EECS 203-1 Homework –6 Solutions

Total Points: 30	
Page 182:	
16a)	Prove that the square of an even number is an even number using a direct proof.
5 points	
-	Assume that the hypothesis of this implication is true, namely, suppose that n is even. Then $n = 2k$, for some k is an integer. It follows that $n^2 = (2k)^2$ $= 2^2k^2$ $= 2(2k^2)$. Therefore, n^2 is even (it is twice an integer value).
22) 3 points	Prove that the product of two rational numbers is rational
C points	By definition, any rational number can be written as p/q where p and q are integers and $q \neq 0$. Now, let x and y be the 2 rational numbers. Let $x = a/b$ and $y = c/d$, where a, b, c and d are integers. On multiplying them, we get: x * y = (a/b) * (c/d) = (a*c)/(b*d).
	Now, if a and c are integers, then a*c is also an integer. Similarly for b and d. So the product of two rational numbers must be a rational number.
26) 3 points	Prove or disprove that $2^n + 1$ is prime for all nonnegative integers n.
	This can be disproved by a counter example: For $n = 3$, $2^n + 1 = 2^3 + 1 = 8 + 1 = 9$, and 9 is not a prime number. Remember it is easy to disprove something by finding just one counter- example.

44) Prove or disprove each of the following statements about the floor and ceiling functions

4 points

b) $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ for all real numbers x and y. This can be disproved by a counter example:

```
For x = 0.25 and y = 3.75

L.H.S is

[x + y] = [0.25 + 3.75] = [4.00] = 4

and R.H.S is

[x] + [y] = [0.25] + [3.75]

= 0 + 3

= 3

\therefore L.H.S \neq R.H.S
```

28)

Do problem 28 on page 183 by a generalization of the proof I did in class, involving prime factorizations. Show (as a lemma) that a positive number j is a perfect square if and only if each of its p-levels, for p a prime number, is even. (The prime numbers start at 2.) The p-level of a number j is the exponent of p in the prime factorization of j. Thus the 2-level of $98 = 2^{1}.7^{2}$ is 1, and the 7-level is 2.

Problem 28: Show that \sqrt{n} is irrational if n is a positive integer that is not a perfect square.

10 points

Method 1

We will first prove the following Lemma. The lemma is useful to know in general.

Show that a positive number j is a perfect square if and only if each of its p-levels, for p a prime number, is even.

Proof:

Let j be a positive number, we can write j in terms of it's prime factors, $j=P_1^{a}.P_2^{b}.P_3^{c}...$ (where $P_1, P_2, P_3...$ are Prime numbers, and a, b, c ... are some integer numbers)

a) We have to prove that if a, b, c... are even numbers, then j is a perfect square.

 \therefore j = P₁^{2x}.P₂^{2y}.P₃^{2z}... (where a=2x, b = 2y, c=2z...because a, b, c ... are even integers)

 $\therefore j = (P_1^{x}.P_2^{y}.P_3^{z})^2$

Thus j is a perfect square.

b) We have to prove that if j is a perfect square, then a, b, c...are even numbers.

: $j=k^2$ We can write k ask = $P_1^x \cdot P_2^y \cdot P_3^z \cdot \dots$ where $P_1, P_2, P_3 \cdot \dots$ are prime numbers, and x, y, z .. are some integers) $\therefore j = k^2 = (P_1^{x}.P_2^{y}.P_3^{z}...)^2 = P_1^{2x}.P_2^{2y}.P_3^{2z}... = P_1^{a}.P_2^{b}.P_3^{c}...$ (where a=2x, b = 2y, c=2z...)

Thus a, b, c ... are even numbers.

Hence proved. (Note that in this proof, we assumed (without proof) that every integer has a unique prime factorization.)

Now the proof of " \sqrt{n} is irrational when n is not a perfect square."

This is a proof by contradiction.

Assume \sqrt{n} is rational. Therefore $\sqrt{n} = p/q$ where p and q are integers. Squaring both sides we get

$$n = p^2/q^2.$$

$$\therefore p^2 = n * q^2$$

Since p^2 is a perfect square, the LHS is a number that has all even p-levels (by lemma).

Now look at the RHS. q^2 is a perfect square, so the p-levels of q^2 are all even. But n is not a perfect square (by hypothesis) therefore at least one of its p-levels is even. Since multiplication of n and q^2 leads to summing the powers, **at least one of the p-levels of the RHS is odd**. This is a contradiction.

Therefore \sqrt{n} cannot be rational. Thus \sqrt{n} is irrational.

Method 2 (Without Using the Lemma)

Given n (> 1) is not a perfect square. Suppose that \sqrt{n} is rational i.e $\sqrt{n} = a/b$, for some positive integers a and b, and that b is the smallest positive integer denominator for which this is true. Then $b^2 < n^* b^2 = a^2$, because n > 1, so 0 < b < a. Now divide a by b, obtaining quotient q and remainder r, so $a = q^*b + r$, with $0 \le r < b$. Now if r = 0, we have $a = q^*b$, and a/b = q, so $n = q^2$, and n is a perfect square, a contradiction. This means that r cannot be zero, and so $0 < r = a - q^*b < b$. Now $n^* b^2 = a^2$ $n^* b^2 - q^*a^*b = a^2 - q^*a^*b$ $b^*(n^*b-q^*a) = a^*(a-q^*b)$ $(n^*b-q^*a)/(a-q^*b) = a/b = \sqrt{n}$

This contradicts the minimality of b, since $0 < a - q^*b < b$. This contradiction means that no such integers a and b can exist, and \sqrt{n} is irrational.

The next two problems refer to the universe of functions from R+ to R+, where R+ is the set of positive real numbers.

5 points

1) Prove that for any *f* and *g*, that if f = O(g), then $g = \Omega(f)$. f = O(g), implies, by definition, $\exists C$, k (both positive constant) such that $|f(x)| \le C |g(x)|$, for x>k

 $\therefore 1/C^* | f(\mathbf{x})| \le | g(\mathbf{x})|$ $\therefore | g(\mathbf{x})| \ge C' * | f(\mathbf{x})|, \text{ where } C' = 1/C \text{ is a constant}$ $\therefore By \text{ definition of Big Omega,}$ $g(\mathbf{x}) = \Omega(f(\mathbf{x})); \text{ i.e.}; g = \Omega(f).$

2) Prove that if $f = \Theta(g)$, then $g = \Theta(f)$ Method 1 $f = \Theta(g) \Rightarrow f = O(g)$ and $f = \Omega(g)$ $f = O(g) \Rightarrow g = \Omega(f)$. (Proved above) $f = \Omega(g) \Rightarrow g = O(f)$. (Can prove this as above) $g = \Omega(f)$ and $g = O(f) \Rightarrow g = \Theta(f)$.

Method 2 (Longer because it just repeats what was proved above) $f = \Theta(g)$ implies

f=O(g) and f = Ω(g)Now f = O(g) implies | f(x)| ≤ C | g(x)|, for x>k ∴ | g(x)| ≥ C' * | f(x)|, where C' = 1/C is a constant ∴ By definition of Big Omega, g = Ω(f) ... (1)

Similarly, $f = \Omega(g)$ implies $|f(x)| \ge C |g(x)|$ $\therefore |g(x)| \le C' |f(x)|$, where C' = 1/C is a constant \therefore By definition, g = O(f). ... (2) From (1) and (2) we can see that $g = \Theta(f)$.