
The Division Theorem

• Theorem Let n be a fixed integer ≥ 2. For any

z ∈ Z we can find unique integers q, r such that

z = qn + r where 0 ≤ r ≤ n− 1.

• q is called the quotient and r the remainder modulo

m.

• Another way to put the Division Theorem is that q is

the largest integer such that qn ≤ z, and r = z−qn.

1

Examples

• 17 = 3 · 5 + 2; q = 3, r = 2.

• −39 = (−8) · 5 + 1; q = −8, r = 1.

• If z = qn + r we put z mod n = r and z div n = q.

• Thus 17 mod 5 = 2, −39 mod 5 = 1, −39 div 5 =

−8.

2

Characterizing congruence mod n

• Theorem For any integers x and y, x ≡ y

(mod n) if and only if x mod n = y mod n.

• We prove the ⇒ direction.

• Assume that x ≡ y (mod n). By definition this

means that x − y = kn for some k ∈ Z. Use the

Division Theorem twice to write

x = q1n + r1

y = q2n + r2

where we may as well suppose r1 ≥ r2; otherwise

just interchange the role of x and y. Therefore, by

subtraction,

x−y = (q1−q2)·n+(r1−r2) where 0 ≤ r1 − r2 < n.

But

x− y = kn = kn + 0

so by uniqueness in the Division Theorem, r1− r2 =

0, or r1 = r2 as we wanted.

• The ⇐ proof is left to you!

3

More on congruences modulo n

• Proposition If a ≡ b and c ≡ d (mod n) then

(1) a + c ≡ b + d and (2) ac ≡ bd (mod n).

• Proof: (1) Assume the hypotheses. Write

a− b = kn for some k

c− d = ln for some l

Then by adding these equations

(a + c)− (b + d) = (k + l)n

which is conclusion (1).

• For (2), we use a trick. Using a−b = kn we multiply

both sides by c, getting ac − bc = ckn. Likewise

we multiply the equation c − d = ln by b, getting

bc − bd = bln. Adding the two derived equations

gives us ac− bd = (ck + bl)n, which gives us (2).

4

Arithmetic modulo n

• Let Zn = {0, 1, . . . , n− 1}. For a, b ∈ Zn define

a⊕n b = (a + b) mod n

and

a⊗ b = ab mod n.

• For example, when n = 3

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

⊗ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

5

Application of modular ideas: Hashing

• Suppose every student has a 10-digit student id num-

ber, but there are only 35,000 student records you

wish to store in a fixed amount of array space, say in

an array with 50,000 lines.

• If you in fact had 1010 lines in the array, you could

use the student id number itself as an index into it.

But you don’t.

• In this case, when actual memory is limited, you can

perform a function, called a hashing function on the

student id numbers to come up with a new index into

the limited array. So, you think of the id number as

an integer m, and hash it using the function

h(m) = m mod 50, 000.

This is an easy number to compute. And even though

the function h is not one-to-one, we almost never get

a collision h(m) = h(p) for m 6= p. If we do, there

are tricks to store the superfluous index.

• This is what we do when we put your grades on the

web using the last 4 digits of your id.

6

A second application: Pseudo-random

numbers

• You can get a computer to produce a really random-

looking sequence of numbers. This is useful when

you want to simulate a real-life experiment on the

machine.

• Such a sequence is called a pseudo-random sequence,

and the procedure that produces it is called a pseudo-

random number generator.

• Simple pseudo-random number generators can be given

using modular arithmetic. We choose a large modu-

lus, often related to word size in memory, like 231−1.

Then we choose an integer seed a0, using it as the

base case for an inductive definition

an+1 = (16, 807 · an) mod (231 − 1).

(The number 16,807 is carefully chosen here.)

• There are many generators of the form

an+1 = (b · an + c) mod m

They are called linear congruential generators.

7

Towards a cryptography application:

Fast greatest common divisors

• We now begin studying the number theory we need

to understand a basic method for encrypting Internet

messages.

• This involves several concepts and algorithms. We

begin by studying a very old algorithm, due to Eu-

clid, for finding greatest common divisors.

• You can theoretically do this by factoring the two

numbers and taking minimum exponents. But fac-

toring huge numbers is an extremely time-consuming

process, and nobody knows how to do it in a way that

can be implemented at all.

• Euclid’s gcd algorithm is both simple and fast!

8

Euclid’s GCD algorithm

function gcd(m:N+; n:N); %(gcd(m, 0) = m)

{
a := m;

b := n;

while b != 0 do % gcd(a, b) = gcd(m,n)

{r := a mod b;

a := b;

b := r;}

gcd(m,n) := a

}

Example: gcd(91, 287).

a 91 287 91 14 7

b 287 91 14 7 0

r ? 91 14 7 0

The gcd is a = 7.

9

Why does this work?

• Rewrite the program a little more compactly as

function gcd(m:N+; n:N);

{
(a, b) := (m, n);

while b != 0 do % gcd(a, b) = gcd(m,n)

(a,b) := (b, a mod b);

gcd(m,n) := a

}

• Lemma For any x, y:

gcd(x, y) = gcd(y, x mod y).

• This means that the statement in the comment at

the head of the while-loop is always true no matter

how many times around the loop you go. So when

you come out of the loop, a = gcd(m,n).

• We prove the lemma on the next slide.

10

Proving the lemma

Proof: We show that the set lb(x, y) = lb(y, x mod y),

where lb(x, y) is the set of common divisors of x and y,

i.e., lower bounds of x and y in the | ordering. It follows

that the two numbers x and y have the same greatest

common divisor as y and x mod y.

To show lb(x, y) ⊆ lb(y, x mod y) let k ∈ lb(x, y).

Then k | x and k | y. By the Division Theorem, x =

yq + r, so that r = x − yq. Since k | y, k | yq. But

k | x so that k | x − yq = r = x mod y. Thus k ∈
lb(y, x mod y).

Conversely, let k | y and k | r = x − yq. Then

(x− yq) = ck and y = dk for some c and d. Therefore

x = ck + yq = ck + dkq = k(c + dq)

so that x is a multiple of k, or k ∈ lb(x, y) as desired.�

11

How fast is Euclid’s algorithm?

• It really only depends on the number n we give it,

because in the very first time through the loop, it

computes a remainder modulo n.

• We’ll measure the time it takes, using the number of

times the loop is executed as our measure of “time”.

(We’re really deriving an O-estimate.)

• We’ll see that Euclid’s algorithm is exponentially faster

than simple factoring using, say, factor trees as in

grade school.

• The running time is (amazingly) intimately related

to the Fibonacci numbers

f0 = 0, f1 = 1, f2 = 1, f3 = 2, . . . , fk+1 = fk + fk−1.

12

Fibonacci and Euclid – first encounter.

Proposition For any n ≥ 1, Euclid’s algorithm

takes n−1 trips through the loop to compute gcd(fn, fn−1).

Proof: By induction on n. First let’s review the algo-

rithm:

function gcd(m:N+; n:N);

{
(a, b) := (m, n);

while b != 0 do % gcd(a, b) = gcd(m,n)

(a,b) := (b, a mod b);

gcd(m,n) := a

}
Basis: n = 1. To compute gcd(f1, f0) = gcd(1, 0) = 1

we go 0 = n− 1 times through.

Induction step: Assume that we go through the loop

k−1 times to compute gcd(fk, fk−1). To compute gcd(fk+1, fk)

we compute gcd(fk, fk+1 mod fk). But

fk+1 = fk + fk−1 = 1 · fk + fk−1,

so by the Division Theorem, fk+1 mod fk = fk−1. By

induction hypothesis it takes k − 1 times through the

loop for this, then one more trip for a total of k as we

wanted. �

13

Fibonacci and Euclid: second encounter via

Lamé

Theorem (Lamé). For any k ≥ 1, if Euclid’s

algorithm takes k trips to compute gcd(m, n), where

m ≥ n, then n ≥ fk+1.

Proof. By strong induction on k.

Basis: k = 1. If we went through the loop once then

certainly n ≥ 1 = f2. And when k = 2 we went through

the loop twice, so n > 1, and thus n ≥ 2 = f3.

Induction step: Assume for all integers ≤ k that if

we go through the loop k times, then n ≥ fk+1. We

must prove the same statement with k replaced by k +1.

Suppose that it takes k + 1 trips to compute gcd(m, n).

Write out the first two trips

gcd(m, n) = gcd(n, m mod n)

= gcd(m mod n, n mod (m mod n))

14

Continuing the proof

By induction hypothesis

m mod n ≥ fk

and

n mod (m mod n) ≥ fk−1.

We can simplify this using the Division Theorem: m =

q1n + r1 and n = q2r1 + r2, where r1 = m mod n and

r2 = n mod r1 = n mod (m mod n).

Note that r1 = m mod n < n so that q2 > 0. By IH,

r1 ≥ fk and r2 ≥ fk−1. Therefore

n = q2r2 + r1 ≥ r2 + r1 (because q2 > 0)

≥ fk−1 + fk by the two induction hypotheses)

= fk+1 by the inductive definition of Fibonacci.

15

Towards an O-estimate for Euclid

• Lamé’s theorem restated: For any k, n, m such that

k ≥ 1 and m ≥ n, if it takes Euclid k steps to

compute gcd(m, n) then n ≥ fk+1. (A “step” is an

iteration of the loop.)

• This is logically equivalent to saying that if n <

fk+1, then it takes at most k − 1 steps to compute

gcd(m, n).

• In our first example of strong induction proofs, we

showed

(∀k ≥ 2)(fk > αk−2)

where α = (1 +
√

5)/2.

• So if n ≤ αk−1, then n < fk+1 and so it takes at

most k − 1 steps to compute gcd(m,n).

16

Finishing the O-estimate for Euclid

• We may restate the conclusion on the last slide as

saying that for any k, m, and n, if n ≤ αk, then it

takes at most k steps to compute gcd(m,n).

• We know

n ≤ αk ⇐⇒ logα n ≤ k.

• Let k = dlogα ne, so that logα n < k < logα n + 1.

• Then it takes at most logα n + 1 steps to compute

gcd(m, n).

• Since logα n = log10 n · logα 10, this gives us an

O(log10 n) algorithm for the gcd. This is propor-

tional to the number of decimal digits in n.

• Compare this with the time it takes to factor an 800-

digit number.

17

