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Algorithms: Review from last time 
 

 
1. For what values of C and k (if any) is it the case that x2=O(100x2+4)? 

 

2. For what values of C and k (if any) is it the case that x2=O(x3+4)? 

 

3. Is log(x)=O(x)? 

 

4. Is 2x2+x=O(x2)? 

 

5. Is x2=O(2x2+x)? 

 

New stuff: Big Theta and Big Omega 

 

 

Basically if f(x)=O(g(x)) then g(x)=(f(x)).  And if f(x) is both big-O of g(x) and big-Omega of g(x) it is also 

“of the order of” g(x) and f(x)=(g(x))   

  



EECS 203 Spring 2016 Lecture 9                                                                                                 Page 2 of 9 

Algorithm complexity (3.3) 
We will generally use the big- notation to describe the runtimes of algorithms in terms of their inputs.   

Provide a reasonable big- estimate for the run time of the following algorithms.   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why do you think we tend to use big-O rather than big- when discussing algorithms?  
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Other things from section 3.3 

Terminology 

It turns out people rarely say things like (n).  Instead they will say “its runtime is linear” or some such.  

Below is a list of terms you might hear when discussing complexity. 

  
The ones with  next to them are terms you should know by name.  In addition you should be 

aware that (n2) is often just referred to as “quadratic complexity”. 

 

Tractability 

In general, we want to run algorithms that can actually solve problems.  In section 3.2 the text showed 

that there exist problems which cannot be solved. But we also may encounter problems that are 

solvable, but aren’t able to be solved in a reasonable period of time over a reasonable input set (yes, 

that was really vague on purpose).  

As a pretty arbitrary line, CS folks have chosen to call anything that can’t be solved in polynomial time or 

less “intractable” meaning that it may be solvable but we can’t really solve it in the general case.  Again, 

this is pretty arbitrary.  While 2n certainly grows faster than n100, it is actually smaller for quite a long 

time (~n=1000) and well past when we’d have a chance of doing the computation (at n=1000 both are 

around 10E300).   

That said, we rarely encounter polynomial complexity algorithms where the exponent is much greater 

than 4 or 5.  While we do hit exponential algorithms on a regular basis.   

The “P=NP” question asks if a certain class of important algorithms (including things like minesweeper!) 

have a polynomial complexity or not.  That one is still out… 
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Algorithms Review—what we’ve done 
 

 

 

 

 

 

1. Defined what made an algorithm.   

a. A finite sequence of precise instructions 

for doing something. 

b. Did a bit with the book’s pseudo-code. 

c. Wrote one function, read a few. 

2. Learned about Big-O notation. 

a. How it is defined.   

b. Why it’s useful. 

c. Also learned Big- and Big- 

3. Applied these notions to looking at 

real functions. 

 

One clarification.  Our book prefers to use the language “x2+4 is O(x2)” rather than using the equal sign.  

That’s a bit non-standard but not unheard of and probably clearer.  Others also think of big-O as a set 

and might write “x2+4  O(x2)” though that is really non-standard from what I can find.1   

Questions/Review 
1. Is the algorithm max (found above) O(n)? O(n2)?  O(log(n))? 

2. Using the big- notation, what order is the function max? 

3. Describe why big-O/big- is useful to computer scientists. 

                                                           
1 From Wikipedia:  
The statement "f(x) is O(g(x))" as defined above is usually written as f(x) = O(g(x)). Some consider this to be an 
abuse of notation, since the use of the equals sign could be misleading as it suggests a symmetry that this 
statement does not have. As de Bruijn says, O(x) = O(x2) is true but O(x2) = O(x) is not. Knuth describes such 
statements as "one-way equalities", since if the sides could be reversed, "we could deduce ridiculous things like n = 
n2 from the identities n = O(n2) and n2 = O(n2)." For these reasons, it would be more precise to use set notation and 
write f(x) ∈ O(g(x)), thinking of O(g(x)) as the class of all functions h(x) such that |h(x)| ≤ C|g(x)| for some constant 
C. However, the use of the equals sign is customary. Knuth pointed out that "mathematicians customarily use the = 
sign as they use the word 'is' in English: Aristotle is a man, but a man isn't necessarily Aristotle. 
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Number theory (Chapter 4) 
The part of mathematics devoted to the study of the set of integers and their properties is known as 

number theory. We will hit a number of topics including cryptography and pseudorandom number 

generation. 

Divisibility and Modular Arithmetic (4.1) 
When one integer is divided by a (non-zero) integer the result may be an integer.  For example 7/2 is 3.5 

while 8/2 is 4.  We say “a divides b” if b divided by a results in an integer.  There are other terms such as 

“factor”, “divisor” and “multiple” that are often used in this context. Our text uses the following: 

 

Questions 

1. Is a|b the same as ∃c(ac = b) assuming 𝑎, 𝑏, 𝑐 ∈ ℤ? 

2. Does 3|12? 

3. Does 12|3? 

4. Does 0|4? 

5. Does 4|0? 

Divisibility and addition 

𝑎, 𝑏, 𝑐, 𝑛, 𝑚 ∈ ℤ where 𝑎 ≠ 0, ∀𝑚, 𝑛 ( (𝑎|𝑏) ∧ (𝑎|𝑐) → 𝑎|(𝑚𝑏 + 𝑛𝑐)     

What does the above mean?  If a=4, b=8 and c=12, what do we know? 

 

 

We’ll prove that later… 
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The Division “Algorithm”  

 

The key notion here is that there is a unique value for r and q as long as 0 ≤ r < d.  The function which 

generates q is called “div”. The function which generates r is called mod.    

Questions 

1. If a=20 and d=3, what are q and r?  (same questions: What is 20 div 3 and what is 20 mod 3?) 

2. What is -20 mod 3? 

3. What is -20 div 3? 

4. Why did I put “algorithm” in quotes?   

Modular arithmetic 
We introduce the notion of “congruent” numbers.  a is congruent to b modulo m if a mod m=b mod m.  

We (re)use the symbol  to indicate congruency.  So we’d write ab (mod m).   

Huh? 

10 mod 3=1 and 4 mod 3=1.  Thus we could say that 10 is congruent to 4 mod 3.  Or 10  4 (mod 3) 

Questions 

1. Is 10  4 (mod 4)? 

2. Is 10  4 (mod 2)? 

3. For what positive values of m is 10  4 (mod m)? 

The text uses an alternative (but equivalent) definition of congruence.   

 

 

And that results in the following: 

 

Let’s prove that. 
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And let’s prove this: 

 

 

 

 

 

 

And now this: 
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Representation of Integers (4.2) 
This section mainly covers material we’ve already touched on—the idea that we can work in different 

bases.   

 

1. Convert 101012 (that subscript means “base 2”) to base 10. 

 

2. Convert 10F16 to base 10 (base 16 is often called “hexadecimal” or “hex”) 

 

3. Convert 120 to base 2 (notice we generally don’t state the base when working in base 10) 

 

4. Convert 1011011012 to base 8. (hint: there is an easy way to do this!) 

 

5. Add 11102 and 10112  

 

6. Add 10102 and 01112 

 

 

 

Modular Exponentiation 
In cryptography it is important to be able to find bn mod m efficiently, where b, n, and m are large 

integers. It is impractical to first compute bn and then find its remainder when divided by m because bn 

will be a huge number. Instead, we can use an algorithm that employs the binary expansion of the 

exponent n.2 

OK, this gets tricky.  What we are going to do is notice that if we raise some number b to the nth power, 

we can consider the binary representation of n as (ak-1, … a1, a0).  So if n=12 we could consider 11002.  

Consider the claim that  

 

In our case (n=12) we are saying that b12=b8*b4 which is clearly true. 

                                                           
2 Text from page 253 of Rosen 
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So what are going to do is take advantage of this  

 

 

 

 

 

 

 

 

Let’s see how we’d use this to find 513 mod 3 (something a bit less painful).   

 

 


