EECS 203-1 Homework –8 Solutions (modified 03/21/02)

Total Points: 4 Page 382:	10			
4)	Determine whether the relation <i>R</i> on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a,b) \in R$ if and only if			
4 points	 a) a is taller than b Transitive and vacuously Anti-symmetric (nobody is taller than himself b) a and b were born on the same day Reflexive, Symmetric and Transitive c) a has the same first name as b Reflexive, Symmetric and Transitive d) a and b have a common grandparent Reflexive and Symmetric 			
18) 4 points	Let $R_1 = \{(1,2), (2,3), (3,4)\}$ and $R_2 = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4)\}$. Find			
- points	a) $R_1 \cup R_2$ $\{(1,2), (2,3), (3,4), (1,1), (2,1), (2,2), (3,1), (3,2), (3,3)\}$ b) $R_1 \cap R_2$ $\{(1,2), (2,3), (3,4)\}$ c) $R_1 - R_2$ $\{\emptyset\}$ d) $R_2 - R_1$ $\{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)\}$			
28b) 2 points	Suppose that R and S are reflexive relations on a set A. Prove or Disprove each of the following statements.			
- Pourts	 b) R ∩ S is Reflexive Proof: R ∩ S is reflexive means that (a,a) ∈ R∩S for every element a of set A. Since R and S are reflexive, then (a,a) ∈ R and (a,a) ∈ S for every element of A. Therefore (a,a) must be in their intersection. 			

36)	Let <i>R</i> be a symmetric relation. Show that R^n is symmetric for all positive
	integers <i>n</i> .

5 points

Let R be a symmetric relation on set A **Proof by induction: Basis Step:** $R^1 = R$ is symmetric is True. **Inductive Step:** Assume that R^n is symmetric. **To Prove that** R^{n+1} **is symmetric**. R^{n+1} is symmetric if for all (x,y) in R^{n+1} , we have (y,x) is in R^{n+1} as well. Assume that (x,y) is in R^{n+1} . Now, $R^{n+1} = R^n oR = RoR^n$ We know that if $(x,y) \in RoR^n$, then by the definition of composition there exists a z in A such that xRz and $z(R^n)y$ i.e (x,z) is in R and (z,y) is in R^n And we also know that R and R^n are symmetric, which implies that (z,x) is in R and also (y,z) is in R^n . Therefore, by definition of composition, $(y,x) \in RoR^n$; i.e.; $(y,x) \in R^{n+1}$. Hence Proved.

Does a relation on a set A, which is symmetric and transitive necessarily have to be reflexive? Prove it or give a counterexample relation.

2 points

Counter Example Relation:

Let A={a, b, c} Let R be a relation on set A **R** ={(a, a), (b, b), (a, b), (b, a)} This relation is symmetric and transitive but not reflexive since it doesn't contain (c,c).

Page 395:

2)

List the ordered pairs in the relations on $\{1,2,3\}$ corresponding to the following matrices (where rows and columns correspond to the integers listed in increasing order).

3 points

a)	$ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} $	
b)	$\{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	

c)

$$\{(1,2), (2,2), (3,2)\} \\ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \\ \{(1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\} \}$$

8)

Let R_1 and R_2 be relations on a set A represented by the matrices.

$\mathbf{M}_{R1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	$\mathbf{M}_{\mathrm{R2}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{array}{c}1\\1\\1\\1\end{array}$
---	--	---

Find the Matrices that represent

6 points

a)
$$R_1 \cup R_2$$

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
b) $R_1 \cap R_2$
 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
c) $R_2 \circ R_1$
 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & -0 \end{bmatrix}$

Page 407:

26)

Use Algorithm 1 to find the transitive closures of the following relations on
$\{a, b, c, d, e\}.$

8 points

a) {(a,c), (b,d), (c,a), (d,b), (e,d)}

$$B = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ \end{bmatrix}$$
{(b,c), (b,e), (c,e), (d,a), (e,b), (e,c) }

	0	0	0 1	0	0	
	0	1	1	0	1	
B =	0	1	1	0	1	
	1	0	0	0	0	
	0	. 1	1	0	1	

Recall the recursive definition of transitive closure: Given a binary relation R on a set A, we use the following rules to construct the relation tc(R).

1. "Basis": if $(x, y) \in R$, then $(x, y) \in tc(R)$.

2. "Induction": if $(x, y) \in tc(R)$ and $(y, z) \in tc(R)$, then

 $(x, z) \in tc(R).$

b)

3. No pair is in tc(R) unless it is shown there using a finite number of applications of rules 1 and 2.

Instead, prove by induction on n that if (x,y) is in \mathbb{R}^n , then (x; y) can be shown to be in $tc(\mathbb{R})$ using some finite number of rule applications.

6 points

Basis step: for n=1, if $(x, z) \in R$, then (x, z) gets into tc(R) by 1 rule application.

Inductive Step: Assume that if $(x, z) \in \mathbb{R}^n$, then $(x, z) \in tc(\mathbb{R})$ (which by the construction of $tc(\mathbb{R})$ means it got in by finite number of rule applications.

To Prove that if $(x, z) \in \mathbb{R}^{n+1}$, then (x, z) gets into $tc(\mathbb{R})$ by n+1 or fewer rule applications.

Now, $\mathbf{R}^{n+1} = \mathbf{R}^n \mathbf{o} \mathbf{R} = \mathbf{R} \mathbf{o} \mathbf{R}^n$.

If $(x,z) \in \mathbb{R}^n \mathbf{o} \mathbb{R}$, then by the definition of composition there exists a y in A such that (x,y) is in \mathbb{R}^n and (y,z) is in R. By induction hypothesis, (x,y) is in tc(R) in finite number of rule applications and if (y,z) is in R then it is tc(R) by the application of rule 1. Now one more application of rule 2 tells us that (x,z) is in tc(R) in finite number of rule applications. Therefore P(n) is true implies P(n+1) is true.

Thus proved.