Quiz 2

EECS 203 Spring 2016

Name (Print):					uniqname (Print):						
Instru	ctions	s. You ha	ve 25 m	ninutes	to com	plete	this quiz. You may not use any sources of				
inform	information, including electronic devices, textbooks, or notes. Leave at least one seat between										
yourse	ourself and other students. Please write clearly. If we cannot read your writing, it will not be										
graded	graded. Do not write on the back pages of the quiz.										
			-				es of the College of Engineering Honor Code. Your finish your exam, please sign on the line below:				
violati		ve neithe f the Hor	_		eived a	id on t	this examination, nor have I concealed any				
	•	-		_		-	, minimum 0) what type of function they are (if any). Use the				
		g key:	Onowin	gmapp	iliga ili	uicate	what type of function they are (if any). Ose the				
101		Not a fur	nction								
	,			is neitl	her ont	o nor	one-to-one				
	•	A functio									
	iv) A	A functio	n which	is one-	-to-one	but n	ot onto				
	v) A	A functio	n which	is both	n onto a	and or	ne-to-one				
a)	The	mapping		-	_	ned b	y f(x) = 2x.				
		i	ii	iii	iv	V					
b)	The	mapping	g f from	N to N	define	ed by	f(x) = 2x.				
		i	ii	iii	iv	V					
c)	The	the mapping f from $[0,\infty)$ to $[0,\infty)$ defined by $f(x)= x-0.5 $.									
,		i	ii	iii	iv	V					
d) The mapping f from R to $(0, \infty)$ defined by $f(n) = 2^n$.							$d \text{ by } f(n) = 2^n.$				
/		i	ii	iii	iv	V					

2) **(7 points, -2 per wrong circle/no circle, minimum 0)** Circle each of the following which are true propositions.

a)
$$(A \cap B \neq \phi) \rightarrow ((A - B) \subset A)$$

b)
$$(A - B = A) \rightarrow B \subset A$$

c)
$$(A - B = \phi) \rightarrow (A \cap B = B \cap A)$$

d)
$$(A \subseteq B) \rightarrow |A \cup B| \ge 2|A|$$

e)
$$(A \cap B \cap C) \subseteq (A \cup B)$$

f)
$$\overline{(A-B)} \cap (B-A) = B$$

3) **(8 points)** Given the following premises, form a deductive argument which shows that "t" must be true. Provide your reasoning. Some of the rules of inference (beyond the ones you are to have memorized) are listed below. You may of course also use logical equivalences.

1.	$\neg p \land q$	Premise
2.	$r \rightarrow p$	Premise
3.	$\neg r \rightarrow s$	Premise

4. $s \rightarrow t$ Premise

Rule of Inference	Tautology	Name
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$ \frac{p}{q} $ $ \therefore \overline{p \wedge q} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution