EECS 203-1 - Homework 3 Exercises in Rosen,

page 34-37: 12 bdfh, 14 acegi, 34, 38, 40, 52

page 37: 40 again

page 45: 4, 6, 12 ad, 14

Total points = 60

12 (b) (2pts)
$$\forall y F(\text{Evelyn}, y)$$

- (f) (3pts) $\neg \exists x (F(x, \text{Fred}) \land F(x, \text{Jerry})) \\
 = \forall x (\neg (F(x, \text{Fred}) \land F(x, \text{Jerry}))) \\
 = \forall x (\neg F(x, \text{Fred}) \lor \neg F(x, \text{Jerry}))$
- (h) (3pts) $\forall x \exists y \forall z (F(x, y) \land ((y \neq z) \rightarrow \neg F(x, z)))$

14 (2pts each)

- (a) $\neg I(Jerry)$
- (c) $\neg C(Jan, Sharon)$
- (e) $\forall x ((x \neq \text{Joseph}) \leftrightarrow C(\text{Sanjay}, x))$
- (g) $\neg \forall I(x)$ = $\exists x \neg I(x)$
- (i) $\forall x \exists y ((x \neq y) \leftrightarrow I(x))$

34 (2pts each)

(a)
$$\exists x (P(x) \land S(x))$$

 $= \forall x \lnot (P(x) \land S(x))$
 $= \forall x (\lnot P(x) \lor \lnot S(x))$
 $= \forall x (P(x) \to \lnot S(x))$

(b)
$$\neg \exists x (R(x) \land \neg S(x))$$

 $= \forall x \neg (R(x) \land \neg S(x))$
 $= \forall x (\neg R(x) \lor S(x))$
 $= \forall x (P(x) \to S(x))$

(c)
$$\forall x (Q(x) \to P(x))$$

(d)
$$\forall x (Q(x) \rightarrow \neg R(x))$$

(e) Yes.

38 (3pts each)

(a) Suppose A is TRUE:

LHS = TRUE

RHS = TRUE

Suppose A is FALSE:

 $LHS = \forall x P(x)$

 $RHS = \forall x P(x)$

Therefore, logical equivalence.

(b) Suppose A is TRUE:

LHS = TRUE

 $RHS = \exists x(TRUE) = TRUE$

Suppose A is FALSE:

 $LHS = \exists x P(x)$

 $RHS = \exists x P(x)$

Therefore, logical equivalence.

40 (4pts)

We prove that the two are not logically equivalent by using a counter example.

Let P(x) be "x is a positive number" and let Q(x) be "x is a non-positive number" and the universe of discourse is the set of all real numbers.

Then $\forall x P(x) \lor \forall x Q(x)$ is FALSE. But $\forall x (P(x) \lor Q(x))$ is TRUE.

52 (3pts)

$$\forall \epsilon \exists N (n > N \rightarrow \mid a_n - L \mid < \epsilon), \text{ for } \epsilon > 0 \text{ and } N > 0$$

40 again (3pts)

$$(\forall x P(x) \lor \forall x Q(x))$$
 implies $\forall x (P(x) \lor Q(x))$

- 4 (4pts)
 - $B\subset A$

 - $C \subset A$ $C \subset D$
- 6 (4pts)
 - {2} is an element of the sets of 5c, 5d and 5e, but not others.
- 12 (2pts each)
 - (a) cardinality=0.
 - (d) cardinality=3.
- $14\ (\mathrm{2pts})$

Yes.