Mathematical Induction

EECS 203: Discrete Mathematics
Lecture 11
Spring 2016

Climbing the Ladder

- We want to show that $\forall n \geq 1 P(n)$ is true.
- Think of the positive integers as a ladder.

$$
-\quad 1,2,3,4,5,6, \ldots
$$

Mathematical Induction

- How do we prove a universal statement about the positive integers:

$$
\forall n \geq 1 P(n)
$$

- Mathematical induction is an inference rule
- Base case: $\mathrm{P}(1)$
- Inductive step: $\quad \forall k \geq 1 P(k) \rightarrow P(k+1)$
- Conclusion: $\quad \forall n \geq 1 P(n)$
- The inductive step requires proving an implication.

Simple Math Induction Example

- Prove, for all $n \in \mathbf{N}$,

$$
0+1+2+\cdots+n=\frac{n(n+1)}{2}
$$

- Proof: We use induction. Let $P(n)$ be:

$$
0+1+2+\cdots+n=\frac{n(n+1)}{2}
$$

- Base case: $P(0)$, because $0=0$.

Simple Math Induction Example

- Inductive step: Assume that $P(k)$ is true, where k is an arbitrary natural number.

$$
0+1+2+\cdots+k+(k+1)=
$$

Simple Math Induction Example

- Inductive step: Assume that $P(k)$ is true, where k is an arbitrary natural number.

$$
\begin{aligned}
0+1+2+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

- The first equality follows from $P(k)$, and the second by simplification. Thus, $P(k+1)$ is true.
- By induction, $P(n)$ is true for all natural numbers n. QED
- This shows how to write a clear inductive proof.

Question

- Did you understand the proof by induction?
- (A) Yes, that's really clever!
- (B) How can you start with $P(0)$ instead of $P(1)$?
- (C) When do you use $P(k)$ and when $P(n)$?
- (D) Isn't it circular to assume $P(k)$, when you are trying to prove $P(n)$?
- (E) I just don't get it.

Divisibility Example (1)

- Let's try to prove $\forall n \in \mathbf{N} 3 \mid n^{3}-n$.
- First, we 'll work through the mathematics.
- Then we'll structure a clear proof.
- Base case: $P(0)$ is easy: $3 \mid\left(0^{3}-0\right)$
- Everything divides zero, so it's true.

Divisibility Example (2)

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Assume $P(k)$: $3 \mid\left(k^{3}-k\right) \quad$ (for arbitrary k)
- Can we prove $P(k+1): 3 \mid\left((k+1)^{3}-(k+1)\right)$?
- Try multiplying it out:

$$
\begin{aligned}
3 \mid\left((k+1)^{3}-(k+1)\right) & \left.\Leftrightarrow 3 \mid\left(k^{3}+3 k^{2}+3 k+1-k-1\right)\right) \\
& \Leftrightarrow 3 \mid\left(k^{3}+3 k^{2}+2 k\right) \\
& \Leftrightarrow 3 \mid\left(\left(k^{3}-k\right)+\left(3 k^{2}+3 k\right)\right)
\end{aligned}
$$

- We know that $3 \mid\left(k^{3}-k\right)$ and $3 \mid\left(3 k^{2}+3 k\right)$.
- Conclude that $3 \mid\left((k+1)^{3}-(k+1)\right)$, so $P(k) \rightarrow P(k+1)$.

A Clear Divisibility Proof

- Theorem: $\forall n \in \mathbf{N} 3 \mid\left(n^{3}-n\right)$
- Proof: Use induction on $P(n): 3 \mid\left(n^{3}-n\right)$.
- Base case: $P(0)$ is true because $3 \mid\left(0^{3}-0\right)$.
- Inductive step: Assume $P(k)$, for arbitrary natural number k. Then:

$$
\begin{aligned}
3 \mid\left(k^{3}-k\right) & \Rightarrow 3 \mid\left(k^{3}-k\right)+3\left(k^{2}+k\right) \\
& \Rightarrow 3 \mid k^{3}+3 k^{2}+3 k+1-k-1 \\
& \Rightarrow 3 \mid(k+1)^{3}-(k+1)
\end{aligned}
$$

- The final statement is $P(k+1)$, so we have proved that $P(k) \rightarrow P(k+1)$ for all natural numbers k.
- By mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \in \mathbf{N}$.
- QED

A Clear Divisibility Proof

- Theorem: $\forall n \in \mathbf{N} 3 \mid\left(n^{3}-n\right)$
- Proof: Use induction on $P(n): 3 \mid\left(n^{3}-n\right)$.
- Base case: $P(0)$ is true because $3 \mid\left(0^{3}-0\right)$.
- Inductive step: Assume $P(k)$, for arbitrary natural number k. Then:

$$
\begin{aligned}
3 \mid\left(k^{3}-k\right) & \Rightarrow 3 \mid\left(k^{3}-k\right)+3\left(k^{2}+k\right) \\
& \Rightarrow 3 \mid k^{3}+3 k^{2}+3 k+1-k-1 \\
& \Rightarrow 3 \mid(k+1)^{3}-(k+1)
\end{aligned}
$$

- The final statement is $P(k+1)$, so we have proved that $P(k) \rightarrow P(k+1)$ for all natural numbers k.
- By mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \in \mathbf{N}$.
- QED
- Notice: we had to go back and start by assuming $\mathrm{P}(\mathrm{k})$ and then showing it implied $\mathrm{P}(\mathrm{k}+1)$.
- That first step isn't at all clear unless you've done the math first!

Use induction to show that $\sum_{k=1}^{n}(2 n-1)=n^{2}$

- Theorem:
- Proof:
- Base case:
- Inductive step:

A False "Proof"

- "Theorem": All horses are the same color.
- Proof: By induction, where $P(n)$ is the proposition that in every set of n horses, all horses are the same color.
- Base case: $P(1)$ is true, because in every set of 1 horse, all horses are the same color.
- Inductive step: Assume $P(k)$ is true, for arbitrary positive integer k :
- In any set of k horses, all have the same color. - This is called the "inductive hypothesis".

False "Proof" (2)

- Inductive hypothesis $P(k)$: In any set of k horses, all have the same color.
- Now consider a set of $k+1$ horses

$$
-\quad h_{1}, h_{2}, \ldots h_{k}, h_{k+1}
$$

- By $P(k)$, the first k horses are all the same color

$$
-\quad h_{1}, h_{2}, \ldots h_{k}
$$

- Likewise, the last k horses are also the same color

$$
-\quad h_{2}, \ldots h_{k}, h_{k+1}
$$

- Therefore, all $k+1$ horses must have the same color
- Thus, $\forall k \in \mathbf{N} \quad P(k) \rightarrow P(k+1)$
- So, $\forall n \in \mathbf{N} P(n)$ What's wrong?

Question

- What's wrong with that proof by induction?
- (A) Mathematical induction doesn't apply to horses.
- (B) The Base Case is incorrect.
- (C) The Inductive Step is incorrect.
- (D) The Base Case and Inductive Step are correct, but you've put them together wrong.
- (E) It's completely correct: all horses are the same color!

The Problem with the Horses

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Now consider a set of $k+1$ horses
- $\quad h_{1}, h_{2}, \ldots h_{k}, h_{k+1}$
- By $P(k)$, the first k horses are all the same color
- $\quad h_{1}, h_{2}, \ldots h_{k}$,
- Likewise, the last k horses are also the same color
- $\quad h_{2}, \ldots h_{k}, h_{k+1}$
- Therefore, all $k+1$ horses must have the same color

Start with $k=1$

A set of one horse with the same color
Another set of one horse with the same color

The Problem with the Horses

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Now consider a set of $k+1$ horses

$$
h_{1}, h_{2}, \ldots h_{k}, h_{k+1}
$$

- By $P(k)$, the first k horses are all the same color

$$
\text { - } \quad h_{1}, h_{2}, \ldots h_{k} \text {, }
$$

- Likewise, the last k horses are also the same color

$$
\text { - } \quad h_{2}, \ldots h_{k}, h_{k+1}
$$

- Therefore, all $k+1$ horses must have the same color
- The link $P(1) \rightarrow P(2)$ is false.
- So, this proof by mathematical induction is invalid.
- However, the inductive step for $k \geq 2$ is actually correct!

The Problem with the Horses

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Now consider a set of $k+1$ horses
- $\quad h_{1}, h_{2}, \ldots h_{k}, h_{k+1}$
- By $P(k)$, the first k horses are all the same color
- $\quad h_{1}, h_{2}, \ldots h_{k}$,
- Likewise, the last k horses are also the same color
- $\quad h_{2}, \ldots h_{k}, h_{k+1}$
- Therefore, all $k+1$ horses must have the same color

Assume true for $k=2$

Then for $k=3$

The Problem with the Horses

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Now consider a set of $k+1$ horses
- $\quad h_{1}, h_{2}, \ldots h_{k}, h_{k+1}$
- By $P(k)$, the first k horses are all the same color
- $\quad h_{1}, h_{2}, \ldots h_{k}$,
- Likewise, the last k horses are also the same color
- $\quad h_{2}, \ldots h_{k}, h_{k+1}$
- Therefore, all $k+1$ horses must have the same color

Assume true for $k=2$

The Problem with the Horses

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Now consider a set of $k+1$ horses
- $\quad h_{1}, h_{2}, \ldots h_{k}, h_{k+1}$
- By $P(k)$, the first k horses are all the same color
- $\quad h_{1}, h_{2}, \ldots h_{k}$,
- Likewise, the last k horses are also the same color
- $\quad h_{2}, \ldots h_{k}, h_{k+1}$
- Therefore, all $k+1$ horses must have the same color

Assume true for $k=2$

Another group of two

The Problem with the Horses

- Inductive step: $\forall k \in \mathbf{N} P(k) \rightarrow P(k+1)$
- Now consider a set of $k+1$ horses
- $\quad h_{1}, h_{2}, \ldots h_{k}, h_{k+1}$
- By $P(k)$, the first k horses are all the same color
- $\quad h_{1}, h_{2}, \ldots h_{k}$,
- Likewise, the last k horses are also the same color
- $\quad h_{2}, \ldots h_{k}, h_{k+1}$
- Therefore, all $k+1$ horses must have the same color

Assume true for $k=2$

\uparrow
But base step wasn't true!

Then for $k=3$

Tiling a Checkerboard (1)

- For $n \geq 1$, consider a $2^{n} \times 2^{n}$ checkerboard.
- Can we cover it with 3-square L-shaped tiles? No.

- Remove any one of the squares. Can we tile it now?
- Prove by induction: Let $P(n)$ be the proposition:
- A $2^{n} \times 2^{n}$ checkerboard, minus any one of the squares, can be tiled with these L-shaped tiles.

Tiling a Checkerboard (2)

- Consider a $2^{k+1} \times 2^{k+1}$ checkerboard, minus any one square.
- Divide the checkerboard into four $2^{k} \times 2^{k}$ quadrants.
- The missing square is in one quadrant.
- From the other three quadrants, remove the square closest to the center of the checkerboard.

Tiling a Checkerboard (3)

- $P(k)$ says that each quadrant (minus one square) can be tiled. One tile covers the three central squares.
- Thus, $P(k) \rightarrow P(k+1)$, for arbitrary $k \geq 1$.
- By mathematical induction, $\forall n \geq 1 P(n)$.

The Harmonic Series (1)

- The Harmonic Numbers are the partial sums of the Harmonic Series:

$$
H_{j}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{j}
$$

- We want to prove that:

$$
H_{2^{n}} \geq 1+\frac{n}{2}
$$

- This implies an important property of the Harmonic Series:

$$
\lim _{j \rightarrow \infty} H_{j}=\infty
$$

The Harmonic Series (2)

- Theorem:

$$
H_{2^{n}} \geq 1+\frac{n}{2} \text { for all } n \in \mathbf{N}
$$

- Proof: By induction, with $P(n)$ being

$$
H_{2^{n}} \geq 1+\frac{n}{2}
$$

- Base case: $P(0)$ is true because $H_{2^{0}}=H_{1}=1 \geq 1+\frac{0}{2}$
- Inductive step: The inductive hypothesis $P(k)$ is

$$
H_{2^{k}} \geq 1+\frac{k}{2}
$$

- From that assumption, we want to prove $P(k+1)$.

The Harmonic Series (3)

- The inductive hypothesis $P(k)$ is $H_{2^{k}} \geq 1+\frac{k}{2}$

$$
\begin{aligned}
H_{2^{k+1}} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{k}}+\frac{1}{2^{k}+1}+\cdots+\frac{1}{2^{k+1}} \\
& =H_{2^{k}}+\frac{1}{2^{k}+1}+\cdots+\frac{1}{2^{k+1}} \\
& \geq\left(1+\frac{k}{2}\right)+\frac{1}{2^{k}+1}+\cdots+\frac{1}{2^{k+1}} \\
& \geq\left(1+\frac{k}{2}\right)+2^{k} \cdot \frac{1}{2^{k+1}} \\
& =\left(1+\frac{k}{2}\right)+\frac{1}{2} \\
& =1+\frac{k+1}{2}
\end{aligned}
$$

- This demonstrates $P(k+1)$.

The Harmonic Series (4)

- This proves that $P(k) \rightarrow P(k+1)$ for arbitrary k.
- Therefore, by mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \in \mathbf{N}$. QED.
- Theorem: $\quad H_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \in \mathbf{N}$
- Let $j=2^{n}$ be some integer. Then $n=\log j$.

$$
H_{j} \geq 1+\frac{1}{2} \log j \geq 1+\log \sqrt{j}
$$

- Therefore, the Harmonic series diverges, because

$$
\lim _{j \rightarrow \infty} H_{j} \geq \lim _{j \rightarrow \infty}(1+\log \sqrt{j})=\infty
$$

- But it diverges very slowly.

Prove that 6 divides $n^{3}-n$ whenever n is a nonnegative integer.

