this with the time it takes to factor an 800-
digit number.

17

