Quiz 2

EECS 203
Spring 2016

Name (Print): \qquad uniqname (Print):
Instructions. You have 25 minutes to complete this quiz. You may not use any sources of information, including electronic devices, textbooks, or notes. Leave at least one seat between yourself and other students. Please write clearly. If we cannot read your writing, it will not be graded. Do not write on the back pages of the quiz.

Honor Code. This course operates under the rules of the College of Engineering Honor Code. Your signature endorses the pledge below. After you finish your exam, please sign on the line below:

I have neither given nor received aid on this examination, nor have I concealed any violations of the Honor Code.

1) (6 points, $-\mathbf{2}$ for each wrong/blank answer, minimum 0)

For each of the following mappings indicate what type of function they are (if any). Use the following key:
i) Not a function
ii) A function which is neither onto nor one-to-one
iii) A function which is onto but not one-to-one
iv) A function which is one-to-one but not onto
v) A function which is both onto and one-to-one
a) The mapping f from \boldsymbol{Q}^{+}to \boldsymbol{Q}^{+}defined by $f(x)=2 x$.

$$
\text { i ii iii iv } v
$$

b) The mapping f from N to N defined by $f(x)=2 x$.

```
    i ii iii iv \(v\)
```

 c) The mapping \(f\) from \([0, \infty)\) to \([0, \infty)\) defined by \(f(x)=|x-0.5|\).
 i ii iii iv \(v\)
 d) The mapping \(f\) from \(\boldsymbol{R}\) to \((0, \infty)\) defined by \(f(n)=2^{n}\).
 i ii iii iv v
 2) (7 points, $-\mathbf{2}$ per wrong circle/no circle, minimum 0) Circle each of the following which are true propositions.
a) $(A \cap B \neq \phi) \rightarrow((A-B) \subset A)$
b) $(A-B=A) \rightarrow B \subset A$
c) $(A-B=\phi) \rightarrow(A \cap B=B \cap A)$
d) $(A \subseteq B) \rightarrow|A \cup B| \geq 2|A|$
e) $(A \cap B \cap C) \subseteq(A \cup B)$
f) $\overline{(A-B)} \cap(B-A)=B$
3) (8 points) Given the following premises, form a deductive argument which shows that " t " must be true. Provide your reasoning. Some of the rules of inference (beyond the ones you are to have memorized) are listed below. You may of course also use logical equivalences.
1. $\neg p \wedge q \quad$ Premise
2. $r \rightarrow p$

Premise
3. $\neg r \rightarrow s$

Premise
4. $s \rightarrow t$

Premise

Rule of Inference	Tautology	Name
$p \vee q$	$((p \vee q) \wedge \neg p) \rightarrow q$	Disjunctive syllogism
$\therefore \frac{\neg p}{q}$		
p	$((p) \wedge(q)) \rightarrow(p \wedge q)$	Conjunction
$\therefore \frac{q}{p \wedge q}$		
$p \vee q$	$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$	Resolution
$\therefore \frac{\neg p \vee r}{q \vee r}$		

4) (9 points) Prove or disprove that if m and n are positive integers and that $m * n$ is even then either m or n (or both) are even.
