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Number theory (Chapter 4) 

Review 
 Compute 611 mod 13 in an efficient way 

 What is the prime factorization of 100?  138? 

 

 What is gcd(100, 138)? 

 What is lcm(100,138)? 

 

 What does it mean for two integers to be “relatively prime”? 

 Find the gcd(100,138) using the Euclidian Algorithm. 

 

 

 

 What is the advantage of using the Euclidian Algorithm instead of the prime factorization to find 

the gcd of two numbers? 

 

 

 We then wanted to get to four results.  We did first, though we started on the last one. 

o Bezout’s theorem which states that ∀𝑎𝑏 ∃𝑠𝑡 𝑠𝑎 + 𝑏𝑡 = gcd(𝑎, 𝑏) 

o The definition of an inverse of a modulo m and a proof that it exists if a and m are 

relatively prime  That is, that a(m>1)[gcd(a,m)=1  x(ax1 (mod m))] 

o Fermat’s Little Theorem which states if p is prime and a is not divisible by p then 

𝑎𝑝 ≡ 1 (𝑚𝑜𝑑 𝑝)    

o Chinese remainder theorem which states that if you’ve a group of relatively prime positive 

integers greater than 1 then you can count to the product of those primes in a unique way 

just using those primes (this one is actually easy, just hard to state succinctly). 
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At first glance, this seems quite reasonable, after all, for any a, b, can’t we find integers s and t that are 

equal to any number?  And the answer is no.  Consider a=2 and b=4.  You can find integers that get to 

any even number, but not any odd.  And for those values of a and b, that’s exactly what the theory says. 

1. Find an s and t for a=9 and b=6 so that 9s+6t=gcd(9,6). 

 

2. Find an s and t for a=12 and b=28 

The general proof for this is by construction.  The construction is done by using the “Extended Euclidean 

Algorithmi”.  The following example is from the book (page 270) and was done on the board on Tuesday. 

 

                                                           
i Example and some text from https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm (also a proof). 

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm


EECS 203 Spring 2016 Lecture 12                                                                                                  Page 3 of 8 

Definition of a modulo inverse and statement of its existence (4.4) 
If ax1 (mod m) then x is said to be an inverse of a modulo m.  The claim below is that if a and m are 

relatively prime such an inverse exists and is unique modulo m. 

 

(This proof shows existence, not uniqueness) 

We know that gcd(a,m)=1, so from Bezout’s theorem we know that s,t as+mt=1.   

Thus sa+tm1 (mod m).  And (tm mod m)=0, so the inverse is just   

1. Find the inverse of 7 modulo 12 by searching all options. 

 

 

 

 

 

 

2. Use the Extended Euclidean Algorithm to find the inverse of 10 modulo 23. 
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Fermat’s Little Theorem (4.4) 

 

We’ll use this one without proof as all known proofs are fairly ugly.  But see 

https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem for some proofs if you are 

interested.  

1. Use Fermat’s Little Theorem to find 7222 mod 11. 

 

    

https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem
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Chinese Remainder Theorem (4.4) 

 
 

These looks complex, but really it isn’t.  Tuesday we did a group exercise and had one group be “mod 2” 

one group be “mod 3” and one group be “mod 5”.  This theorem says that if we count up to 30 (2*3*5) 

and each group counts by their mod (so mod 2 counts as 0,1,0,1, etc.) then we can count from 0 to 29 

before there is a repeat.   

We’ll prove this a bit differently than the text does. We are trying to show that there is a unique 

solution.  First let’s define this scheme as a function f that maps from a domain m to a co-domain of 

 m1 x m2 x m3 …, x mn using the notation found in the above definition of the problem.   Notice that the 

cardinality of the domain and co-domain are identical (m).  Now let’s assume there are two values of m, 

a and b, that generate the same values in the co-domain.  In that case, a-b must each be divisible by all 

values of mi.  And as such, since each of the mx’s are relatively prime, it must be divisible by their 

product.  But that’s impossible as |a-b|<m as a and b are both between 0 and m-1.  Thus there are no 

two that have the same mapping (the function is one-to-one).  And because they have the same 

cardinality, the function is also onto.  It is thus a bijection and every instance in the domain maps to a 

unique instance in the co-domain.  Done.   

1. If we are using the values 2, 3, and 5 for m1, m2, m3, what values of “a” would x=6 generate? 

2. If we are using those same values, what is x if a1=1, a2=2, and a3=1? 
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Cryptography (4.6) 
(Notice, we have skipped 4.5)  (Also the next couple of paragraphs are from Rosen) 
 
One of the earliest known uses of cryptography was by Julius Caesar. He made messages secret by 
shifting each letter three letters forward in the alphabet (sending the last three letters of the alphabet 
to the first three). For instance, using this scheme the letter B is sent to E and the letter X is sent to A. 
This is an example of encryption, that is, the process of making a message secret. 
 
To express Caesar’s encryption process mathematically, first replace each letter by an element of Z26, 
that is, an integer from 0 to 25 equal to one less than its position in the alphabet. For example, replaceA 
by 0, K by 10, and Z by 25. Caesar’s encryption method can be represented by the function f that assigns 

to the nonnegative integer p, p ≤ 25, the integer f (p) in the set {0, 1, 2, . . . , 25} with 

f (p) = (p + 3) mod 26. 

In the encrypted version of the message, the letter represented by p is replaced with the letter 

represented by (p + 3) mod 26.  

 
1. Encode “MACY” using the above cypher. 

 
 
 
 
Obviously, this type of cypher isn’t very hard to break.  Even if you don’t know the exact shift being used 
(3 in this case), it’s not hard to walk all the options.  And even if you just use an arbitrary mapping from 
one code to the next, this type of “substitution’ cypher can be broken by attacking it by looking at letter 
frequency (some letters occur at a greater rate than others). 
 
So what is often used are block ciphers.  These work on larger blocks of letters.   One possible scheme 
would be to take the letters, treat them as numbers (A=0, B=1, etc.), write those numbers in binary and 
concatenate them and then XOR that with a rather large number.  That number becomes the “key” and 
if the number is large enough it can be very difficult to break the cipher without having the key. 
 
Let’s work a simple example.  Let’s encode letters in the same way, but then break the message into 
groups of two letters and multiply each of those pairs to create a single number.  Then convert to base 2 
and do a bitwise XOR with the value 1001100111 (why did I chose a 10-bit number?).  Let’s do this with 
MACY again. 
 

 

 

 

It isn’t obvious how to decrypt this without knowing the key.  For real encryption we use much larger 

values for our key so that searching all possibilities isn’t viable.  
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Public Key Cryptography 
One really big issue is how do you share a key with someone?  If you have a secure way of 

communicating available, you may not need any cryptography at all.  And if you don’t have a secure 

communication channel, you may have problems sharing a key with the intended recipient in a private 

way. 

So…  A “holy grail” of cryptography would be if two people (generally Alice and Bob) could communicate 

so no eavesdropper, generally “Eve” or “the attacker”, can read their communication even if Eve can see 

all the bits sent. How could we do that? 

Imagine we had a system where you used a different key for encryption 

and decryption.  Alice generates a key for encrypting, which she shares 

with the world (called a public key).  She keeps the decryption key 

private.  Now Bob can encode a message to her using the public key 

and only Alice can read it. Someone trying to eavesdrop on the 

message could not do so. 

Of course, all this relies on the public key not giving away enough 

information that it’s easy to figure out the private key.  That is, that 

knowing the encryption key doesn’t let you easily figure out how to 

decrypt the message.  That seems weird—I mean if you know how to 

generate a message, shouldn’t you know how to read it? 

RSA 
In RSA the public key is found by creating an integer “n” which is the 

product of two large primes (often 200 digits or so) called p and q.  We 

then pick fairly small number, “e”, which is relatively prime to  

(p-1)(q-1).  “n” is the public key and is freely shared, as is “e” (in fact 

many encryption schemes use a fixed e, 216+1 is popular for a number 

of reasons and if it happens that (p-1)(q-1) isn’t relatively prime to e, 

we just find a new p and/or q). 

Messages are broken into blocks (in our example above, we used blocks of two letters) and are encoded 

as C=Me mod n, where “M” is a given block of the message.   

Notice that we will want to have a fast scheme for computing that value.  And thankfully we have 

developed a scheme for fast modular exponentiation (recall we did an example at the start of class!). 

  

Figure 1: Public and Private Keys. 
From Wikipedia 
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The private key “d” is the inverse of “e” mod (p-1)(q-1).  We’ve shown such an inverse exists if e is 

relatively prime to (p-1)(q-1).  And, using the EEA, we know how to find it fairly efficiently.    

Why does that help? 

Note that if de1 (mod (p-1)(q-1)) then there exists a k such that de=1+k(p-1)(q-1).  Let the encoded 

message be “C” and the plaintext (original) message be M.   

 

From Fermat’s Little Theorem it follows that Mp-11 (mod p) and Mq-11 (mod q).ii  Thus: 

 

 
 

The Chinese Remainder Theorem (or a bit of common sense) then leads us to   
 

 
 

Comment 
The “trick” here is that if we know p and q we can find d.  Because d is the inverse  

of e mod (p-1)(q-1).  But if we don’t know q and q, we can’t find d.  So if someone wants to find d, it 

would seem that they’d need to factor n.  But factoring a number that is composed of two 200-digit 

primes is, in the general case, extremely difficult (billions of years as of 2010 estimates and algorithms). 

So the scheme is relying on the intractability of factoring large numbers! 

 

                                                           
ii This relies on M being relatively prime to p and q.  If it’s not, things get a bit ugly, but solvable.  Problem 28 in 4.6 
addresses the issue if you want to look into it. 


