Equivalence Relations

e You can have a relation which simultaneously has
more than one of the properties we have been dis-
cussing.

e Definition An equivalence relation on a set A is
one which is reflexive, symmetric, and transitive.

e Instead of a generic name like R, we use symbols like
= to stand for equivalence relations.

e This is because an equivalence relation behaves like
the identity relation (the equality relation) on A. It
lets things be similar without being equal.

e Using this notation, let’s recap the three properties.
For all a,b,c € A,
l.a=a;
2. If a =b, then b = a;
3. Ifa=0and b= cthen a=c



Examples of equivalence relations

e The identity relation ¢d4 on A.

e The relation “same-age-in years-as” on the set of peo-
ple.

e The relation “sitting in the same row as” on the set
of students in this classroom.

e The relation <= between propositional expres-
s10nS.

e The relation of similarity between different triangles
sitting in the plane.

o Let A be the set of all functions f : RT — RT.
Define f ~ g as f = ©(g). Then ~ is an equivalence
relation on A.



An extended example: congruence mod 5

e Let Z be the set of integers, positive, negative, and
0.

e We define m = n (mod 5) if m — n is a multiple of
5. This is pronounced “m is congruent to n mod 5.”

e Thus 3 =8, 0= —10, 104 = 89, etc.

e We prove that = (mod 5) is reflexive, symmetric,
and transitive.
1. Sincem —m =0=0-5, = is reflexive.

2. If m —n = 5k, then n — m = 5(—k), so =i
symietric.
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3. Itm—n=>5kand n —p =55, then m — p
(m—n)+ (n—p) =5k+55 =5Fk+j), so
1s transitive.

e We can define = (mod p) for any positive integer
p > 2. Quite often p is a prime number like 5.



Equivalence relations and partitions

e Equivalence relations “group things as being the same.”

e Consider the “same age” relation in the following pic-
ture.
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Students along with their ages.

e The people in the subgroups are all the same age as
each other (and themselves.)

e This collection of subsets is what'’s called a partition.



From equivalence relations to partitions

o We start with an equivalence relation ~.

e In our example, the relation ~ is the following set of
ordered pairs:

{(Bill, Jane), (Jane, Bill), (Harry, Joela), (Joela, Harry)} Uida.

e Definition Ifx € A, the equivalence class |z]
of x 1s
lyeAlz~y;.

e In our example, [Bill] = [Jane] = {Bill, Jane},
[Spot] = {Spot}, and [Harry| = |Joela] = {Harry, Joela}.

e You can see that these are the subsets indicated in
the picture.



ERs to Parts, continued

e Definition Given a set A, a partition of A 1s a
collection 11 of subsets of A having the following
two properties:

1. Every element of A is in least one set in I1;
2. Every element of A is in at most one set in
I1.

e The sets in II are called the blocks of the partition.
We may summarize properties 1 and 2 by saying that
each element of A is a member of exactly one block

of II.

e In our example,

[T = {{Bill, Jane}, {Spot},{Harry, Joela}}.

e Theorem The equivalence classes of an equiv-
alence relation on a set A form a partition of A.



Proof of the theorem.

e Assume that = is a reflexive, symmetric, and transi-
tive relation on A.

e Because = is reflexive, for every a € A, a € |al.
So every element of A is in at least one equivalence
class.

e We need to show that every element of A is in at
most one equivalence class. This uses symmetry and
transitivity. Suppose that a is in [x] N [y]. We show
that [z] C [y], which will be enough to show [x] = [y],
because the reverse inclusion comes from an exactly
similar proof.

o Let z € [x]. Then z = z. Since a € [z], x = a.
Since a € |y, y = a.

e Rearrange the statements y = a and x = z by
symmetry to a = y and z = x. We then have
2z =xANx = aANa =y. Therefore 2z = y by
transitivity. By symmetry, y = z, proving z € [y].
Therefore [z] C [y]. (QED)



Example of equivalence classes

e Recall the “congruence mod 5” relation on Z:

m =mn (mod 5) if m — n is a multiple of 5.

e What are the equivalence classes of this relation?
e There are exactly 5 such classes: {[0], [1], [2], [3], [4]}

e For example
2] ={2+bk | ke Z} ={2,-3,7,-8,12,—13,...}.

e The equivalence class of n is determined by the non-
negative remainder when n is divided by 5. So, [12] =

1=}



Partial Orderings

e We come to the last major type of relation in the
chapter on relations.

e Definition A partial ordering on a set A is
a reflexive, antisymmetric, and transitive rela-
tion on A.

e Using “antisymmetric” instead of “symmetric” com-
pletely changes the character of these relations from
that of equivalence relations.

e T'wo standard examples: the relation < on R, and
the relation C on P(A).

e The antisymmetry property: if x < y and y < x
then x = y. Similarly for C: it X CY and Y C X
then X =Y.

e The difference between these two is that you can
compare any two numbers, but you cannot compare
any two subsets. For example, if A = {1,2,3},
X ={1,2}, and Y = {1, 3}, then X is not a subset
of Y and Y is not a subset of X. This is why we say
“partial”.



Examples in pictures

e Scheduling tasks in building a house:
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Painting

e In these graphs, we omit the self loops and the arrows

required by transitivity. The actual relation would be

the reflexive, transitive closure of the one pictured
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Two more examples
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