EECS 203 Spring 2016 Lecture 9

Algorithms: Review from last time

DEFINITION 1 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) i1s O(g(x)) if there are constants C and k such that

| f(x)| < Clgx)]

whenever x > k. [This is read as * f(x) is big-oh of g(x).”]

1. For what values of C and k (if any) is it the case that x>=0(100x?+4)?
2. For what values of C and k (if any) is it the case that x>=0(x3+4)?

3. Islog(x)=0(x)?

4. 1s 2x*+x=0(x?)?

5. Is x2=0(2x*+x)?

New stuff: Big Theta and Big Omega

DEFINITION 2 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) is Q(g(x)) if there are positive constants C and k such that

[f(x)] = Clg(x)]

whenever x > k. [This is read as *“f(x) is big-Omega of g(x).”]

DEFINITION 3 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x)1s ©(g(x)) if f(x)1s O(g(x)) and f(x)1s 2(g(x)). When f(x)
is ®(g(x)) we say that f is big-Theta of g(x), that f(x) is of erder g(x), and that f(x) and
g(x) are of the same order.

Basically if f(x)=0(g(x)) then g(x)=C(f(x)). And if f(x) is both big-O of g(x) and big-Omega of g(x) it is also
“of the order of” g(x) and f(x)=0(g(x))

EECS 203 Spring 2016 Lecture 9 Page 2 of 9

Algorithm complexity (3.3)

We will generally use the big-® notation to describe the runtimes of algorithms in terms of their inputs.

Provide a reasonable big-® estimate for the run time of the following algorithms.

=1

r:=10

whilei = n
ti=t+1i

=2

m:=10
fori:=1ton
for j:=i+1ton
m = max(a;a;, m)

procedure closest-pair((xy, ¥1), (x2, ¥2), (X, ¥,): pairs of real numbers)
min= oo
fori:=2ton
for ji=1toi —1
if (x; —Jc;)2 +(vj — _‘_w)z < min then

min == (x; — x;)* + (y; — »i)?

closest pair == ((x;, ¥;), (xj, ¥;))
return closest pair

Why do you think we tend to use big-O rather than big-® when discussing algorithms?

EECS 203 Spring 2016 Lecture 9

Other things from section 3.3

Terminology
It turns out people rarely say things like ®(n). Instead they will say “its runtime is linear” or some such.
Below is a list of terms you might hear when discussing complexity.

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.

Complexity Terminology

(1) Y Constant complexity

G (log n) Y Logarithmic complexity
& (n) Y Linear complexity

& (n log n) Linearithmic complexity
O(n?) Polynomial complexity

O(b"), where b > 1 YeExponential complexity
B(nh Factorial complexity

The ones with * next to them are terms you should know by name. In addition you should be
aware that ®(n?) is often just referred to as “quadratic complexity”.

Tractability

In general, we want to run algorithms that can actually solve problems. In section 3.2 the text showed
that there exist problems which cannot be solved. But we also may encounter problems that are
solvable, but aren’t able to be solved in a reasonable period of time over a reasonable input set (yes,
that was really vague on purpose).

As a pretty arbitrary line, CS folks have chosen to call anything that can’t be solved in polynomial time or
less “intractable” meaning that it may be solvable but we can’t really solve it in the general case. Again,
this is pretty arbitrary. While 2" certainly grows faster than n'%, it is actually smaller for quite a long
time (~n=1000) and well past when we’d have a chance of doing the computation (at n=1000 both are
around 10E300).

That said, we rarely encounter polynomial complexity algorithms where the exponent is much greater
than 4 or 5. While we do hit exponential algorithms on a regular basis.

The “P=NP” question asks if a certain class of important algorithms (including things like minesweeper!)
have a polynomial complexity or not. That one is still out...

EECS 203 Spring 2016 Lecture 9

Algorithms Review—what we've done

TE- DYNAMIC

ngL-UTIT:gF:JC:E PROGRAMMING SELUNG ON EBRAY: 4096
ALGORITHMS: 0(1) 2048
0 (ﬂl) @) (ﬂizn) 1024
STILL WORKING 312
ON YOUR ROUTE? 256
AN 128
64
™ u

SHUT UP

1. Defined what made an algorithm. ' I

a. Afinite sequence of precise instructions
for doing something.

=
s
S
th
o
~
-]

procedure max(ay, as, . .., a,: integers)
b. Did a bit with the book’s pseudo-code. max .= aj
. fori:=2ton
c. Wrote one function, read a few. ort— oK
2. Learned about Big-O notation if max = a; then max = a;

return max{max is the largest element}
a. How itis defined.

b. Why it's useful.

P Yl Let f and g be functions from the set of integers or the set of real numbers to the set of real
c. Also learned Blg ®and Blg Q numbers. We say that f(x) is O(g(x)) if there are constants C and & such that
3. Applied these notions to looking at

. | f(x)] < Clgx)|
real functions.

whenever x > k. [This is read as “ f(x) is big-oh of g(x).”]

One clarification. Our book prefers to use the language “x*+4 is O(x?)” rather than using the equal sign.
That’s a bit non-standard but not unheard of and probably clearer. Others also think of big-O as a set
and might write “x>+4 € O(x?)” though that is really non-standard from what | can find.!

Questions/Review
1. s the algorithm max (found above) O(n)? O(n?)? O(log(n))?
2. Using the big-® notation, what order is the function max?
3. Describe why big-O/big-Q is useful to computer scientists.

! From Wikipedia:

The statement "f(x) is O(g(x))" as defined above is usually written as f(x) = O(g(x)). Some consider this to be an
abuse of notation, since the use of the equals sign could be misleading as it suggests a symmetry that this
statement does not have. As de Bruijn says, O(x) = O(x?) is true but O(x?) = O(x) is not. Knuth describes such
statements as "one-way equalities", since if the sides could be reversed, "we could deduce ridiculous things like n =
n? from the identities n = O(n?) and n2 = O(n?)." For these reasons, it would be more precise to use set notation and
write f(x) € O(g(x)), thinking of O(g(x)) as the class of all functions h(x) such that |h(x)| < C|g(x)| for some constant
C. However, the use of the equals sign is customary. Knuth pointed out that "mathematicians customarily use the =
sign as they use the word 'is' in English: Aristotle is a man, but a man isn't necessarily Aristotle.

EECS 203 Spring 2016 Lecture 9

Number theory (Chapter 4)

The part of mathematics devoted to the study of the set of integers and their properties is known as
number theory. We will hit a number of topics including cryptography and pseudorandom number
generation.

Divisibility and Modular Arithmetic (4.1)

When one integer is divided by a (non-zero) integer the result may be an integer. For example 7/2 is 3.5
while 8/2 is 4. We say “a divides b” if b divided by a results in an integer. There are other terms such as
“factor”, “divisor” and “multiple” that are often used in this context. Our text uses the following:

If a and b are integers with a #£ 0, we say that a divides b if there is an integer ¢ such that
b = ac, or equivalently, if% is an integer. When a divides b we say that a is a factor or divisor
of b, and that b is a multiple of a. The notation a | b denotes that a divides b. We write a } b
when a does not divide b.

Questions
1. Isal|bthe same as dc(ac = b) assuming a, b, ¢ € Z?
Does 3|12?
Does 12|37
Does 0|4?
Does 4|0?

v wNN

Divisibility and addition
a,b,c,n,m € Zwherea # 0, vm,n ((a|b) A (alc) = a|(mb + nc)

What does the above mean? If a=4, b=8 and c=12, what do we know?

WEe’ll prove that later...

EECS 203 Spring 2016 Lecture 9

The Division “Algorithm”

THE DIVISION ALGORITHM Let a be an integer and d a positive integer. Then there
are unique integers g and r, with 0 < r < d, such thata = dg + r.

The key notion here is that there is a unigue value for r and g as long as 0 < r < d. The function which
generates q is called “div”. The function which generates r is called mod.

Questions
1. Ifa=20and d=3, what are g and r? (same questions: What is 20 div 3 and what is 20 mod 3?)
2. Whatis-20 mod 3?
3. Whatis-20 div 3?
4. Why did | put “algorithm” in quotes?

Modular arithmetic
We introduce the notion of “congruent” numbers. ais congruent to b modulo m if a mod m=b mod m.
We (re)use the symbol = to indicate congruency. So we’d write a=b (mod m).

Huh?
10 mod 3=1 and 4 mod 3=1. Thus we could say that 10 is congruent to 4 mod 3. Or 10 =4 (mod 3)

Questions
1. Is10=4 (mod 4)?
2. Is10=4 (mod 2)?
3. For what positive values of mis 10 =4 (mod m)?

The text uses an alternative (but equivalent) definition of congruence.

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if
m divides a — b. We use the notation @ = b (mod m) to indicate that a is congruent to
b modulo m. We say that a = b (mod m) is a congruence and that m is its modulus (plural
moduli). If @ and b are not congruent modulo m, we write a 2 b (mod m).

And that results in the following:

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there
is an integer k such thata = b + km.

Let’s prove that.

EECS 203 Spring 2016 Lecture 9

And let’s prove this:
Let m be a positive integer. [f a = b (mod m) and ¢ = d (mod m), then

a+c=b+d (modm) and ac = bd (mod m).

And now this:
Let m be a positive integer and let @ and b be integers. Then

{(a +b)modm = ((amodm) + (bmod m)) mod m

and

abmod m = ((a mod m)(b mod m)) mod m.

EECS 203 Spring 2016 Lecture 9

Representation of Integers (4.2)
This section mainly covers material we’ve already touched on—the idea that we can work in different

bases.
TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.
Decimal 0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal | O [1 | 2 3 4 5 6 7 8 9 A B C D E F
Octal 0] 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Binary 0| 1|10 |11) 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

1. Convert 10101, (that subscript means “base 2”) to base 10.

2. Convert 10F to base 10 (base 16 is often called “hexadecimal” or “hex”)

3. Convert 120 to base 2 (notice we generally don’t state the base when working in base 10)
4. Convert 101101101, to base 8. (hint: there is an easy way to do this!)

5. Add 1110, and 1011,
111

6. Add 1010, and 0111, 1110
+1011

11001

Modular Exponentiation

In cryptography it is important to be able to find b” mod m efficiently, where b, n, and m are large
integers. It is impractical to first compute b" and then find its remainder when divided by m because b”
will be a huge number. Instead, we can use an algorithm that employs the binary expansion of the

exponent n.2

OK, this gets tricky. What we are going to do is notice that if we raise some number b to the n' power,
we can consider the binary representation of n as (ak.1, ... a1, ag). So if n=12 we could consider 1100.
Consider the claim that

b.n — b(:k_|.2k_|+.-.+a|-2+a[] — bﬂj;_| k=1 L bm -2 ba.;]

In our case (n=12) we are saying that b?=b®*b* which is clearly true.

2 Text from page 253 of Rosen

EECS 203 Spring 2016 Lecture 9 Page 9 of 9

So what are going to do is take advantage of this

procedure modular exponentiation(b: integer, n = (ag_1ax_2 . ..ajap)2.
m: positive integers)
x:=1
power ;= b mod m
fori:=0tok —1
if a; = 1 then x := (x - power) mod m
power := (power - power) mod m
return x{x equals " mod m]

EXAMPLE 12 Use Algorithm 5 to find 3%** mod 645.

Solution: Algorithm 5 initially sets x = 1 and power = 3 mod 645 = 3. In the computation
of 3°** mod 645, this algorithm determines 3% mod 645 for J=1,2,...,9 by successively
squaring and reducing modulo 643. If a; = 1 (where a; is the bit in the jth position in the
binary expansion of 644, which is (1010000100),), it multiplies the current value of x by 32
mod 645 and reduces the result modulo 645. Here are the steps used:

i = 0: Because ag = 0, we have x = 1 and power = 3% mod 645 = 9 mod 645 = 9;
- Because a; = 0, we have x = 1 and power = 9% mod 645 = 81 mod 645 = 81;
: Because a» = 1, we have x = 1 - 81 mod 645 = 81 and power = 812 mod 645 = 6561 mod 645 = 111;
- Because a3 = 0, we have x = 81 and power = 1112 mod 645 = 12,321 mod 645 = 66;
— 4: Because as = 0, we have x = 81 and power = 66 mod 645 = 4356 mod 645 = 486;
i = 5: Because as = 0, we have x = 81 and power = 4862 mod 645 = 236,196 mod 645 = 126:
6: Because ag = 0, we have x = 81 and power = 126 mod 645 = 15,876 mod 645 = 396;

i = 7: Because a7 = 1, we find that x = (81 - 396) mod 645 = 471 and power = 3962 mod 645 = 156,816
mod 645 = 81;

i = 8: Because ag = 0, we have x = 471 and power = 812 mod 645 = 6561 mod 645 = 111;
I = 9: Because agp = 1, we find that x = (471 - 111) mod 645 = 36.

g’l —

I
S R

This shows that following the steps of Algorithm 5 produces the result 3** mod 645 = 36.

Let’s see how we’d use this to find 53 mod 3 (something a bit less painful).

