Things you should do... Predicate Logic & Quantification • Homework 1 due today at 3pm START - Via gradescope. Directions posted on the website. HEY, WAIT IS A TRAP! • Group homework 1 posted, due Tuesday. - Groups of 1-3. We suggest 3. - In LaTeX EECS 203: Discrete Mathematics Lecture 3 Spring 2016 (Sections 1.4 and start on 1.5) Warmup Question Warmup Question • The expression $(p \rightarrow q) \rightarrow (\neg q \rightarrow p)$ • "Neither the fox nor the lynx can catch the hare if can only be satisfied by the truth assignment the hare is alert and quick." • F: the fox can catch the hare a. p=T, q=F• L: the lynx can catch the hare b. p=F, q=T• A: the hare is alert c. This is not satisfiable • Q: the hare is quick d. None of the above $-(A) \neg (F \lor L) \rightarrow (A \land Q)$ -(B) $(A \land Q) \rightarrow \neg F \land \neg L$ $-(C) \neg F \land \neg L \land A \land Q$ $-(D) (\neg A \lor \neg O) \rightarrow (F \lor L)$

Relational (First-Order) Logic

- In propositional logic,
 - All we have are propositions and connectives, making compound propositions.
 - We learn about deductions and proofs based on the structure of the propositions.

• In *first-order logic*,

- We will add objects, properties, and relations.
- We will be able to make statements about what is true for some, all, or no objects.
- And that comes now.

Propositions & Predicates

• Proposition:

- A declarative statement that is either true or false.
- E.g. "A nickel is worth 5 cents."
- "Water freezes at 0 degrees Celsius at sea level."

• Predicate:

- A declarative statement with some terms unspecified.
- It becomes a proposition when terms are specified.
- These terms refer to *objects*.

A "truth table" for quantifiers

	∀x P(x)	∃x P(x)
True when :	P(x) <u>true for every x</u> in the domain of discourse	P(x) true for at least one x in the domain of discourse
False when :	P(x) <u>false for at least one x</u> in the domain of discourse	P(x) <u>false for every x</u> in the domain of discourse

Examples: English \rightarrow Quantifications

"Everyone will buy an umbrella or a raincoat" $\forall x (B(x,umbrella) \lor B(x,raincoat))$

"Everyone will buy an umbrella or everyone will buy a raincoat"

"No one will buy both a raincoat and umbrella"

Examples: English \rightarrow Quantifications

Examples: English \rightarrow Quantifications

Defining Limits

• This is really just DeMorgan's Laws, extended.

• $\neg(p \land q) \equiv \neg p \lor \neg q$

• $\neg(p \lor q) \equiv \neg p \land \neg q$

- In calculus, the limit $\lim_{x \to a} f(x) = L$ • Two statements involving quantifiers and predicates are *logically equivalent* if they have – Is defined to mean: the same truth value, regardless of the domain $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \ [0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon]$ of discourse or the meaning of the predicates. \equiv denotes logical equivalence. - As close as you want f(x) to be to L ($\forall \varepsilon > 0$), - there is a margin for x around a $(\exists \delta > 0)$, - so that for any x within that margin around a, • Need new equivalences involving quantifiers. -f(x) will be as close as you wanted to L. • The limit is an essential concept for calculus. Negating Quantifiers Be Careful with Equivalences • $\neg \forall x P(x) \equiv \exists x \neg P(x)$ • It's true that: - There is an x for which P(x) is false. $- \quad \forall x \left[P(x) \land Q(x) \right] \equiv \left[\forall x P(x) \right] \land \left[\forall x Q(x) \right]$ - If P(x) is true for every x then $\exists x \neg P(x)$ is false. • But it's not true that: $- \quad \forall x [P(x) \lor Q(x)] \equiv [\forall x P(x)] \lor [\forall x Q(x)]$ • $\neg \exists x P(x) \equiv \forall x \neg P(x)$ - For every x, P(x) is false. • Why not? - If there is an x for which P(x) is true then $\forall x \neg P(x)$ is false
 - Likewise, it's true that:
 - $\exists x [P(x) \lor Q(x)] \equiv [\exists x P(x)] \lor [\exists x Q(x)]$
 - But it's not true that:
 - $\exists x [P(x) \land Q(x)] \equiv [\exists x P(x)] \land [\exists x Q(x)]$

Be Careful With Translation to Logic	Be Careful With Translation to Logic
• "Every student in this class has studied calculus."	• "Some student in this class is a math genius."
 S(x) means "x is a student in this class". C(x) means "x has studied calculus". 	- $S(x)$ means "x is a student in this class". - $G(x)$ means "x is a math genius".
• Is this correct? $\forall x [S(x) \land C(x)]$	• Is this correct? $\exists x [S(x) \rightarrow G(x)]$
– (A) Yes	– (A) Yes
– (B) No	– (B) No
• How about this? $\forall x [S(x) \rightarrow C(x)]$	• How about this? $\exists x [S(x) \land G(x)]$
– (A) Yes	– (A) Yes
– (B) No	– (B) No
Hard Problem	Prove the $A \rightarrow B$ Direction
• Prove: $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y [P(x) \lor Q(y)]$	Prove the $A \rightarrow B$ Direction • Assume that $\forall x P(x) \lor \forall x Q(x)$ is true.
Hard Problem• Prove: $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y [P(x) \lor Q(y)]$ • We can rename a bound variable: $\forall x Q(x) \equiv \forall y Q(y)$	 Prove the A→B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same.
Hard Problem • Prove: $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y [P(x) \lor Q(y)]$ • We can rename a bound variable: $\forall x Q(x) \equiv \forall y Q(y)$ - Method: to prove $A \equiv B$	 Prove the A → B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same.
Hard Problem • Prove: $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y [P(x) \lor Q(y)]$ • We can rename a bound variable: $\forall x Q(x) \equiv \forall y Q(y)$ - Method: to prove $A \equiv B$ • We might prove $A \rightarrow B$ and $B \rightarrow A$.	 Prove the A → B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same. Then for any value of y, ∀x (P(x) ∨ Q(y)) is true. by the Identity Law, since P(x) is true.
Hard Problem • Prove: $\forall x P(x) \lor \forall x Q(x) \equiv \forall x \forall y [P(x) \lor Q(y)]$ • We can rename a bound variable: $\forall x Q(x) \equiv \forall y Q(y)$ - Method: to prove $A \equiv B$ • We might prove $A \rightarrow B$ and $B \rightarrow A$. - But that will turn out to be too hard.	 Prove the A → B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same. Then for any value of y, ∀x (P(x) ∨ Q(y)) is true. by the Identity Law, since P(x) is true. This is the definition of ∀y ∀x (P(x) ∨ Q(y)).
 Hard Problem Prove: ∀x P(x) ∨ ∀x Q(x) ≡ ∀x∀y [P(x) ∨ Q(y)] We can rename a bound variable: ∀x Q(x) ≡ ∀y Q(y) Method: to prove A ≡ B We might prove A → B and B → A. But that will turn out to be too hard. Instead we will prove A → B and ¬A → ¬B. 	 Prove the A → B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same. Then for any value of y, ∀x (P(x) ∨ Q(y)) is true. by the Identity Law, since P(x) is true. This is the definition of ∀y ∀x (P(x) ∨ Q(y)). by definition of the universal quantifier.
 Hard Problem Prove: ∀x P(x) ∨ ∀x Q(x) ≡ ∀x∀y [P(x) ∨ Q(y)] We can rename a bound variable: ∀x Q(x) ≡ ∀y Q(y) Method: to prove A ≡ B We might prove A → B and B → A. But that will turn out to be too hard. Instead we will prove A → B and ¬A → ¬B. That will do the trick just as well. 	 Prove the A → B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same. Then for any value of y, ∀x (P(x) ∨ Q(y)) is true. by the Identity Law, since P(x) is true. This is the definition of ∀y ∀x (P(x) ∨ Q(y)). by definition of the universal quantifier. And this is equivalent to ∀x ∀y (P(x) ∨ Q(y)). section 1.5, example 3 (pp.58-59).
 Hard Problem Prove: ∀x P(x) ∨ ∀x Q(x) ≡ ∀x∀y [P(x) ∨ Q(y)] We can rename a bound variable: ∀x Q(x) ≡ ∀y Q(y) Method: to prove A ≡ B We might prove A → B and B → A. But that will turn out to be too hard. Instead we will prove A → B and ¬A → ¬B. That will do the trick just as well. 	 Prove the A → B Direction Assume that ∀x P(x) ∨ ∀x Q(x) is true. Consider the case where the disjunct ∀x P(x) is true. The other case, ∀x Q(x), is the same. Then for any value of y, ∀x (P(x) ∨ Q(y)) is true. by the Identity Law, since P(x) is true. This is the definition of ∀y ∀x (P(x) ∨ Q(y)). by definition of the universal quantifier. And this is equivalent to ∀x ∀y (P(x) ∨ Q(y)). section 1.5, example 3 (pp.58-59). Thus: ∀x P(x) ∨ ∀x Q(x) → ∀x ∀y (P(x) ∨ Q(y))

Prove the $\neg A \rightarrow \neg B$ Direction • Assume that $\forall x P(x) \lor \forall x Q(x)$ is false. \neg Then: $\neg [\forall x P(x) \lor \forall x Q(x)]$ $\equiv \neg \forall x P(x) \land \neg \forall x Q(x)$ $\equiv \neg \forall x P(x) \land \neg \forall x Q(x)$ $\equiv \neg x \neg P(x) \land \neg x \neg Q(x)$ - Then let (a,b) be such that $\neg P(a)$ and $\neg Q(b)$. \neg Therefore: $\neg P(a) \land \neg Q(b)$ $\equiv \neg x \exists y [\neg P(x) \land \neg Q(y)]$ $\equiv \neg x \exists y \neg [P(x) \lor Q(y)]$ $\equiv \neg \forall x \forall y [P(x) \lor Q(y)]$ $\neg Which is \neg B$ $\forall x P(x) \lor x Q(x) \equiv \forall x \forall y [P(x) \lor Q(y)]$ • QED. The whole statement is proved.	 Exercises. Start by defining your predicates! Every two people have a friend in common. (Life isn't facebook! If A is a friend of B, B is not necessarily a friend of A.) All my friends think I'm their friend too. There are two people who have the exact same group of friends. Everyone has two friends, neither of whom are friends with each other.
Additional Exercises M(x) : "x is male" F(x) : "x is female" P(x,y) : "x is the parent of y" "Everyone has at least one parent" 	Additional Exercises M(x) : "x is male" F(x) : "x is female" P(x,y) : "x is the parent of y" "Someone is an only child"

Additional Exercises Additional Exercises • M(x) : "x is male" • M(x) : "x is male" • F(x) : "x is female" • F(x): "x is female" • P(x,y) : "x is the parent of y" • P(x,y) : "x is the parent of y" - "Bob has a niece" - "I do not have any uncles" (rephrased: "any sibling of my parent is female") Additional Exercises So far... • M(x) : "x is male" • You can • F(x) : "x is female"

- P(x,y) : "x is the parent of y"
 - "Bob has a niece"
 - "Not everyone has two parents of opposite sexes"
 - "I have a half-brother" (rephrased: "I and my half-brother share one but not two parents")
 - "I do not have any uncles" (rephrased: "any sibling of my parent is female")
 - "No one's parents are cousins" (this is one is rather long...)

- Express statements as compound propositions
- Prove that two compound propositions are equivalent
- Express statements as quantified formulae (with predicates and universal & existential quantifiers)
- Next:
 - Formal proofs, rules of inference
 - Proof methods
 - Strategies for designing proofs

Definition • An **argument** for a statement S is a sequence of statements ending with S. Start on • We call S the **conclusion** and all the other **Inference and Proofs** statements the **premises**. • The argument is **valid** if, whenever all the premises are true, the conclusion is also true. Section 1.5 - Note: A valid argument with false premises could lead to a false conclusion. • **Proofs** are **valid arguments** that establish the truth of mathematical statements. Simple Example Inferences • Premises: • Basic building block of logical proofs is an *inference* - "If you're a CS major then you must take EECS 203 - Combine two (or one or more) known facts to yield another before graduating." premises Based on the tautology: - "You're a CS major." $((p \rightarrow q) \land p) \rightarrow q$. q • Conclusion: conclusion - (Therefore,) "You must take EECS 203 before premises Based on the tautology: graduating." 1VQr $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ ---- conclusion ∴ q∨r • This is a valid argument (why?). Note: This is not a valid inference because $((p \rightarrow q) \land q) \rightarrow p$ is *not* a tautology!

The Basic Rules of Inference

p→q ∴ q	Based on the tautology: $((p \rightarrow q) \land p) \rightarrow q$	"modus ponens" lit.: mode that affirms	p ∕ q	Based on the tautology: $p \rightarrow p \lor q$	"Addition"
p→q ¬q ∴ ¬p	Based on the tautology: $((p \rightarrow q) \land \neg q) \rightarrow \neg p$	"modus tollens" lit.: mode that denies	p ∧ q ∴ p	Based on the tautology: $(p \land q) \rightarrow p$	"Simplification"
$p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$	Based on the tautology: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$	"hypothetical syllogism"	p q ∴ p ∧ q	Based on the tautology: ((p) \land (q)) \rightarrow (p \land q)	"Conjunction"
p ∨ q p ∴ q	Based on the tautology: $((p \lor q) \land \neg p) \rightarrow q$	"disjunctive syllogism"	p∨q ¬p∨r ∴ q∨r	Based on the tautology: $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$	"Resolution"

- Modus ponens
 - P 4
 - "If you have access to ctools, you can download the homework."
 - "You have access to ctools."
 - (Therefore,) "you can download the homework."
- Modus tollens
 - "If you have access to ctools, you can download the homework."
 - "You cannot download the homework."
 - (Therefore,) "you do not have access to ctools."
- Hypothetical syllogism
 - "If you are registered for this course, you have access to ctools."
 - "If you have access to ctools, you can download the homework."
 - (Therefore,) "if you are registered for this course, you can download the HW."
- Resolution
 - "If it does not rain today, we will have a picnic."
 - "If it does rain today, we will go to the movies."
 - (Therefore,) "today, we will have a picnic or go to the movies."

The Basic Rules of Inference

Showing that an argument is valid

- Is this argument valid? How would we show its validity?
- Premises :

i. "If Jo has a bacterial infection, she will take antibiotics."

ii. "Jo gets a stomach ache when and only when she takes antibiotics and doesn't eat yogurt."

iii. "Jo has a bacterial infection."

iv. "Jo doesn't eat yogurt."

• Conclusion:

- "Jo gets a stomach ache."

Step 2: Start with premises

i.	$B \rightarrow A$
ii.	$S \leftrightarrow (A \land \neg Y)$
iii.	В
iv.	¬Υ

premise premise premise

premise

B: "Jo has a bacterial infection."

A: "Jo takes antibiotics."

S: "Jo gets a stomach ache."

Y: "Jo eats yogurt."

Step 1: Convert to propositions

	•
• Premises :	
i. "If Jo has a bacterial infection, she will take antibiotics."	i. $B \rightarrow A$
ii. "Jo gets a stomach ache when and only when she takes antibiotics and doesn't eat yogurt."	ii. $S \leftrightarrow (A \land \neg Y)$
iii. "Jo has a bacterial infection."	iii. B
iv. "Jo doesn't eat yogurt."	iv. ¬Y
• Conclusion:	
– "Jo gets a stomach ache."	S
B: "Jo has a bacterial infection."	
A: "Jo takes antibiotics."	
S: "Jo gets a stomach ache."	
Y: "Jo eats yogurt."	

Step 3: Use inferences to make conclusion

i. $B \rightarrow A$	premise
ii. $S \leftrightarrow (A \land \neg Y)$	premise
iii. B	premise
iv. ¬Y	premise
1. A	modus ponens, i, iii
2. $(A \land \neg Y)$	conjunction, iv, 1
3. $((A \land \neg Y) \rightarrow S) \land (S \rightarrow (A \land \neg Y))$	definition of \leftrightarrow , ii
4. $(A \land \neg Y) \rightarrow S$	simplification, 3
5. S	modus ponens, 2,4
B: "Jo has a bacterial infection."	
A: "Jo takes antibiotics."	The desired
S: "Jo gets a stomach ache."	conclusion!
Y: "Jo eats yogurt."	