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Climbing the Ladder
• We want to show that ∀n≥1 P(n) is 

true.

– Think of the positive integers as a 

ladder.

– 1,  2,  3,  4,  5,  6,  . . .

• You can reach the bottom of the 

ladder:

– P(1)

• From each ladder step, you can reach 

the next.

– P(1)  →  P(2),   P(2)  →  P(3),   . . .  

– ∀k≥1 P(k) → P(k+1)

• Then, by mathematical induction:

– ∀n≥1 P(n)
2



Mathematical Induction

• How do we prove a universal statement about 

the positive integers:

∀n≥1 P(n)

• Mathematical induction is an inference rule

– Base case:            P(1)

– Inductive step:     ∀k≥1 P(k) → P(k+1)

– Conclusion:         ∀n≥1 P(n)

• The inductive step requires proving an 

implication. 3



Simple Math Induction Example

• Prove, for all n ∈ N,

• Proof:  We use induction.  Let P(n) be:

• Base case:  P(0),  because 0 = 0.
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Simple Math Induction Example

• Inductive step:  Assume that P(k) is true, where k is 

an arbitrary natural number.
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Simple Math Induction Example

• Inductive step:  Assume that P(k) is true, where k is 

an arbitrary natural number.

• The first equality follows from P(k), and the second 

by simplification.  Thus, P(k+1) is true.

• By induction, P(n) is true for all natural numbers n.  

QED

– This shows how to write a clear inductive proof.
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Question

• Did you understand the proof by induction?

– (A)  Yes, that’s really clever!

– (B)  How can you start with P(0) instead of P(1)?

– (C)  When do you use P(k) and when P(n)?

– (D)  Isn’t it circular to assume P(k), when you are 

trying to prove P(n)?

– (E)  I just don’t get it.
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Divisibility Example (1)

• Let’s try to prove  ∀n∈N 3 | n3−n .

– First, we’ll work through the mathematics.

– Then we’ll structure a clear proof.

• Base case:  P(0) is easy:    3 | (03−0)

– Everything divides zero, so it’s true.
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Divisibility Example (2)

• Inductive step:  ∀k∈N P(k) → P(k+1)

– Assume P(k):   3 | (k3−k)       (for arbitrary k)

– Can we prove P(k+1):  3 | ((k+1)3 – (k+1))  ?

• Try multiplying it out:

• We know that 3 | (k3−k) and 3 | (3k2+3k).  

• Conclude that 3 | ((k+1)3 – (k+1)), so P(k) → P(k+1).
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A Clear Divisibility Proof
• Theorem:  ∀n∈N 3 | (n3−n)

• Proof:  Use induction on P(n):   3  | (n3−n).

• Base case:  P(0) is true because  3 | (03−0).

• Inductive step:  Assume P(k), for arbitrary natural 

number k.  Then:

• The final statement is P(k+1), so we have proved 

that P(k) → P(k+1) for all natural numbers k.

• By mathematical induction, P(n) is true for all n∈N.

• QED
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• Notice: we had to go back and start by 

assuming P(k) and then showing it implied 

P(k+1).  

– That first step isn’t at all clear unless you’ve 

done the math first!
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Use induction to show that 

 𝑘=1
𝑛 2𝑛 − 1 = 𝑛2

• Theorem:

• Proof:

• Base case:

• Inductive step:
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A False “Proof”

• “Theorem”:  All horses are the same color.

• Proof:  By induction, where P(n) is the 

proposition that in every set of 𝑛 horses, all 

horses are the same color.

• Base case:  P(1) is true, because in every 

set of 1 horse, all horses are the same color.

• Inductive step:  Assume P(k) is true, for 

arbitrary positive integer k:

– In any set of k horses, all have the same color.

– This is called the “inductive hypothesis”.
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False “Proof” (2)

• Inductive hypothesis P(k): In any set of k horses, all 

have the same color.

• Now consider a set of k+1 horses

– h1, h2,  . . .  hk,  hk+1

• By P(k), the first k horses are all the same color

– h1, h2,  . . .  hk,

• Likewise, the last k horses are also the same color

– h2,  . . .  hk,  hk+1

• Therefore, all k+1 horses must have the same color

• Thus, ∀k∈N P(k) → P(k+1) 

• So, ∀n∈N P(n).        What’s wrong?
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Question 

• What’s wrong with that proof by induction?

– (A)  Mathematical induction doesn’t apply to horses.

– (B)  The Base Case is incorrect.

– (C)  The Inductive Step is incorrect.

– (D)  The Base Case and Inductive Step are correct, 

but you’ve put them together wrong.

– (E)  It’s completely correct:  all horses are the same 

color!
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The Problem with the Horses

• Inductive step:  ∀k∈N P(k) → P(k+1) 

– Now consider a set of k+1 horses

• h1, h2,  . . .  hk,  hk+1

– By P(k), the first k horses are all the same color

• h1, h2,  . . .  hk,

– Likewise, the last k horses are also the same color

• h2,  . . .  hk,  hk+1

– Therefore, all k+1 horses must have the same color
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The Problem with the Horses

• Inductive step:  ∀k∈N P(k) → P(k+1) 

– Now consider a set of k+1 horses

• h1, h2,  . . .  hk,  hk+1

– By P(k), the first k horses are all the same color

• h1, h2,  . . .  hk,

– Likewise, the last k horses are also the same color

• h2,  . . .  hk,  hk+1

– Therefore, all k+1 horses must have the same color

• The link P(1) → P(2) is false.

• So, this proof by mathematical induction is invalid.

• However, the inductive step for 𝑘 ≥ 2 is actually correct!
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The Problem with the Horses

• Inductive step:  ∀k∈N P(k) → P(k+1) 

– Now consider a set of k+1 horses

• h1, h2,  . . .  hk,  hk+1

– By P(k), the first k horses are all the same color

• h1, h2,  . . .  hk,

– Likewise, the last k horses are also the same color

• h2,  . . .  hk,  hk+1

– Therefore, all k+1 horses must have the same color
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Assume true for 𝑘 = 2 Then for 𝑘 = 3



The Problem with the Horses

• Inductive step:  ∀k∈N P(k) → P(k+1) 

– Now consider a set of k+1 horses

• h1, h2,  . . .  hk,  hk+1

– By P(k), the first k horses are all the same color

• h1, h2,  . . .  hk,

– Likewise, the last k horses are also the same color

• h2,  . . .  hk,  hk+1

– Therefore, all k+1 horses must have the same color
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Assume true for 𝑘 = 2 Then for 𝑘 = 3

A group of two



The Problem with the Horses

• Inductive step:  ∀k∈N P(k) → P(k+1) 

– Now consider a set of k+1 horses

• h1, h2,  . . .  hk,  hk+1

– By P(k), the first k horses are all the same color

• h1, h2,  . . .  hk,

– Likewise, the last k horses are also the same color

• h2,  . . .  hk,  hk+1

– Therefore, all k+1 horses must have the same color
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Assume true for 𝑘 = 2 Then for 𝑘 = 3

Another group of two



The Problem with the Horses

• Inductive step:  ∀k∈N P(k) → P(k+1) 

– Now consider a set of k+1 horses

• h1, h2,  . . .  hk,  hk+1

– By P(k), the first k horses are all the same color

• h1, h2,  . . .  hk,

– Likewise, the last k horses are also the same color

• h2,  . . .  hk,  hk+1

– Therefore, all k+1 horses must have the same color
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Assume true for 𝑘 = 2 Then for 𝑘 = 3

But base step wasn’t true!



Tiling a Checkerboard (1)

• For n≥1, consider a 2n×2n checkerboard.

• Can we cover it with 3-square L-shaped tiles?  No.

• Remove any one of the squares.  Can we tile it now?

• Prove by induction:  Let P(n) be the proposition:

– A 2n×2n checkerboard, minus any one of the squares, can 

be tiled with these L-shaped tiles.
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Tiling a Checkerboard (2)
• Consider a 2k+1×2k+1 checkerboard, minus any one 

square.

– Divide the checkerboard into four  2k×2k

quadrants.

• The missing square is in one quadrant.

– From the other three quadrants, remove the square 

closest to the center of the checkerboard.
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Tiling a Checkerboard (3)

• P(k) says that each quadrant (minus one square) can be 

tiled.  One tile covers the three central squares.

• Thus, P(k) → P(k+1), for arbitrary k≥1.

• By mathematical induction, ∀n≥1 P(n).
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The Harmonic Series (1)
• The Harmonic Numbers are the partial sums of the 

Harmonic Series:

• We want to prove that:

• This implies an important property of the 

Harmonic Series:
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The Harmonic Series (2)
• Theorem:

• Proof:  By induction, with P(n) being

• Base case:  P(0) is true because

• Inductive step:  The inductive hypothesis P(k) is

• From that assumption, we want to prove P(k+1). 
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The Harmonic Series (3)
• The inductive hypothesis P(k) is

• This demonstrates P(k+1). 
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The Harmonic Series (4)

• This proves that P(k)  P(k+1) for arbitrary k.

• Therefore, by mathematical induction, P(n) is 

true for all n  N.  QED.

– Theorem:  

• Let j = 2n be some integer.  Then n = log j.

– Therefore, the Harmonic series diverges, because

– But it diverges very slowly.
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Prove that 6 divides n3 − n whenever n is 

a nonnegative integer.
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