
Equivalence Relations

• You can have a relation which simultaneously has

more than one of the properties we have been dis-

cussing.

• Definition An equivalence relation on a set A is

one which is reflexive, symmetric, and transitive.

• Instead of a generic name like R, we use symbols like

≡ to stand for equivalence relations.

• This is because an equivalence relation behaves like

the identity relation (the equality relation) on A. It

lets things be similar without being equal.

• Using this notation, let’s recap the three properties.

For all a, b, c ∈ A,

1. a ≡ a;

2. If a ≡ b, then b ≡ a;

3. If a ≡ b and b ≡ c then a ≡ c.
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Examples of equivalence relations

• The identity relation idA on A.

• The relation “same-age-in years-as” on the set of peo-

ple.

• The relation “sitting in the same row as” on the set

of students in this classroom.

• The relation ⇐⇒ between propositional expres-

sions.

• The relation of similarity between different triangles

sitting in the plane.

• Let A be the set of all functions f : R+ → R+.

Define f ∼ g as f = Θ(g). Then ∼ is an equivalence

relation on A.
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An extended example: congruence mod 5

• Let Z be the set of integers, positive, negative, and

0.

• We define m ≡ n (mod 5) if m− n is a multiple of

5. This is pronounced “m is congruent to n mod 5.”

• Thus 3 ≡ 8, 0 ≡ −10, 104 ≡ 89, etc.

• We prove that ≡ (mod 5) is reflexive, symmetric,

and transitive.

1. Since m−m = 0 = 0 · 5, ≡ is reflexive.

2. If m − n = 5k, then n − m = 5(−k), so ≡ is

symmetric.

3. If m − n = 5k and n − p = 5j, then m − p =

(m − n) + (n − p) = 5k + 5j = 5(k + j), so ≡
is transitive.

• We can define ≡ (mod p) for any positive integer

p ≥ 2. Quite often p is a prime number like 5.

3



Equivalence relations and partitions

• Equivalence relations “group things as being the same.”

• Consider the “same age” relation in the following pic-

ture.

Jane19 Spot3

Bill19 Harry20

Joela20

Students along with their ages.

• The people in the subgroups are all the same age as

each other (and themselves.)

• This collection of subsets is what’s called a partition.
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From equivalence relations to partitions

• We start with an equivalence relation ∼.

• In our example, the relation ∼ is the following set of
ordered pairs:

{(Bill, Jane), (Jane, Bill), (Harry, Joela), (Joela,Harry)} ∪ idA.

• Definition If x ∈ A, the equivalence class [x]

of x is

{y ∈ A | x ∼ y}.

• In our example, [Bill] = [Jane] = {Bill, Jane},
[Spot] = {Spot}, and [Harry] = [Joela] = {Harry, Joela}.

• You can see that these are the subsets indicated in

the picture.
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ERs to Parts, continued

• Definition Given a set A, a partition of A is a

collection Π of subsets of A having the following

two properties:

1. Every element of A is in least one set in Π;

2. Every element of A is in at most one set in

Π.

• The sets in Π are called the blocks of the partition.

We may summarize properties 1 and 2 by saying that

each element of A is a member of exactly one block

of Π.

• In our example,

Π = {{Bill, Jane}, {Spot}, {Harry, Joela}}.

• Theorem The equivalence classes of an equiv-

alence relation on a set A form a partition of A.
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Proof of the theorem.

• Assume that ≡ is a reflexive, symmetric, and transi-

tive relation on A.

• Because ≡ is reflexive, for every a ∈ A, a ∈ [a].

So every element of A is in at least one equivalence

class.

• We need to show that every element of A is in at

most one equivalence class. This uses symmetry and

transitivity. Suppose that a is in [x] ∩ [y]. We show

that [x] ⊆ [y], which will be enough to show [x] = [y],

because the reverse inclusion comes from an exactly

similar proof.

• Let z ∈ [x]. Then x ≡ z. Since a ∈ [x], x ≡ a.

Since a ∈ [y], y ≡ a.

• Rearrange the statements y ≡ a and x ≡ z by

symmetry to a ≡ y and z ≡ x. We then have

z ≡ x ∧ x ≡ a ∧ a ≡ y. Therefore z ≡ y by

transitivity. By symmetry, y ≡ z, proving z ∈ [y].

Therefore [x] ⊆ [y]. (QED)
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Example of equivalence classes

• Recall the “congruence mod 5” relation on Z:

m ≡ n (mod 5) if m− n is a multiple of 5.

• What are the equivalence classes of this relation?

• There are exactly 5 such classes: {[0], [1], [2], [3], [4]}.

• For example

[2] = {2+5k | k ∈ Z} = {2,−3, 7,−8, 12,−13, . . .}.

• The equivalence class of n is determined by the non-

negative remainder when n is divided by 5. So, [12] =

[−7] = [2].
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Partial Orderings

• We come to the last major type of relation in the

chapter on relations.

• Definition A partial ordering on a set A is

a reflexive, antisymmetric, and transitive rela-

tion on A.

• Using “antisymmetric” instead of “symmetric” com-

pletely changes the character of these relations from

that of equivalence relations.

• Two standard examples: the relation ≤ on R, and

the relation ⊆ on P(A).

• The antisymmetry property: if x ≤ y and y ≤ x

then x = y. Similarly for ⊆: if X ⊆ Y and Y ⊆ X

then X = Y .

• The difference between these two is that you can

compare any two numbers, but you cannot compare

any two subsets. For example, if A = {1, 2, 3},
X = {1, 2}, and Y = {1, 3}, then X is not a subset

of Y and Y is not a subset of X . This is why we say

“partial”.
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Examples in pictures

• Scheduling tasks in building a house:

Foundation Siding Wiring Lights end

Plumbing Floors

Painting

• In these graphs, we omit the self loops and the arrows

required by transitivity. The actual relation would be

the reflexive, transitive closure of the one pictured

here.
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Two more examples

{1,2,3}
{1,2} {1,3} {2.3}

{1} {2} {3}
 { }

30
6 10 15
2 3 5

1

Subsets of {1,2,3}

Divisors of 30
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