Predicate Logic \& Quantification

Things you should do...

EECS 203: Discrete Mathematics
Lecture 3 Spring 2016
(Sections 1.4 and start on 1.5)

- Homework 1 due today at 3pm
- Via gradescope. Directions posted on the website.
- Group homework 1 posted, due Tuesday.
- Groups of 1-3. We suggest 3.
- In LaTeX

Warmup Question

- "Neither the fox nor the lynx can catch the hare if the hare is alert and quick."
- F: the fox can catch the hare
- L: the lynx can catch the hare
- A: the hare is alert
- Q: the hare is quick
$-(\mathrm{A}) \quad \neg(\mathrm{F} \vee \mathrm{L}) \rightarrow(\mathrm{A} \wedge \mathrm{Q})$
$-(\mathrm{B}) \quad(\mathrm{A} \wedge \mathrm{Q}) \rightarrow \neg \mathrm{F} \wedge \neg \mathrm{L}$
$-(\mathrm{C}) \neg \mathrm{F} \wedge \neg \mathrm{L} \wedge \mathrm{A} \wedge \mathrm{Q}$
$-(\mathrm{D}) \quad(\neg \mathrm{A} \vee \neg \mathrm{Q}) \rightarrow(\mathrm{F} \vee \mathrm{L})$

Warmup Question

- The expression $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\neg \mathrm{q} \rightarrow \mathrm{p})$ can only be satisfied by the truth assignment
a. $\mathrm{p}=\mathrm{T}, \mathrm{q}=\mathrm{F}$
b. $p=F, q=T$
c. This is not satisfiable
d. None of the above

Relational (First-Order) Logic

- In propositional logic,
- All we have are propositions and connectives, making compound propositions.
- We learn about deductions and proofs based on the structure of the propositions.
- In first-order logic,
- We will add objects, properties, and relations.
- We will be able to make statements about what is true for some, all, or no objects.
- And that comes now.

Propositions \& Predicates

- Proposition:

- A declarative statement that is either true or false.
- E.g. "A nickel is worth 5 cents."
- "Water freezes at 0 degrees Celsius at sea level."
- Predicate:
- A declarative statement with some terms unspecified.
- It becomes a proposition when terms are specified.
- These terms refer to objects.

A "truth table" for quantifiers

	$\forall \mathrm{x}$ P(x)	$\exists \mathrm{P}$ P(x)
True when	$P(x)$ true for every x in the doman of of discourse	$\mathrm{P}(\mathrm{x})$ true for at least one x in the domain of discourse
False when	$P(x)$ false for at least one x in the domain of discourse	$P(x)$ false for every x in the doman o of discourse

Examples: English \rightarrow Quantifications

"Everyone will buy an umbrella or a raincoat" $\forall \mathrm{x}(\mathrm{B}(\mathrm{x}$, umbrella) $) \mathrm{B}(\mathrm{x}$, raincoat $))$
"Everyone will buy an umbrella or everyone will buy a raincoat"
"No one will buy both a raincoat and umbrella"

Examples: English \rightarrow Quantifications

Examples: English \rightarrow Quantifications

"Everyone will buy an umbrella or a raincoat"
 $\forall \mathrm{x}(\mathrm{B}(\mathrm{x}, \mathrm{umbrella}) \vee \mathrm{B}(\mathrm{x}$, raincoat $))$

"Everyone will buy an umbrella or everyone will buy a raincoat"

Examples: English \rightarrow Quantifications

- "Everyone has a car or knows someone with a car."
- Let C(x) be "x has a car"
- Let $\mathrm{K}(\mathrm{x}, \mathrm{y})$ be "x knows y "
(A) $\exists x \exists y[C(x) \vee(K(x, y) \wedge C(y))]$
(B) $\exists y \forall x[C(x) \vee(K(x, y) \wedge C(y))]$
(C) $\forall x \exists y[C(x) \vee(K(x, y) \wedge C(y))]$
(D) $\forall \mathrm{x} \forall \mathrm{y}[\mathrm{C}(\mathrm{x}) \vee(\mathrm{K}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{C}(\mathrm{y}))]$

Nested Quantifiers

$\mathrm{P}(\mathrm{x}, \mathrm{y})$: "person x loves person y "
$\forall \mathbf{x} \exists \mathrm{y}$ P(x,y) means:
"For every x (in the domain) there is at least one y (in the domain), that can depend on x and may be equal to x, such that $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true.'
"Everyone loves someone (e.g. his/her mother)"
$\exists y \forall \mathbf{x} P(x, y)$ means:
"There is at least one y such that for every x (including the case $\mathrm{y}=\mathrm{x}), \mathrm{P}(\mathrm{x}, \mathrm{y})$ is true."
"There's one guy/gal that everyone loves (e.g. Santa)"

Defining Limits

- In calculus, the limit $\lim _{x \rightarrow a} f(x)=L$
- Is defined to mean:
$\underline{\forall \epsilon>0} \underline{\exists \delta>0} \underline{\forall x} \underline{\underline{[0<|x-a|<\delta}} \rightarrow \underline{\underline{|f(x)-L|<\epsilon}]}$
- As close as you want $f(x)$ to be to $L \quad(\forall \varepsilon>0)$,
- there is a margin for x around $a(\exists \delta>0)$,
- so that for any x within that margin around a,
$-f(x)$ will be as close as you wanted to L.
- The limit is an essential concept for calculus.
- Two statements involving quantifiers and predicates are logically equivalent if they have the same truth value, regardless of the domain of discourse or the meaning of the predicates.
\equiv denotes logical equivalence.
- Need new equivalences involving quantifiers.

Negating Quantifiers

- $\neg \forall \mathrm{x} P(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- There is an x for which $P(x)$ is false.
- If $\mathrm{P}(\mathrm{x})$ is true for every x then $\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$ is false.
- $\neg \exists \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- For every $\mathrm{x}, \mathrm{P}(\mathrm{x})$ is false.
- If there is an x for which $\mathrm{P}(\mathrm{x})$ is true then $\forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$ is false
- This is really just DeMorgan's Laws, extended.
- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$

Be Careful with Equivalences

- It's true that:
$-\quad \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})] \equiv[\forall \mathrm{x} P(\mathrm{x})] \wedge[\forall \mathrm{x} \mathrm{Q}(\mathrm{x})]$
- But it's not true that:
$-\quad \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \equiv[\forall \mathrm{x} P(\mathrm{x})] \vee[\forall \mathrm{x} \mathrm{Q}(\mathrm{x})]$
- Why not?
- Likewise, it's true that:
$-\quad \exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \equiv[\exists \mathrm{x} P(\mathrm{x})] \vee[\exists \mathrm{x} \mathrm{Q}(\mathrm{x})]$
- But it's not true that:
$-\quad \exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})] \equiv[\exists \mathrm{x} P(\mathrm{x})] \wedge[\exists \mathrm{x} \mathrm{Q}(\mathrm{x})]$

Be Careful With Translation to Logic

- "Every student in this class has studied calculus."
- $S(x)$ means " x is a student in this class".
- $C(x)$ means " x has studied calculus".
- Is this correct? $\forall \mathrm{x}[\mathrm{S}(\mathrm{x}) \wedge \mathrm{C}(\mathrm{x})$]
- (A) Yes
- (B) No
- How about this? $\forall x[S(x) \rightarrow C(x)]$
- (A) Yes
- (B) No

Be Careful With Translation to Logic

- "Some student in this class is a math genius."
- $S(x)$ means " x is a student in this class".
- $G(x)$ means " x is a math genius".
- Is this correct? $\exists \mathrm{x}[\mathrm{S}(\mathrm{x}) \rightarrow \mathrm{G}(\mathrm{x})$]
- (A) Yes
- (B) No
- How about this? $\exists x[S(x) \wedge G(x)]$
- (A) Yes
- (B) No

Hard Problem

- Prove: $\forall \mathrm{x} P(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x}) \equiv \forall \mathrm{x} \forall \mathrm{y}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{y})]$
- We can rename a bound variable: $\forall \mathrm{x} \mathrm{Q}(\mathrm{x}) \equiv \forall \mathrm{y} \mathrm{Q}(\mathrm{y})$
- Method: to prove $\mathrm{A} \equiv \mathrm{B}$
- We might prove $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{A}$.
- But that will turn out to be too hard.
- Instead we will prove $\mathrm{A} \rightarrow \mathrm{B}$ and $\neg \mathrm{A} \rightarrow \neg \mathrm{B}$.
- That will do the trick just as well.

Prove the $\mathrm{A} \rightarrow \mathrm{B}$ Direction

- Assume that $\forall \mathrm{x} \mathrm{P}(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x})$ is true.
- Consider the case where the disjunct $\forall \mathrm{x} \mathrm{P}(\mathrm{x})$ is true.
- The other case, $\forall \mathrm{x} \mathrm{Q}(\mathrm{x})$, is the same.
- Then for any value of $y, \forall x(P(x) \vee Q(y))$ is true.
- by the Identity Law, since $\mathrm{P}(\mathrm{x})$ is true.
- This is the definition of $\forall y \forall x(P(x) \vee Q(y))$.
- by definition of the universal quantifier.
- And this is equivalent to $\forall \mathrm{x} \forall \mathrm{y}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{y}))$.
- section 1.5, example 3 (pp.58-59).
- Thus: $\forall \mathrm{x} P(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x}) \rightarrow \forall \mathrm{x} \forall \mathrm{y}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{y}))$

Prove the $\neg \mathrm{A} \rightarrow \neg \mathrm{B}$ Direction

- Assume that $\forall \mathrm{xP}(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x})$ is false.
- Then: $\neg[\forall \mathrm{xP}(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x})]$
$\equiv \neg \forall \mathrm{xP}(\mathrm{x}) \wedge \neg \forall \mathrm{xQ}(\mathrm{x})$
$\equiv \quad \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \wedge \exists \mathrm{x} \neg \mathrm{Q}(\mathrm{x})$
- Then let (a, b) be such that $\neg \mathrm{P}(\mathrm{a})$ and $\neg \mathrm{Q}(\mathrm{b})$.
- Therefore: $\quad \neg \mathrm{P}(\mathrm{a}) \wedge \neg \mathrm{Q}(\mathrm{b})$
$\equiv \quad \exists \mathrm{x} \exists \mathrm{y}[\neg \mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{Q}(\mathrm{y})]$
$\equiv \quad \exists \mathrm{x} \exists \mathrm{y} \neg[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{y})]$
$\equiv \quad \neg \forall \mathrm{x} \forall \mathrm{y}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{y})]$
- Which is $\neg \mathrm{B}$
$\forall x P(x) \vee \forall x Q(x) \equiv \forall x \forall y[P(x) \vee Q(y)]$
- QED. The whole statement is proved.

Exercises.

Start by defining your predicates!

- Every two people have a friend in common.
(Life isn't facebook! If A is a friend of B, B is not necessarily a friend of A.)
- All my friends think I'm their friend too.
- There are two people who have the exact same group of friends.
- Everyone has two friends, neither of whom are friends with each other.

Additional Exercises

- $M(x)$: " x is male"
- $F(x)$: " x is female"
- $P(x, y)$: "x is the parent of $y "$
- "Everyone has at least one parent"

Additional Exercises

- $M(x)$: " x is male"
- $F(x)$: " x is female"
- $P(x, y)$: "x is the parent of $y "$
- "Someone is an only child"

Additional Exercises

- $M(x)$: " x is male"
- $F(x)$: " x is female"
- $P(x, y)$: " x is the parent of y "
_ "Bob has a niece"

Additional Exercises

- $M(x)$: " x is male"
- $F(x)$: " x is female"
- $P(x, y)$: " x is the parent of y "
- "I do not have any uncles" (rephrased. "any sibling of my parent is female")

Additional Exercises

- $M(x)$: "x is male"
- $F(x)$: " x is female"
- $P(x, y)$: " x is the parent of y "
- "Bob has a niece"
- "Not everyone has two parents of opposite sexes"

- "I do not have any uncles" (rephased. "any sibing of ny paren is female")
- "No one's parents are cousins" (this is one is rather long...)

So far...

- You can
- Express statements as compound propositions
- Prove that two compound propositions are equivalent
- Express statements as quantified formulae (with predicates and universal \& existential quantifiers)
- Next:
- Formal proofs, rules of inference
- Proof methods
- Strategies for designing proofs

Start on Inference and Proofs

Definition

- An argument for a statement S is a sequence of statements ending with S.
- We call S the conclusion and all the other statements the premises.
- The argument is valid if, whenever all the premises are true, the conclusion is also true.
- Note: A valid argument with false premises could lead to a false conclusion.
- Proofs are valid arguments that establish the truth of mathematical statements.

Simple Example

- Premises:
- "If you're a CS major then you must take EECS 203 before graduating."
- "You're a CS major."
- Conclusion:
- (Therefore,) "You must take EECS 203 before graduating."
- This is a valid argument (why?).

Inferences

- Basic building block of logical proofs is an inference
- Combine two (or one or more) known facts to yield another

Based on the tautology:

$$
((p \rightarrow q) \wedge p) \rightarrow q
$$

Based on the tautology: $((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$

This is not a valid inference because $((p \rightarrow q) \wedge q) \rightarrow p$
is not a tautology!

The Basic Rules of Inference

$\begin{aligned} & p \rightarrow q \\ & p \end{aligned}$	Based on the tautology: $((p \rightarrow q) \wedge p) \rightarrow q$	"modus ponens" lit.: mode that affirms
$\therefore \mathrm{q}$		
$\begin{aligned} & \mathrm{p} \rightarrow \mathrm{q} \\ & \neg \mathrm{q} \\ & \hline \end{aligned}$	Based on the tautology: $((p \rightarrow q) \wedge \neg q) \rightarrow \neg p$	"modus tollens" lit.: mode that denies
$\therefore \neg \mathrm{p}$		
$\begin{aligned} & \mathrm{p} \rightarrow \mathrm{q} \\ & \mathrm{q} \rightarrow \mathrm{r} \end{aligned}$	Based on the tautology: $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow$	"hypothetical syllogism"
$\therefore \mathrm{p} \rightarrow \mathrm{r}$	$(p \rightarrow r)$	
$\begin{aligned} & p \vee q \\ & \neg p \end{aligned}$	Based on the tautology: $((p \vee q) \wedge \neg p) \rightarrow q$	"disjunctive syllogism"
$\therefore \mathrm{q}$		

- Modus ponens

_ "If you have access to ctools, you can download the homework."
- "You have access to ctools."
- (Therefore,) "you can download the homework."

- Modus tollens

- "If you have access to ctools, you can download the homework."
- "You cannot download the homework."
- (Therefore,) "you do not have access to ctools."
- Hypothetical syllogism
- "If you are registered for this course, you have access to ctools."
- "If you have access to ctools, you can download the homework."
- (Therefore,) "if you are registered for this course, you can download the HW."

- Resolution

- "If it does not rain today, we will have a picnic."
- "If it does rain today, we will go to the movies."
- (Therefore,) "today, we will have a picnic or go to the movies."

The Basic Rules of Inference

p	Based on the tautology:$p \rightarrow p \vee q$	"Addition"
$\therefore \mathrm{p} \vee \mathrm{q}$		
$p \wedge q$	Based on the tautology:$(p \wedge q) \rightarrow p$	"Simplification"
$\therefore \mathrm{p}$		
p	Based on the tautology:$((p) \wedge(q)) \rightarrow(p \wedge q)$	"Conjunction"
q		
$\therefore \mathrm{p} \wedge \mathrm{q}$		
$p \vee q$	Based on the tautology:$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$	"Resolution"
$\neg \mathrm{p} \vee \mathrm{r}$		
$\therefore \mathrm{q} \vee \mathrm{r}$		

Common fallacies

Showing that an argument is valid

- Is this argument valid? How would we show its validity?
- Premises :
i. "If Jo has a bacterial infection, she will take antibiotics."
ii. "Jo gets a stomach ache when and only when she takes antibiotics and doesn't eat yogurt."
iii. "Jo has a bacterial infection."
iv. "Jo doesn't eat yogurt."
- Conclusion:
- "Jo gets a stomach ache."

Step 1: Convert to propositions

- Premises :
i. "If Jo has a bacterial infection, she will take antibiotics."
ii. "Jo gets a stomach ache when and only when she takes antibiotics and doesn't eat yogurt."
iii. "Jo has a bacterial infection."
iv. "Jo doesn't eat yogurt."
- Conclusion:
- "Jo gets a stomach ache."
i. $\mathrm{B} \rightarrow \mathrm{A}$
ii. $\quad \mathrm{S} \leftrightarrow(\mathrm{A} \wedge \neg \mathrm{Y})$
iii. B
iv. $\neg \mathrm{Y}$

Step 2: Start with premises

i. $\quad \mathrm{B} \rightarrow \mathrm{A}$	premise
ii. $\mathrm{S} \leftrightarrow(\mathrm{A} \wedge \neg \mathrm{Y})$	premise
iii. B	premise
iv. $\neg \mathrm{Y}$	premise

[^0]
Step 3: Use inferences to make conclusion

i.	$\mathrm{B} \rightarrow \mathrm{A}$	premise
ii.	$\mathrm{S} \leftrightarrow(\mathrm{A} \wedge \neg \mathrm{Y})$	premise
iii.	B	premise
iv. $\neg \mathrm{Y}$	premise	

1. A
2. $(\mathrm{A} \wedge \neg \mathrm{Y})$
3. $((\mathrm{A} \wedge \neg \mathrm{Y}) \rightarrow \mathrm{S}) \wedge(\mathrm{S} \rightarrow(\mathrm{A} \wedge \neg \mathrm{Y}))$
4. $(\mathrm{A} \wedge \neg \mathrm{Y}) \rightarrow \mathrm{S}$
5. S
modus ponens, i, iii conjunction, iv, 1 definition of \leftrightarrow, ii simplification, 3 modus ponens, 2,4
[^1]
[^0]: B: "Jo has a bacterial infection."
 A: "Jo takes antibiotics."
 S: "Jo gets a stomach ache."
 Y: "Jo eats yogurt."

[^1]: B: "Jo has a bacterial infection."
 A: "Jo takes antibiotics."
 S: "Jo gets a stomach ache."
 Y: "Jo eats yogurt."

