EECS 203-1 Homework –7 Solutions

Total Point	s: 30
Page 200: 10)	Prove that $1.1! + 2.2! + \ldots + n.n! = (n+1)! - 1$ whenever n is a positive integer.
4 points	Let $P(n) = 1.1! + 2.2! + + n.n! = (n+1)! -1$ Basis Step: $P(1)$ is true since $1.1! = 1 = (1+1)! -1$ = 2! -1 = 2 -1 = 1. Induction Step: Assume $P(n)$ is true for some n. (Induction Hypothesis) Then we have to show that $P(n+1)$ is true 1.1! + 2.2! + + n.n! + (n+1)(n+1)! = (n+1)! -1 + (n+1)(n+1)! = (n+1)! [1 + n+1] -1 = (n+1)! [n+2] -1 = ((n+1) + 1)! -1
	Hence proved!
4)	Use mathematical induction to prove that $n! < n^n$ whenever n is a positive integer greater than 1.
4 points	Let $P(n) = n! < n^n$ Basis Step: P(2) is true since $2! = 2 < 2^2 = 4$ Induction Step: Assume P(n) is true for some n (> 1 of course) Then we have to show that P(n+1) is true $(n + 1)! = n! (n+1) < n^n (n+1)$ [since P(n) is true] $< (n + 1)^n . (n+1)$ [since $n^n < (n+1)^n$] $= (n + 1)^{n+1}$ Hence proved!
32)	Which amounts of money can be formed using just dimes and quarters? Prove your answer using a form of mathematical induction.
6 points	The amounts of money that can be formed with just dimes and quarters is 10ϕ , 20ϕ , 25ϕ , 30ϕ Thus 10ϕ and all amounts of the form $(20 + 5n)\phi$ (where $n = 0, 1, 2, 3,$) can be made. This is our claim. We have to prove it. The proof goes like this. Basis Step : P(0) is true, since we can get 20ϕ using 2 dimes. Also P(1) is true, since we can get 25ϕ using one quarter. Inductive Step : Assume P(n) is true for some $n \ge 0$. That is we can make an amount of the form $(20+5n)\phi$. Then we have to show that P(n+1) is true i.e we have to show that an

	amount of the form $(20+5(n+1))\phi = (20+5n+5)\phi$ can be made using dimes and quarters.
	There are 2 cases.
	Case 1
	At least one quarter was used. Replace one quarter with 3 dimes. That is subtract 25ϕ and replace it with 30ϕ . Thus from the initial amount of $(20 + 5n)\phi$ we have increased by 5ϕ making it $(20+5n+5)\phi = (20+5(n+1))\phi$. Thus P(n+1) is true in this case. Case 2
	No quarters were used and the amount of $(20 + 5n)\phi$ was made entirely using dimes. Since $n \ge 0$, atleast 2 dimes were used. Replace 2 dimes with a quarter to get an amount with value $(20+5n+5)\phi = (20+5(n+1))\phi$. Thus P(n+1) is true in this case as well.
	These 2 cases make up all the possibilities. So $P(n)$ is true $\Rightarrow P(n+1)$ is true.
	Hence Proved!
48)	Find the flaw with the following "proof" that $a^n = 1$ for all nonnegative integers n, whenever a is a nonzero real number.
	Basis step: $a^0 = 1$ is true by the definition of a^0 . Inductive step: Assume $a^k = 1$ for all nonnegative integers k with $k \le n$. Then note that $a^{n+1} = a^n . a^n / a^{n-1} = 1.1 / 1 = 1$.
4 points	The flaw lies in the induction step. This proof stated uses the strong induction hypothesis. The proof that $P(n+1)$ is true should not depend on the value of n i.e the proof should hold whatever n we choose in the statement "Assume $a^k = 1$ for all nonnegative integers k with $k \le n$." Look at the case when $n = 0$. The proof involves $a^{n-1} = a^{-1}$ (n=0) in this case. Clearly the induction hypothesis is valid only for the non-negative powers of a. Therefore P(0) definitely does not imply P(1) and the proof breaks down here.

Show that $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ whenever n is a positive integer. (where f_n is the nth Fibonacci number) 12) By definition $f_n = f_{n-1} + f_{n-2}$ (1) Let P(n) = $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ **Basis Step** : P(1) is true since $f_2f_0 - (f_1)^2 = -1 = (-1)^{-1}$ = -1. **Inductive Step**: Assume P(n) is true for some n. i.e $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ Then we have to show that P(n+1) is true L.H.S = $f_{n+2} f_n - f_{n+1}^2$ = $(f_{n+1} + f_n) f_n - f_{n+1}^2$ = $f_{n+1} f_n + f_n^2 - f_{n+1}^2$ = $f_{n+1} (f_n - f_{n+1}) + f_n^2$ Now, $f_{n+2} = f_{n+1} + f_n$ from (1) $= -[f_{n+1}(f_{n+1} - f_n) - f_n^2]$ $f_{n+1} = f_n + f_{n-1} \Longrightarrow f_{n+1} - f_n = f_{n-1}$ $= -[f_{n+1}f_{n-1}-f_n^2]$ = -1(-1)ⁿ Since P(n) is true $=(-1)^{n+1}$. Hence proved!

Give a recursive definition of 22)

6 points

a)	The set of odd positive integers
	1 CS
	if $x \in S$, then (x+2) $\in S$
b)	The set of positive integer powers of 3
	$3^1 \in S$
	$3^{(x+y)} \in S$ if $3^x \in S$ and $3^y \in S$.
c)	The set of polynomials with positive integer coefficients
	(Here we call any element belonging to S as $p(x)$)
	1€S
	x C S
	If $c \in \subseteq$, $p(x) \in S$, then $c.p(x) \in S$ (where we call any element
	belonging to S as $p(x)$)
	If $p(x) \in S$, $q(x) \in S$, then $p(x) + q(x) \in S$
	If $p(x) \in S$, $q(x) \in S$, then $p(x).q(x) \in S$

Page : 210

6 points