EECS 203-1 Homework 9 Solutions

Total Points:	50	
Page 413:		
10)	Let R be the relation on the set of ordered pairs of positive integers such	
	that $((a, b), (c, d)) \in R$ if and only if $ad = bc$. Show that R is an	
	equivalence relation.	
4 points		
	First we need to show that R is reflexive	
	i.e.: to show that $((a, b), (a, b)) \in \mathbb{R}$,	
	since $ab = ab$, ((a, b), (a, b)) $\in R$.	
	Hence it is reflexive.	
	To show that R is symmetric.	
	i.e.: to show that if $((a, b), (c, d)) \in \mathbb{R}$, then $((c, d), (a, b)) \in \mathbb{R}$	
	we know that $ad = bc$, and $cb = da$ are the same relation.	
	Hence it is symmetric.	
	To show that R is transitive.	
	i.e.: to show that if $((a, b), (c, d)) \in R$ and $((c, d), (e, f)) \in R$,	
	then $((a, b), (e, f)) \in \mathbb{R}$	
	we know that $ad = bc$, and $cf = de$, multiplying these two equations we	
	get $adcf = bcde \Rightarrow af = be \Rightarrow ((a, b), (e, f)) \in \mathbb{R}$	
	Hence it is transitive.	
	Thus R is an equivalence relation.	

14)

Determine whether the relations represented by the following zero-one matrices are equivalence relations.

4 points

_		_
1	1	1
0	1	1
1	1	1

The given matrix is reflexive, but it is not symmetric. Hence it **does not represent an equivalence relation.**

c)

a)

 $\begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$

The given matrix is an **equivalence relation**, since it is reflexive(all diagonal elements are 1's), it is symmetric as well as transitive.

16)	What are the equivalence classes of the equivalence relations in Exercise 1? (All the relations are on the set $\{0, 1, 2, 3\}$)		
4 points	(All the relations are on the set $\{0, 1, 2, 3\}$) a) $\{(0,0), (1,1), (2,2), (3,3)\}$ [0] = $\{0\}, [1] = \{1\}, [2] = \{2\}, [3] = \{3\}$ d) $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$ The given relation is not an equivalence relation.		
22) 2 points	What is the congruence class $[4]_m$ when m is b) 3? [4] ₃ = {2, 1, 4, 7, 10} d) 8? [4] ₈ = {12, -4, 4, 12, 20}		
28)	A partition P_1 is called a refinement of the partition P_2 if every set in P_1 is a subset of one of the sets in P_2 . Suppose that R_1 and R_2 are equivalence relations on a set A. Let P_1 and P_2 be the partitions that correspond to R_1 and R_2 , respectively. Show that $R_1 \subset R_2$ if and only if P_1 is a refinement of P_2 .		
4 points	Case 1 (\Rightarrow) R ₁ \subseteq R ₂ . This means (x R ₁ y) \rightarrow (x R ₂ y). (1) By Theorem proved in class (<i>An equivalence relation creates a partition</i>), an equivalence relation on a set S, creates a partition consisting of the distinct equivalence classes of the elements in S. Take any element x \in S and its equivalence class under R ₁ namely [x] _{R1} . By definition [x] _{R1} = {y \in S: x R ₁ y} \subseteq {y \in S: x R ₂ y} = [x] _{R2} . Since x was arbitrarily chosen, this holds for every equivalence class under relation R ₁ . This means that every block in P ₁ is a subset of some block in P ₂ . That is P ₁ is a refinement of P ₂ . Case 2 (\Leftarrow) P ₁ is a refinement of P ₂ . This means that for any x \in S, [x] _{R1} \subseteq [x] _{R2} . i.e {y \in S: x R ₁ y} \subseteq {y \in S: x R ₂ y}. This means that for any x \in S, (x R ₁ y) \rightarrow (x R ₂ y) which is the definition of R ₁ \subseteq R ₂ .		

Page 428:

2)

Determine whether the relations represented by the following zero-one matrices are partial orders.

2 points

a)

c)

$\lceil 1 \rangle$	0	1	
1	1	0	
0	0	1	

The relation represented by this matrix is not transitive; hence it is not a partial order.

Г	_			_
	1	0	1	0
	0	1	1	0
	0	0	1	1
	1	1	0	1
L				

The relation represented by this matrix is not transitive; hence it is not a partial order.

8) Which of the following pairs of elements are comparable in the poset $(\mathbf{Z}^{+}, |)?$ **4** points a) 5, 15 Comparable b) 6,9 Incomparable 8,16 **c**) Comparable 7,7 d) Comparable

24)

Answer the following questions for the partial order represented by the following Hasse Diagram.

a) Find the maximal elements.
l, m
b) Find the minimal elements
a, b, c
c) Is there a greatest element?
No.
d) Is there a least element?
No.
e) Find all upper bounds of {a, b, c }.
l, k, m
f) Find the least upper bound of { a, b, c } , if it exists.
K
g) Find all lower bounds of {f, g, h}.
None exist
h) Find the greatest lower bound of {f, g, h}, if it exists.
None exists

26)	Answer the following questions concerning the poset ($\{2, 4, 6, 9, 12, 18, 25, 26, 10, 50, 50\}$		
	27, 36, 48, 60, 72},).		
8 points			
	a) Find the maximal elements.		
	27, 48, 60, 72.		
	b) Find the minimal elements		
	9,2		
	c) Is there a greatest element?		
	No there is no greatest element.		
	d) Is there a least element?		
	No.		
	e) Find all upper bounds of {2, 9}.		
	18, 36, 72.		
	f) Find the least upper bound of $\{2, 9\}$, if it exists.		
	18		
	g) Find all lower bounds of {60, 72}.		
	2, 4, 6, 12.		
h) Find the greatest lower bound of $\{60, 72\}$, if it exists.			
	12		
28)	Give a poset that has		
2	1		

28)	Give a poset that has
3 points	
	a) a minimal element but no maximal element.
	(\mathbf{Z}^{+}, \leq)
	b) no minimal element but a maximal element.

	(Z ⁻ ,≤)
	c) neither minimal nor maximal element.
	(\mathbf{Z}, \leq)
32a)	Show that there is exactly one greatest element of a poset, if such an element exists
2 points	
	Suppose that there are two different elements x and y that are greatest.
	So $\forall a \in S$ $a \leq x$
	And $\forall a \in S$ $a \leq y$
	Since $x \in S$ and $y \in S$
	We have $x \le y$ and also $y \le x$
	So $x = y$ because relation \leq is antisymmetric.
	Which is a contradiction because we started out with x and y being different
	elements. So there can't be two different elements that are greatest. So if
	exists then there is only a unique element that is greatest.
34 a)	Show that the least upper bound of a set in a poset is unique if it exists
2 points	
	Consider a Poset (P, β)
	Assume there are two LUBs u_1 , u_2
	Since u_1 is a UB then by definition, $u_2\beta u_1$
	Since u_2 is a UB then by definition, $u_1\beta u_2$
	By Antisymmetry $u_1 = u_2$.
	Hence the least upper bound of a set in a poset is unique if it exists
	Problem 37 page 429 is false! He didn't say "finite lattice." Give an
	Infinite lattice, which is a counterexample.
	Problem 37: Show that every nonempty subset of a lattice has a least upper
	bound and a greatest lower bound.
3 points	Consider the poset (Z, \leq). This is a lattice and an infinite one.
	Consider S = $Z^+ \subset Z$. S = {1,2,3,}. This is a non empty subset of Z. But
	does it have a least upper bound. No!
	Also consider $T = Z \subset Z$. $T = \{, -3, -2, -1\}$. This is a non-empty subset of
	Z that is doesn't have greatest lower bound.
	Thus you have a counter example.