EECS 203 Homework – 5 Solutions

Total Points: Page 69:	40
56)	Suppose that <i>f</i> is an invertible function from Y to Z and <i>g</i> is an invertible function from X to Y. Show that the inverse of the composition <i>f</i> o <i>g</i> is given by $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
4 points	If a function is invertible, then it has to be one-to-one and onto i.e it has to be a bijective function. $g : X \text{ to } Y, \therefore$ there is a $g^{-1} : Y$ to X which is also bijective. $\therefore g(g^{-1}(y)) = y$ and $g^{-1}(g(x)) = x$ $f : Y \text{ to } Z, \therefore$ there is a $f^{-1} : Z$ to Y which is also bijective. $\therefore f(f^{-1}(z)) = z$ and $f^{-1}(f(y)) = y$
	Since f and g are bijective functions (f o g): X to Z is also bijective. \therefore (f o g) ⁻¹ exists and takes elements in Z to elements in X.
	Since the range (Y) of f^{-1} is the domain (Y) of g^{-1} , $(g^{-1}o f^{-1})$: Z to X exists and is bijective.
	To prove that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$, we need to prove that $g^{-1} \circ f^{-1}(f \circ g(x)) = x$ and $f \circ g (g^{-1} \circ f^{-1}(z)) = z$ Let $g(x) = y$ and let $f(y) = z$ $g^{-1} \circ f^{-1}(f \circ g(x)) = g^{-1}(f^{-1}(f(g(x)))) = g^{-1}(f^{-1}(f(y))) = g^{-1}(y) = x$. $f \circ g (g^{-1} \circ f^{-1}(z)) = f(g(g^{-1}(f^{-1}(z)))) = f(g(g^{-1}(y))) = f(y) = z$.
	Thus $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
Page 78: 4) 4 points	What are the terms a_0 , a_1 , a_2 and a_3 of the sequence $\{a_n\}$, where a_n equals
-	a) $(-2)^{n}$?
	Ans: 1, -2, 4, and -8. b) 3?
	Ans: 3 , 3 , 3 , and 3 . c) $7+4^n$?
	Ans: 8, 11, 23, and 71.
	d) $2^{n} + (-2)^{n}$? Ans: 2 , 0 , 8 , and 0 .
	1110. - , 0, 0, unu 0.

6)

List the first 10 terms of each of the following sequences

2 points

a) The sequence obtained by starting with 10 and obtaining each term by subtracting 3 from the previous term.

10, 7, 4, 1, -2, -5, -8, -11, -14, -17.

d) The sequence whose n^{th} term is $\lfloor \sqrt{n} \rfloor$

0, 1, 1, 1, 2, 2, 2, 2, 2, 3.

14) What are the values of the following sums, where $S = \{1, 3, 5, 7\}$ 4 points

a)	$\sum_{j \in S} j$
b)	$\frac{16}{\sum_{j \in S} j^2}$
c)	84 $\sum_{j \in S} (1/j)$
d)	1/1 + 1/3 + 1/5 + 1/7 = 1.6761 $\sum_{j \in S} 1$
	4

20) Use the identity 1/(k (k+1)) = 1/k - 1/(k+1) and Exercise 19 to compute $\sum_{k=1}^{n} 1/(k (k+1))$

2 points

$$1/(k (k+1)) = 1/k - 1/(k+1)$$

$$\therefore \sum_{k=1}^{n} 1/(k (k+1)) = \sum_{k=1}^{n} 1/k - 1/(k+1)$$

$$= 1/1 - 1/(1/(1) + 1/2) - 1/(2/(1)) + \dots + 1/n - 1/(n+1)$$
[This is called **Telescopic cancellation**
and it is useful in many problems]
$$= 1 - 1/(n+1)$$

$$\therefore \sum_{k=1}^{n} 1/(k (k+1)) = 1 - 1/(n+1)$$

Is it true that x^3 is $O(g(x))$, if g is the given function? [For example, if $g(x) =$
x+1, this question asks whether x^3 is $O(x+1)$]
$a) \qquad g(\mathbf{x}) = \mathbf{x}^2$

	No
c)	$g(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x}^3$
	Yes
e)	$g(\mathbf{x}) = 3^{\mathbf{x}}$
	Yes

18)	Let k be a positive integer. Show that $1^k + 2^k + + n^k$ is $O(n^{k+1})$
2 points	Since each of the terms in the sum of the 1 st n terms do not exceed n ^k , it
	follows that
	$1^{k} + 2^{k} + \ldots + n^{k} \le n^{k} + n^{k} + n^{k} + \ldots n \text{ times} = n \cdot n^{k} = n^{k+1}$
	$ 1^{k} + 2^{k} + \dots + \mathbf{n}^{k} \leq \mathbf{n}^{k+1} $
	Taking $C = 1$ and for $n > 1$, by definition $1^k + 2^k + + n^k$ is $O(n^{k+1})$ {Note that here k is some constant value}
	$1 + 2 + \dots + n$ is $O(n)$ (note that here k is some constant value)

22)	For each function in Exercise 1, determine whether that function is $\Omega(x)$
	and whether it is $\Theta(x)$?
12 points	Note: A function $f(x)$ is $\Theta(g(x))$ if it is both $O(g(x))$ and $\Omega(g(x))$. Here the
-	function $g(x) = x$ (the identity function).
	a) $f(x) = 10$
	This function is $O(x)$ but not $\Omega(x)$ \therefore it is not $\Theta(x)$
	b) $f(x) = 3x + 7$
	This function is $O(x)$ and also $\Omega(x)$ \therefore it is $\Theta(x)$
	c) $f(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x} + 1$
	This function is not $O(x)$, but is $\Omega(x)$ \therefore it is not $\Theta(x)$
	$\mathbf{d}) \qquad f(\mathbf{x}) = 5\log \mathbf{x}$
	This function is $O(x)$, but not $\Omega(x)$ \therefore it is not $\Theta(x)$
	e) $f(\mathbf{x}) = \lfloor \mathbf{x} \rfloor$
	This function is $O(x)$ and also $\Omega(x)$ \therefore it is $\Theta(x)$
	f) $f(x) = \lceil x/2 \rceil$
	This function is $O(x)$ and also $\Omega(x)$ \therefore it is $\Theta(x)$

30)	Explain what it means for a function to be $\Omega(1)$.
4 points	
_	All functions for which there exists real numbers $k \& C$ such that
	$ f(\mathbf{x}) \ge C$, for $\mathbf{x} > k$ are $\mathbf{\Omega}(1)$.
	In other words, if a function is $\Omega(1)$, it is actually bounded away from 0 for
	all sufficiently large values of x .