EECS 203 Homework 4 Solutions

Total Po Page 54-					
10)	Let A and B be sets. Show that:				
(10 point	s)				
a)	$(A \cap B) \subseteq A$	Usir	ng N	Iembersh	ip Tables
	$(A \cap B) = \{x: x \text{ belongs to } A \text{ and } B\}$	Α	B	(A∩B)	$(A \cap B) \cap A$
		1	1	1	1
	Hence every element that belongs to	1	0	0	0
	$(A \cap B)$ also belongs to A. Thus	0	1	0	0
	$(A \cap B) \subseteq A$	0	0	0	0
		∴A set A	ll ele A	$A \cap B$) = (A ements of) $\subseteq A$	$(A \cap B) \cap A$ $(A \cap B)$ lie within
b)	$A\underline{\subset}(A\cup B)$	Usir	ng N	lembersh	ip Tables
	$(A \cup B) = \{x : x \text{ belongs to } A \text{ or } x\}$	Α	B	$(A \cup B)$	$A \cap (A \cup B)$
	belongs to B or both}	1	1	1	1
	<i>c</i> , ,	1	0	1	1
	Hence, every element that belongs to A	0	1	1	0
	also belongs to $(A \cup B)$. Thus	0	0	0	0
	$A \subseteq (A \cup B)$	∴A (A∪	ll ele B)	$= A \cap (A \cup B)$	B) A lie within
c)	$A - B \subseteq A$	Usir	ng M	lembersh	ip Tables
	$(A - B) = \{x : x \text{ belongs to } A \text{ and } x \text{ does } \}$	Α	B	(A-B)	$(A-B) \cap A$
	not belong to B}	1	1	0	0
		1	0	1	1
	Hence, every element that belongs to A	0	1	0	0
	- B has to belong to A. Thus A-B ⊆ A	0	0	0	0
			ll ele		B) $\cap A$ (A-B) lie within set

d)	$A \cap (B-A) = \emptyset$	Usiı	ng N	ſembe	rship Table	5
	(B-A) = {x : x belongs to B and x does not belong to A}	Α	B	(B- A)	A∩(I	3-A)
	$A \cap (B-A) = \{x : x \text{ belongs to } A \text{ and } x\}$	1	1	0	0)
	belongs to B and x does not belong to	1	0	0	0)
	A}.	0	1	1	0	
	No element can belong to A and not belong to A at the same time. Hence	0	0	0	0	
	$A \cap (B-A) = \emptyset.$:. A	A∩(I	B-A) =	Ø	
e)	$A \cup (B - A) = A \cup B$	Usiı	ng N	ſembe	rship Table	8
	It can be proved that $B-A = B \cap A$. Thus $A \cup (B-A) = A \cup (B \cap \overline{A})$	Α	B	B-A	A∪(B-A)	A∪B
	$= (A \cup B) \cap (A \cup \overline{A})$	1	1	0	1	1
	$= (A \cup B) \cap (A \cup A)$ $= (A \cup B) \cap (U)$	1	0	0	1	1
	$= (A \cup B)$	0	1	1	1	1
	- (100)	0	0	0	0	0
	where we used the Distributive Law and the fact that $(A \cup \overline{A}) = U$ which is the universal set.	∴ A	∖∪(H	3-A) =	A∪B	

Let A, B, and C be sets. Show that (A-B)-C = (A-C)-(B-C)

(3 points)

16)

Using Membership Tables

This is the easiest way to show this identity.

Α	B	С	A-B	A-C	B-C	(A-B)-C	(A-C)-(B-C)
1	1	1	0	0	0	0	0
1	1	0	0	1	1	0	0
1	0	1	1	0	0	0	0
1	0	0	1	1	0	1	1
0	1	1	0	0	0	0	0
0	1	0	0	0	1	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

 $::(\mathbf{A}-\mathbf{B})-\mathbf{C} = (\mathbf{A}-\mathbf{C})-(\mathbf{B}-\mathbf{C})$

18) Draw the Venn diagrams for each of the following combinations of the sets(9 points) A, B, and C

,	Combination	Diagram
A)	$A \cap (B \cup C)$	ABC
B)	$\overline{A} \cap \overline{B} \cap \overline{C}$	BC
C)	$(A-B)\cup (A-C)\cup (B-C)$	A C

28b)	Show that if A and B are sets, then $(A \oplus B) \oplus B = A$
(2 points)	

Using Membership Tables

Α	В	A⊕B	(A⊕B) ⊕B
1	1	0	1
1	0	1	1
0	1	1	0
0	0	0	0

 $\therefore (\mathbf{A} \oplus \mathbf{B}) \oplus \mathbf{B} = \mathbf{A}$

Page: 67-68

10) Determine whether each of the following functions from Z to Z is one-to-one.(8 points)

a)	f(n) = n-1
	Yes . This is a strictly increasing function; i.e.; $f(x) > f(y)$ whenever $x > y$,
	and a strictly increasing function is one-to-one (and onto).
b)	$f(\mathbf{n}) = \mathbf{n}^2 + 1$
	No. This can proved by a counter example;
	f(1) = 2, and also $f(-1) = 2$.
c)	$f(\mathbf{n}) = \mathbf{n}^3$
	Yes. Because this is a strictly increasing function
d)	$f(\mathbf{n}) = \lceil \mathbf{n}/2 \rceil$
	No. This can be shown by a counter example;
	f(1) = 1, and $f(2) = 1$.

12)	Give an example of a function from N to N that is

(8 points) (There can be many possible answers to this question)

- a) One-to-one but not onto. f(n) = 2n + 1. (only odd values are mapped)
- b) Onto but not one-to-one $f(n) = \lceil n/2 \rceil$

c) Both onto and one-to-one (but different from the identity function)

f(n) = n+1 when n is even (even numbers are mapped to odd numbers; take 0 as an even number) f(n) = n-1 when n is odd (odd numbers are mapped to even numbers)

f(n) = n-1 when n is odd (odd numbers are mapped to even numbers)

d) Neither one-to-one nor onto

f(n) = 10 when n is even f(n) = 0 when n is odd

14) Determine whether each of the following functions is a bijection from R to(2 points) R.

a) f(x) = -3x + 4Yes. d) $f(x) = x^5 + 1$ Yes.

20) If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify (8 points) your answer.

Yes. If f and f *o* g are one-one functions, g is also one-one.

The proof is by contradiction. Suppose g is not one-one then we prove that either f is not one-one or f o g is not one-one.

The function f is not under our control but f *o* g is under our control because g is under our control.

If f is not one-one, then the proof ends there itself. But whatever be the case of f, f o g cannot be one-one. This can be proved by the following argument.

Let g: $A \rightarrow B$ and f: $B \rightarrow C$.

By assumption, since g is not one-one, there exists 2 distinct elements x1 and x2 such that g(x1) = g(x2) = y where y belongs to B.

Let f(y) = z for some z belonging to C.

Thus, f o g (x1) = f o g (x2) = z. Hence f o g cannot be one-one.

This means that if f and f *o* g are one-one, g has to be one-one using the fact that $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$