EECS 203-1 - Homework 2 Exercises in Rosen,

page 12-14: 16 a-c, 18 a-b, 26, 40

page 19-20: 8 b-d, 12, 18, 26

page 33: 8 a-e

Total points = 60

16 (2pts each)

- (a) If I remember to send you the address, then you must have sent me an e-mail message. (Alternatively: If you want me to remember to send you the address, you must send me an email message.)
- (b) If you were born in the United States, then you are a citizen of this country.
- (c) If you keep your textbook, then it will be a useful reference in your future courses.

18 (2pts each)

- (a) You get an A in this course if and only if you learn how to solve discret mathematics problems.
- (b) You read the newspaper every day if and only if you are informed.

26 (6pts)

n	a	r	S	$p \rightarrow q$	$(p\rightarrow q)\rightarrow r$	$((p\rightarrow q)\rightarrow r)\rightarrow s$
р	q					
Т	Т	Τ	Т	Т	Τ	Τ
T	T	Τ	F	Τ	Τ	F
Τ	T	\mathbf{F}	T	Τ	${ m F}$	Τ
Τ	T	\mathbf{F}	F	Τ	${ m F}$	Τ
Τ	F	Τ	Т	F	${ m T}$	Τ
Τ	F	Τ	F	F	${ m T}$	F
Τ	F	\mathbf{F}	T	F	${ m T}$	Τ
Т	F	F	F	F	${ m T}$	F
F	T	Τ	T	Τ	${ m T}$	Τ
F	Т	Τ	F	Т	${ m T}$	F
F	Т	F	Т	Τ	${ m F}$	Τ
F	T	\mathbf{F}	F	Τ	${ m F}$	Τ
F	F	Τ	Τ	Т	${ m T}$	Τ
F	F	Τ	F	Т	${ m T}$	F
F	F	F	Т	Т	${ m F}$	Τ
F	F	F	F	Т	F	Т

40 (8pts each)

Conditions are:

- K or H
- (R or V) and (not(R and V))
- \bullet A \rightarrow R
- \bullet V \leftrightarrow K
- $\bullet~H{\rightarrow}A~{\rm and}~K$

Technique is to list out the whole truth table and then eliminate all wrong possibilities according to the above 5 conditions. It is acceptable if logical argument is given.

V and K are in the chatting room and others are not.

8 (4pts each)

	p	q	r	$p \rightarrow q$	$q{ ightarrow} r$	$(p\rightarrow q)\bigwedge(q\rightarrow r)$	$p{ ightarrow} r$	$[(p \rightarrow q) \bigvee q \rightarrow r] \rightarrow (p \rightarrow r)$
	Τ	Т	Т	Т	Т	Τ	Т	T
	Τ	Τ	F	Т	F	${ m F}$	F	${ m T}$
	Τ	F	Τ	F	Τ	F	Τ	${ m T}$
(b)	Τ	F	F	F	Τ	F	F	${ m T}$
, ,	F	Τ	Т	Т	Τ	${ m T}$	Τ	${ m T}$
	F	Τ	\mathbf{F}	Τ	\mathbf{F}	F	${ m T}$	${ m T}$
	F	F	Т	Т	Τ	${ m T}$	Τ	${ m T}$
	F	F	F	Τ	Τ	${ m T}$	Τ	Τ

	р	q	$p \rightarrow q$	bVb→d	[b\/b→d]→d
	Τ	Τ	Τ	Τ	Τ
(c)	Τ	F	F	${ m F}$	T
	F	Τ	Τ	${ m F}$	${ m T}$
	F	F	Τ	F	Τ

	р	q	r	pVq	$p \rightarrow r$	$q{ ightarrow} r$	$[(p \bigvee q) \bigwedge (p \rightarrow r) \bigwedge (q \rightarrow r)]$	$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
	Т	Τ	Т	Т	Τ	Τ	T	Τ
	Τ	Τ	F	Τ	F	F	${ m F}$	${ m T}$
	Τ	F	Τ	Τ	Τ	Τ	${ m T}$	${ m T}$
(d)	Т	F	\mathbf{F}	${ m T}$	F	Τ	${f F}$	${ m T}$
,	F	Τ	Τ	${ m T}$	Τ	${ m T}$	${ m T}$	${ m T}$
	F	Τ	\mathbf{F}	${ m T}$	Τ	F	${f F}$	${ m T}$
	F	F	Τ	F	Τ	${ m T}$	${f F}$	${ m T}$
	F	F	F	F	Τ	Τ	F	${ m T}$

12 (5pts)

$$(\ \ ^{} p \ \bigwedge (p \rightarrow q)) \rightarrow \ \ ^{} q$$

$$= \ \ (\ ^{} p \ \bigwedge (p \rightarrow q)) \bigvee \ \ ^{} q$$

$$= (p \ \bigvee \ \ (p \rightarrow q)) \bigvee \ \ ^{} q$$

$$= (p \ \bigvee \ \ (p \rightarrow q)) \bigvee \ \ ^{} q$$

$$= (p \ \bigvee \ (p \bigwedge \ \ q)) \bigvee \ \ ^{} q$$

$$= p \bigvee \ \ q, \ not \ a \ tautology$$

18 (4pts)

p	q	$\mathbf{p} \oplus \mathbf{q}$	$^{q}(\mathrm{p}\oplus\mathrm{q})$	$\mathbf{p} \!\!\leftrightarrow \!\! \mathbf{q}$
Τ	Τ	F	Τ	Τ
Τ	F	${ m T}$	${ m F}$	F
F	Τ	${ m T}$	${ m F}$	F
F	F	F	Τ	Τ

26 (5pts)

Consider the case of 2 variables p and q.

р	q	conjunction of	unknown proposition
		the variables or	
		their negatives	
Τ	Т	p∕q	F
Τ	F	p∧¬q	T
F	Τ	¬p∕q	${ m F}$
F	F	¬p∧¬q	T

unknown proposition

- = disjunction of conjunctions for which the unknown proposition is true.
- = (2nd conjunction) \bigvee (4th conjunction), in the case shown above
- $= (p \land q \urcorner) \lor (\urcorner p \land q \urcorner)$

This way of finding the DNF for a proposition applies to the case of n variables too.

8 (2pts each)

- (a) Randy Goldberg is enrolled in CS 252.
- (b) There is a student enrolled in Math 695
- (c) Carol Sitea is enrolled in one class.
- (d) There is a student enrolled in both Math 222 and CS 252.
- (e) We can find a student such that for all the classes he is enrolled in, we can find another student that is enrolled in all the same classes. (PS: This does not mean that they are enrolled in all classes available. Also this does not mean that a class has at least 2 students if any. Also this does not mean that we can find 2 students that are taking EXACTLY the same set of classes.)