Mathematical Induction
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Climbing the Ladder

We want to show that Vn>1 P(n) 1s
true.

— Think of the positive integers as a
ladder.

— 1, 2, 3,4, 5,6, ...
You can reach the bottom of the
ladder:
- P(1)
From each ladder step, you can reach
the next.
~ P() > PQ), PQ2) — PQ3), ...
- Vi1 P(k) — P(k+1) ey
Then, by mathematical induction:
— Vn>1 P(n)




Mathematical Induction

 How do we prove a universal statement about
the positive integers:

Vn>1 P(n)
« Mathematical induction 1s an inference rule
— Base case: P(1)

— Inductive step:  Vk>1 P(k) — P(k+1)

— Conclusion: Vn>1 P(n)

* The inductive step requires proving an
implication. ;



Simple Math Induction Example

* Prove, forall n €N,
n(n+1)

O+14+2+---4+n = :

* Proof: We use induction. Let P(n) be:

n(n+1)
2
* Base case: P(0), because 0 =0.

O+14+2+---4+n =




Simple Math Induction Example

* Inductive step: Assume that P(k) 1s true, where £ 1s
an arbitrary natural number.

O+1+2+--+k+(k+1) =



Simple Math Induction Example

* Inductive step: Assume that P(k) 1s true, where £ 1s
an arbitrary natural number.

k(k+1)
2

(k+1) (k+2)
2

O+142+--+k+(k+1) + (k+1)

* The first equality follows from P(k), and the second
by simplification. Thus, P(k+1) 1s true.

* By induction, P(n) 1s true for all natural numbers #.
QED

— This shows how to write a clear inductive proof.
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Question

* Did you understand the proof by induction?

— (A) Yes, that’s really clever!

— (B) How can you start with P(0) instead of P(1)?

— (C) When do you use P(k) and when P(n)?

— (D) Isn’t 1t circular to assume P(k), when you are
trying to prove P(n)?

— (E) Ijustdon’t get it.



Divisibility Example (1)

« Let’s try to prove VuEN 3 | n’—n.

— First, we’ll work through the mathematics.

— Then we’ll structure a clear proof.

« Base case: P(0)iseasy: 3] (0°-0)

— Everything divides zero, so 1t’s true.



Divisibility Example (2)

* Inductive step: VLKEN P(k) — P(k+1)
— Assume P(k): 3| (K’—k) (for arbitrary k)
— Can we prove P(k+1): 3| ((k+1)° — (k+1)) ?
e Try multiplying it out:
3| ((k+1)°—(k+1) & 3|(k*+3k*+3k+1—k—1))
< 3| (k° + 3k* + 2k)
& 3| (K —k) + (3k% + 3k))

* We know that 3 | (K*—k) and 3 | (3k%+3k).
« Conclude that 3 | ((k+1)° — (k+1)), so P(k) — P(k+1).
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A Clear Divisibility Proof

Theorem: VneN 3 | (n’—n)

Proof: Use induction on P(n): 3 | (n’—n).

Base case: P(0) is true because 3| (0°—0).
Inductive step: Assume P(k), for arbitrary natural

number k. Then:

31 (k°—k) = 3
= 3
= 3

(k° — k) + 3(k* + k)
k2 +3k*+3k+1—k—1
(k+1)° — (k+1)

The final statement 1s P(k+1), so we have proved
that P(k) — P(k+1) for all natural numbers £.

By mathematical induction, P(n) 1s true for all n €N.

QED
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A Clear Divisibility Proof

« Theorem: VneN 3 |(n*—n)
* Proof: Use induction on P(n): 3 | (ni—n).
» Base case: P(0) is true because 3 | (0°-0).

* Inductive step: Assume P(k), for arbitrary natural
number k. Then:

3| (K*—k) = 3|(K°—k)+3(k*+k)
= 3|k +3k*+3k+1—-k—-1
= 3| (k+1)°=(k+1)
* The final statement is P(k+1), so we have proved
that P(k) — P(k+1) for all natural numbers k.
» By mathematical induction, P(n) is true for all n&N.
Q

« QED

* Notice: we had to go back and start by
assuming P(k) and then showing 1t implied
P(k+1).

— That first step 1sn’t at all clear unless you’ve
done the math first!



Use induction to show that
k=12n — 1) = n?
Theorem:
Prootf:

Base case:

Inductive step:
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A False “Proot”

“Theorem’: All horses are the same color.

Proof: By induction, where P(n) 1s the
proposition that in every set of n horses, all
horses are the same color.

Base case: P(1) 1s true, because 1n every
set of 1 horse, all horses are the same color.

Inductive step: Assume P(k) 1s true, for
arbitrary positive integer k:

— In any set of & horses, all have the same color.
— This 1s called the “inductive hypothesis™.
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False “Proof” (2)

Inductive hypothesis P(k): In any set of k£ horses, all
have the same color.

Now consider a set of £+1 horses
— hi,hy, ... hy, hy
By P(k), the first k£ horses are all the same color

— hy, hy, ... hy,
Likewise, the last k horses are also the same color
— hyy ... hy, hy,,

Therefore, all £+1 horses must have the same color
Thus, VKEN P(k) — P(k+1)
So, VneN P(n). What’s wrong?
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Question

 What’s wrong with that proof by induction?

— (A) Mathematical induction doesn’t apply to horses.

— (B) The Base Case 1s incorrect.

— (C) The Inductive Step 1s incorrect.

— (D) The Base Case and Inductive Step are correct,
but you’ve put them together wrong.

— (E) It’s completely correct: all horses are the same
color!
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The Problem with the Horses

* Inductive step: VKEN P(k) — P(k+1)

— Now consider a set of k+1 horses

. hy, hy, ... hy, h,

— By P(k), the first k horses are all the same color
. hy, hy, ... hy,

— Likewise, the last k horses are also the same color
. hyy .o hy, hyy

— Therefore, all k+1 horses must have the same color

Start with k = 1 Then for k = 2

>

A set of one horse with the same color

Another set of one horse with the same color
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The Problem with the Horses

* Inductive step: VKEN P(k) — P(k+1)

— Now consider a set of k+1 horses
. hy, hy, ... hy, h,

— By P(k), the first k horses are all the same color
. hy, hy, ... h

— Likewise, the last k horses are also the same color
. hyy oo hy By

— Therefore, all k+1 horses must have the same color

e The link P(1) — P(2) 1s false.

* So, this proof by mathematical induction is invalid.
« However, the inductive step for k = 2 1s actually correct!
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The Problem with the Horses

* Inductive step: VKEN P(k) — P(k+1)

— Now consider a set of k+1 horses

. hy, hy, ... hy, h,

— By P(k), the first k horses are all the same color
. hy, hy, ... hy,

— Likewise, the last k horses are also the same color
. hyy .o hy, hyy

— Therefore, all k+1 horses must have the same color

Assume true for k = 2 Then for k = 3

R S o S o)
>’
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The Problem with the Horses

* Inductive step: VKEN P(k) — P(k+1)

— Now consider a set of k+1 horses

. hy, hy, ... hy, h,

— By P(k), the first k horses are all the same color
. hy, hy, ... hy,

— Likewise, the last k horses are also the same color
. hyy .o hy, hyy

— Therefore, all k+1 horses must have the same color

Assume true for k = 2 Then for k = 3

A group of two




The Problem with the Horses

* Inductive step: VKEN P(k) — P(k+1)

— Now consider a set of k+1 horses

. hy, hy, ... hy, h,

— By P(k), the first k horses are all the same color
. hy, hy, ... hy,

— Likewise, the last k horses are also the same color
. hyy .o hy, hyy

— Therefore, all k+1 horses must have the same color

Assume true for k = 2 Then for k =

Another group of two ——>
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The Problem with the Horses

* Inductive step: VKEN P(k) — P(k+1)

— Now consider a set of k+1 horses

. hy, hy, ... hy, h,

— By P(k), the first k horses are all the same color
. hy, hy, ... hy,

— Likewise, the last k horses are also the same color
. hyy .o hy, hyy

— Therefore, all k+1 horses must have the same color

Assume true for k = 2 Then for k = 3

But base step wasn’t true! : !
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Tiling a Checkerboard (1)

For n>1, consider a 2" X 2" checkerboard.

Can we cover 1t with 3-square L-shaped tiles? No.

Remove any one of the squares. Can we tile it now?
Prove by induction: Let P(n) be the proposition:

— A 2" X 2" checkerboard, minus any one of the squares, can
be tiled with these L-shaped tiles.
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Tiling a Checkerboard (2)

« Consider a 2¢"1 X 2K1 checkerboard, minus any one
square.

— Divide the checkerboard into four 2% X 2k
quadrants.

* The missing square 1s in one quadrant.

— From the other three quadrants, remove the square
closest to the center of the checkerboard.
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Tiling a Checkerboard (3)

* P(k) says that each quadrant (minus one square) can be
tiled. One tile covers the three central squares.

e Thus, P(k) — P(k+1), for arbitrary i>1.
* By mathematical induction, Vn>1 P(n).
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The Harmonic Series (1)

* The Harmonic Numbers are the partial sums of the
Harmonic Series:

Hy=1+ 4o iq iyl
7 2 3 4 j
 We want to prove that:
HQHZ]_"‘%

e This implies an important property of the
Harmonic Series:
j—00
25



The Harmonic Series (2)

Theorem:

Hon >1+ g for all n € N

Proof: By induction, with P(n) being
n
_Hgn 2 ]. —|_ §

Base case: P(0) is true because Hyo = H, =1>1+

Inductive step: The inductive hypothesis P(k) 1s
k

From that assumption, we want to prove P(k+1).
26
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The Harmonic Series (3) A
 The inductive hypothesis P(k) is Hor > 1 + 5

Horyn = 1_|_1_|_1_|_..._|_1_|_ 1 44 1
2 3 2k 2k 11 9k+1
1
- " 2k+1+"'+2k+1
> ( +"'+ 1
o 2k+1

'V
AT

: <

e This demonstrates P(k+1).



The Harmonic Series (4)

e This proves that P(k) — P(k+1) for arbitrary £.

» Therefore, by mathematical induction, P(n) 1s
true for all » € N. QED.
— Theorem: Hon > 1+ g for alln € N

e Letj=2"be some integer. Then n = log .
H; > l—i—%logj > 1—|—10g\/3

— Therefore, the Harmonic series diverges, because
Ilim H; > lim (1 + log \/E) = 00
j—00 j—00

— But 1t diverges very slowly.
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Prove that 6 divides n° — n whenever n is
a nonnegative integer.
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