
Solving integer congruences

• We want to think about solving congruences “for x” just like solving equations “for

x”.

• The general form is

mx ≡ a (mod n)

where m, a, and n are given.

• The problem is that you can’t “divide through by m” all the time. If a is a multiple

of m, a/m will be an integer, but – for example –

4x ≡ 1 (mod 6)

has no (integer) solution x.

• Under what conditions will there be a unique solution for x?
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Multiplicative inverses mod n

• First of all, consider the congruence

mx ≡ 1 mod n.

• Can there be an integer x that “acts like” 1/m?

• An x that satisfies this congruence is called a multiplicative inverse of m modulo n.

• Sometimes there is no such thing. For the congruence 4x ≡ 1 mod 6 there isn’t any

“1/4” in the mod 6 number system.

• Why? A solution x has to obey the definition 4x = 1 + 6k for an integer k. But

for any integers x, k, the number 4x is even, and 1 + 6k is odd.

• It turns out that the problem here is that 4 and 6 have a common divisor (2) greater

than 1.

2



Existence and non-existence of multiplicative inverses

• If gcd(m, n) > 1, then there is no integer solution to mx ≡ 1 mod n.

• The reason is that an integer solution x has to satisfy

mx = 1 + nk for some k ∈ Z.

But mx is a multiple of gcd(m, n) and so is nk. If we take the remainders mod the

gcd, we get 0 on the left and 1 on the right.

• However, it’s fortunate that when gcd(m,n) = 1 there is always a multiplicative

inverse mod n, and a unique such in Zn.

• This case is so important that when gcd(m,n) = 1 we say that m and n are

relatively prime.
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The sm + tn theorem

• Theorem For non-negative integers m and n, there are “integer coefficients”

s and t such that

gcd(m,n) = sm + tn.

• Corollary When m and n are relatively prime, there is always a solution x

to mx ≡ 1 (mod n).

Proof (of the corollary): By the theorem, there are integers s and t such that

sm + tn = 1. Thus, sm = 1 − tn, so sm = ms differs from 1 by a multiple of n,

which by definition means ms ≡ 1 (mod n). Therefore s is the desired solution x.

• By looking at the proof of the theorem, using strong induction, we can obtain a

new recursive version (just as fast) of Euclid’s algorithm which – given m and n –

will return the required coefficients s and t.
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Proof of the sm + tn theorem

• We prove the following formal statement by strong induction on n:

(∀n ∈ N)[(∀m ∈ N+)(∃s, t ∈ Z)(gcd(m, n) = sm + tn)].

• Basis: n = 0. Then gcd(m, 0) = m. We may choose s = 1 and t = 0 to get

m = 1 ·m + 0 · n.

• Induction step: Assume for all 0 ≤ r < n that for any m

gcd(m, r) = s′m + t′r

for some integers s′, t′. We have to show that there are integers s, t with gcd(m, n) =

sm + tn.

By the lemma showing correctness of Euclid’s algorithm,

gcd(m, n) = gcd(n,m mod n).

Since m mod n < n, we can use m mod n as r in the inductive hypothesis, and

we can replace m by n there, too, because the IH holds for any m. This gives us –

using the IH –

gcd(m,m mod n) = s′n + t′(m mod n)

for some integers s′, t′ ∈ Z. Furthermore, m = qn + r, so that

gcd(m,n) = gcd(n, r) = s′n + t′r = s′n + t′(m− qn) = t′m + (s′ − t′q)n

so we can take s = t′ and t = s′ − t′q = s′ − t′ · (m div n). This finishes the

inductive step.
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The recursive version of Euclid

• Recall Euclid’s algorithm:

function gcd(m:N+; n:N);

{
(a, b) := (m, n);

while b != 0 do % gcd(a, b) = gcd(m, n)

(a,b) := (b, a mod b);

gcd(m,n) := a

}

• This while-program can be written as a recursive one:

function gcd(m:N+; n:N);

{
if n = 0 then gcd(m,n) := m;

else gcd(m,n) := gcd(n, m mod n);

}

• We’ll add some local variables which will compute the s and t guaranteed by the

sm + tn theorem .
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Extended GCD

• Recall the last step in the inductive proof of the sm + tn theorem:

gcd(m,n) = gcd(n, r) = s′n + t′r = s′n + t′(m− qn) = t′m + (s′ − t′q)n

so we can take s = t′ and t = s′ − t′q = s′ − t′ · (m div n).

• This allows us to create local variables d,s,t where d stands for the gcd, and s,t

are the required coefficients:

procedure egcd(m:N+; n:N);

{
if n = 0 return (m,1,0);

else { (d’, s’, t’) := egcd(n, m mod n);

(d, s, t) := (d’, t’, s’ - t’* (m div n));

return (d,s,t);}
}

• This allows us to calculate the s and t, and also to calculate multiplicative inverses.
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Example EGCD calculation

• procedure egcd(m:N+; n:N);

{
if n = 0 return (m,1,0);

else { (d’, s’, t’) := egcd(n, m mod n);

(d, s, t) := (d’, t’, s’ - t’* (m div n));

return (d,s,t);}
}

• Let’s use this algorithm to calculate gcd(99, 78) and s, t such that gcd(99, 78) =

s · 99 + t · 78. We can use the following array.

egcd calls quotient q (d, s, t) t = s′ − t′ · q
(99,78) 1 (3, -11, 14) 14 = 3 - (-11)* 1

(78,21) 3 (3, 3, -11) -11 = -2 - 3*3

(21,15) 1 (3, -2, 3) 3 = 1 - (-2)*1

(15,6) 2 (3, 1, -2) -2 = 0 - 1* 2

(6,3) 2 (3, 0, 1) 1 = 1 - 0*2

(3,0) (3, 1, 0)

fill down fill down fill up fill up

We fill the first two columns down and then the second two columns up.
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Example: finding a multiplicative inverse

• Solve 33x ≡ 1 (mod 26).

• Soilution: 33 and 26 are relatively prime. We first find s and t such that

s · 33 + t · 26 = 1.

• I cheated here, because 33 · 3 = 99 and 26 · 3 = 78, and from the last slide,

3 = (−11) · 99 + 14 · 78

so dividing out by 3

1 = (−11) · 33 + 14 · 26.

• So (−11) ·33 ≡ 1 (mod 26), and therefore we may take x = −11. It turns out that

any other solution y is congruent to -11 mod 26, so you can add 26 to -11, for the

least non-negative solution 15.
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Uniqueness of multiplicative inverses

• We now know that if m and n are relatively prime, then there is a solution x to

mx ≡ 1 (mod n).

• What are all of the solutions? Clearly we can add any multiple of n to the first x

we find, to get other solutions. Are these the only other ones?

• To answer this, let y be another solution, so that

my ≡ 1 (mod n).

Therefore, my ≡ mx (mod n), so that n | (my −mx) = m(y − x).

• Since m and n are relatively prime, no divisor of n can divide m. Therefore all

divisors of n divide y − x, which means that y − x is a multiple of n. Therefore,

y ≡ x (mod n)

and we have found all solutions.

• This means that if you find a solution x, just calculate x mod n to get the only

solution in Zn = {0, 1, . . . , n − 1}. That’s because of the partition property of ≡
(mod n).
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The Chinese Remainder Theorem:

An application of multiplicative inverses

• The Chinese mathematician Sun-Tsu (1st cent.) posed the following problem:

There are fewer than 105 people in a local warlord’s army. Let x be this num-

ber. I notice that

x mod 3 = 2

x mod 5 = 3

x mod 7 = 2

Can you determine x?

• Notice 3 · 5 · 7 = 105.

• Not to keep you in suspense, the only possibility is x = 23.
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Chinese Remainder Theorem: formal statement

• Theorem Given moduli m1, . . . ,mk relatively prime in pairs, let M be the

product m1 · · · · ·mk. Then for given a1, . . . , ak there is a unique x in ZM such

that
x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

x ≡ ak (mod mk).

• Proof. First we show existence. For 1 ≤ j ≤ k put Mj = M/mj. Then

gcd(mj, Mj) = 1 by the hypothesis. Solve the k congruences

Mj · yj ≡ 1 (mod mj)

and then set

x =

k∑
j=1

aj ·Mj · yj.

We claim x mod M is the required solution. To see this, fix j ≤ k. Note that

for i 6= j, (ai · Mi · yi) mod mi = 0. This is because for i 6= j, we have Mi ≡ 0

(mod mj). We also have aj · Mj · yj ≡ aj modulo mj, because Mjyj ≡ 1 modulo

mj. Therefore for each j

x ≡ 0 + · · · + aj + · · · + 0 = aj (mod mj)

So x satisfies the given congruences, and then so does x mod M , because each

mj | M .
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Example: Sun-Tsu’s problem

• Given

x mod 3 = 2

x mod 5 = 3

x mod 7 = 2

we have M = 3 · 5 · 7. Therefore M1 = 105/3 = 35, M2 = 105/5 = 21, and

M3 = 105/7 = 15.

• We solve the three congruences

35y1 ≡ 1 (mod 3)

21y2 ≡ 1 (mod 5)

15y3 ≡ 1 (mod 7)

getting y1 = 2, y2 = 1, and y3 = 1. Then x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 =

140 + 63 + 20 = 233.

• We take 233 mod 105 = 23.
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The Chinese Remainder Theorem: uniqueness

• This is really interesting! It’s a consequence of a fundamental fact about functions

on finite sets.

• Lemma Let A and B be finite sets with the same number n of elements. If

f : A → B is onto, then f is one-to-one.

• Proof: Since f is onto, the sets {x ∈ A | f (x) = b}, as b ranges through B, form

a partition of A. Every element of A is in exactly one of these sets. There are n

sets in the partition, because B has n elements. But there are also n elements of

A. Therefore each set in the partition is a singleton, because if you have n letters

each of which goes in exactly one mailbox, and there are n mailboxes, then each

mailbox must get exactly one letter.

Now let f (x) = f (y) = b. This means that x and y are in the same set of the

partition of A. But this set is a singleton, so x = y.
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Illustrating the lemma
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f is not onto

f is  onto
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Using the lemma to prove uniqueness

• For each modulus mj in the Chinese Remainder Theorem, Zmj
has mj elements.

Therefore

B = Zm1 × · · · × Zmk

has M = m1 · · · · ·mk elements.

• So does A = ZM .

• Let f : A → B be the function

f (x) = (x mod m1, . . . , x mod mk).

We claim that f is onto B. This is just a restatement of the existence part of the

theorem: for any (a1, . . . , ak) ∈ B, there is an x in ZM such that

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

x ≡ ak (mod mk).

If x, y in ZM are solutions to the congruences, we have f (x) = f (y). By the lemma,

x = y. Therefore there is at most one solution to the given congruences in ZM .

(QED)
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