EECS 203 Review for Midterm 3 Statement of Theorems and Definitions

- **Definition** A partial ordering on a set A is a reflexive, antisymmetric, and transitive relation on A.
- Definition Let (A, \sqsubseteq) be a poset and $S \subseteq A$. An element $m \in S$ is the greatest element of S if $(\forall s \in S)(s \sqsubseteq m)$. An element $m \in S$ is the least element of S if $(\forall s \in S)(m \sqsubseteq s)$.
- Definition An element m ∈ S is a maximal element of S if there is no other element s ∈ S with m ⊑ s. An element m ∈ S is a minimal element of S if there is no other element s ∈ S with s ⊑ m.
- Given a poset (A, \sqsubseteq) and a subset S of A, we want to look at the elements of A which are "above" and "below" all elements of S.
- **Definition** We define the set ub(S) of upper bounds of S as $\{x \in A \mid (\forall s \in S)(s \sqsubseteq x)\}$. The set lb(S) of lower bounds of S is $\{x \in A \mid (\forall s \in S)(x \sqsubseteq s)\}$.
- In the picture, ub(S)
- **Definition** If the subset ub(S) has itself a least element, this is called the least upper bound of S. Furthermore, if the set lb(S) has a greatest element, this is called the greatest lower bound of S.

- Definition A poset (A, ⊑) is called a lattice if any two element subset {x, y} of A has a least upper bound and a greatest lower bound. These are denoted x ⊔ y and x ⊓ y respectively.
- Theorem (Fundamental Theorem of Arithmetic.) Every positive integer m has a unique factorization into primes of the form

$$m = p_1^{j_1} \cdot p_2^{j_2} \dots$$

where $p_1 = 2, p_2 = 3, ...$ are the prime numbers in order, and j_i is the number of times the prime p_i divides m.

• This gives rise to a function

f(m, i) = the number of times the prime p_i divides m.

• Proposition

$$m \mid n \iff (\forall i)(f(m,i) \le f(n,i)).$$

• From this, it follows that

$$f(lcm(m,n),i) = \max\{f(m,i), f(n,i)\}$$

and

$$f(\gcd(m,n),i) = \min\{f(m,i),f(n,i)\}.$$

This proves that the poset $(\mathbb{N}, |)$ is a lattice.

• Theorem (Division Theorem.) Let n be a fixed integer ≥ 2 . For any $z \in \mathbb{Z}$ we can find unique integers q, r such that

$$z = qn + r$$
 where $0 \le r \le n - 1$.

- **Definition** Two integers x and y are congruent mod n, where n > 0, if x y is a multiple of n.
- Theorem For any integers x and y, $x \equiv y \pmod{n}$ if and only if x mod $n = y \mod n$.
- **Proposition** If $a \equiv b$ and $c \equiv d \pmod{n}$ then (1) $a + c \equiv b + d$ and (2) $ac \equiv bd \pmod{n}$.
- Definition Let $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. For $a, b \in \mathbb{Z}_n$ define $a \oplus_n b = (a+b) \mod n$

and

 $a \otimes b = ab \mod n.$

• Euclid's algorithm:

```
function gcd(m:\mathbb{N}^+; n:\mathbb{N});
{
(a, b) := (m, n);
while b != 0 do % gcd(a, b) = gcd(m, n)
(a,b) := (b, a mod b);
gcd(m,n) := a
}
```

• Toward correctness of Euclid: Lemma For any x, y:

$$gcd(x, y) = gcd(y, x \mod y).$$

- Theorem (Lamé). For any $k \ge 1$, if Euclid's algorithm takes k trips to compute gcd(m, n), where $m \ge n$, then $n \ge f_{k+1}$.
- **Definition** Consider the congruence

 $mx \equiv 1 \mod n.$

An x that satisfies this congruence is called a *multiplicative inverse* of m modulo n.

• **Theorem** For non-negative integers m and n, there are "integer coefficients" s and t such that

gcd(m, n) = sm + tn.

- Corollary When m and n are relatively prime, there is always a solution x to $mx \equiv 1 \pmod{n}$.
- Extended Euclid's Algorithm:
 procedure egcd(m:N⁺; n:N);
 {
 if n = 0 return (m,1,0);
 else { (d', s', t') := egcd(n, m mod n);
 (d, s, t) := (d', t', s' t'* (m div n));
 return (d,s,t);}
 }
- Theorem (Chinese Remainder Theorem.) Given moduli m_1, \ldots, m_k relatively prime in pairs, let M be the product $m_1 \cdots m_k$. Then for given

 a_1, \ldots, a_k there is a unique x in \mathbb{Z}_M such that

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$
$$\dots$$
$$x \equiv a_k \pmod{m_k}.$$

- Theorem (Fermat's Little Theorem.) Let p be a prime number and a be a positive integer such that p does not divide a. Then $a^{p-1} \equiv 1 \mod p$.
- The RSA encryption and decryption functions are inverses of each other. That is, d(e(M)) = M, where

 $e(M) = M^e \mod pq$, and $d(C) = C^s \mod pq$,

where s is an inverse of e modulo (p-1)(q-1).