EECS 203 Spring 2016 Lecture 18

Review: Recurrence relations (Chapter 8)

Last time we started in on recurrence relations. In computer science, one of the primary reasons we
look at solving a recurrence relation is because many algorithms, whether “really” recursive or not (in
the sense of calling themselves over and over again) often are implemented by breaking the problem
down into smaller parts and solving those. In order to get a solid sense of their runtime, we need to be
able to either solve the relation or at least get a sense of its complexity (think big-O).

Recall the Towers of Hanoi problem (moving discs) and it’s solution:
Define T(n) = number of moves

ToH(n.A,B,C) : move n discs from A fo C using B if necessary.)
If n=1, move the disc from A to C and stop when there are n discs.
ToH(n-1,A.CB)~—— |fromAtoB using C | *T(1)=1
Move disc n fromAto C e T(n)=2T(n-1)+1

___——-|framBlDCusingA|

ToH(n-1,B,AC)+—
In class last time we guessed at the solution and used an inductive proof to show that the guess (that

T(n)=2"-1) was correct. Today we are going to look at how to find closed form solutions to these
problems generally.

Last time we worked through solving “linear, homogeneous, recurrence relations with constant
coefficients” of degree 2

Solving Linear Recurrence Relations (8.2)

A linear homogeneous recurrence relation of degree k with constant coefficients is a recur-
rence relation of the form

dn = Cldp—1 + C2dn—2 + - - - + Ckn—k,
where ¢y, ¢z, ..., c; are real numbers, and ¢; # 0.

e The recurrence is linear because the all the “a,” terms are just the terms (not raised to some

power nor are they part of some function). So an=2as.1is linear but a,=2(an.1)? is not.

e Itis homogeneous because all terms are multiples of some previous value of an. So an=2an1is
homogeneous, but an=2an.1+1 is not.

o Itis of degree k because an is expressed in terms of the last k terms of the sequence.

e And it has constant coefficients because all the c terms are constants (not a function of n).

We claimed (without proof) that finding the “characteristic equation” would help.

— -7 —
L — (.”.n l + r_“y'” 244 L',rl-."” k
Now, if we divide both sides of this equation by r"* and move the things around a bit, we get:

- - .]
rk —c]r‘r‘] —c‘gr’r‘ S — = r—cp =0

EECS 203 Spring 2016 Lecture 18

Some new examples:

Indicate if the following are linear, homogeneous and have constant coefficients. If they are, find the
characteristic equation associated with the recursion.

an=2an-1+an-2

an=an-l+an—2+4

an=2an-1-4an

dn=adn-2tan-3

v ke N oe

an=Nanp-1t+an-2

Working with LH RR with CC and degree 2

73 “ ..
Let 1 and c2 be real numbers. Suppose that r~ — cir — c2 = 0 has two distinct roots ry
and r». Then the sequence {a,} is a solution of the recurrence relation a,, = cja,—; + c2a,—2
if and only if a, = @ r{ + azry forn =0, 1,2, ..., where) and @, are constants.

That feels like it jumps out of nowhere. Let’s focus on what it says, time allowing we will try to show it
makes sense (or at least a bit of sense). The proof is on pages 515 and 516 of the text.

Consider the Fibonacci sequence defined by a,=an.1+an2. This is saying we need to find the roots of the

. . . . L ay, = ayr! + asrk
characteristic equation and then the solution for this relation is of the form 7 1 2, where r;
and r, are those roots. Notice that a is just an arbitrary constant (that we’d have to figure out...)

Last time we worked out examples 3 and 4 from the text. Let’s try this one: an=3an-1-2an-2; a0=3, a1=4

EECS 203 Spring 2016 Lecture 18

Repeated roots
Let ¢; and ¢, be real numbers with ¢, # 0. Suppose that r> — ¢;r — ¢ = 0 has only one

root rp. A sequence |{ay | is a solution of the recurrence relation a; = ciap—1 +c2ap—2 if and
only if an = ayr + aonrf, forn =0,1,2, ..., where @ and a7 are constants.

Let’s do a,=6an.1 -9an2» Where ap=1 and a;=6

e What is the characteristic equation?
e What are the roots of the characteristic equation?

e What is the solution to the recurrence?

General form for arbitrary degree
In this class, we will only be working with relations of this type of degree 2. But there is a more general
result.

Letcy, ca, ..., c; be real numbers. Suppose that the characteristic equation

et g =0
has ¢ distinct roots ry,rz....,ry with multiplicities my, mz, ..., my, respectively, so
that m; =1 fori=1,2,..., tand my +mz +---+m; = k. Then a sequence {a,} is a

solution of the recurrence relation
Gy = Cldg—| + Cady—3 + -+ + Cxdg—k
if and only if

agp = (opptognt--- +Q'|:ml_mml_l)r‘['
+ (a0 +an+--- oy gy 2™ iy

4+ -4 {Q_’E:D —+ oy, IR +--- 1 a],ﬂr;—lnm?_l)r?

forn=0,1,2,..., where ¢; ; are constants for 1 < <rand0 < j = m; — 1.

EECS 203 Spring 2016 Lecture 18

Again, we aren’t going to worry about this general case, but | want you aware it exists.

Linear Nonhomogeneous Recurrence Relations with Constant Coefficients
Consider (the fairly common) case of a nonhomogeneous relation. That is, we add something that isn’t
a term of a, but might be a function of n. So @n = Cldn—1 + €2an—2 + - - + cpan—k + F(n) |n

order to solve this, we are going to take three steps:

e Solve the associated homogeneous recurrent relation (that is the one that doesn’t have that F(n)
term!)

e Find a “particular” solution based on F(n).

e Add those two results.

We know how to do the first thing. And finding the particular solution in general can be annoying, but
for most polynomials we can make progress as follows:

Suppose that [a,]} satisfies the linear nonhomogeneous recurrence relation
ay = Cldg—1 + c2ag—2 + -+ - + crap—k + F(n),
where 1, c2, ..., i are real numbers, and

Fin) = (bin' + bi—in"~ ' + - + byn + bp)s",

where by, by, ..., by and s are real numbers. When s is not a root of the characteristic equation
of the associated linear homogeneous recurrence relation, there is a particular solution of the
form
I —1 n
(pin" + pr—in 4+ ---+ pin+ po)s .

When s is a root of this characteristic equation and its multiplicity is m, there is a particular
solution of the form

n"(pn' + p—in' ™ -+ pin+ po)s™.

In the general case, we’ll have the situation that s=1. But that means we need to watch out if the
homogeneous solution has a root that is 1 (which seems to happen a lot more than you’d expect).

Worked Example (Towers of Hanoi)
Let’s compute an=2an-1+1 with a;=1 (recall this is what we had for Towers of Hanoi).

The associated HRR is r-2=0, so r=2. So the homogeneous part is 2". Now we need the particular part.

w_n
S

When dealing with the particular solution F(n)=1*1", so doesn’t share a root with the characteristic

equation (1#2). So our solution is of the form po (a constant). Thus we’ve got a,=2"+p,. Solving for the

EECS 203 Spring 2016 Lecture 18

initial case we get ag=1=2%po. So po=-1. And we’ve now found, rather than guessed, the closed form for
the recurrence relation for Towers of Hanoi.

Divide and Conquer and the associated
recurrence relations (8.3)

Let’s look at a few fun algorithms that are what we call “divide and conquer”-type algorithms.

We introduced a binary search algorithm in Section 3.1. This binary search algorithm reduces
the search for an element in a search sequence of size n to the binary search for this element in
a search sequence of size n/2, when n is even. (Hence, the problem of size n has been reduced
to one problem of size n/2.) Two comparisons are needed to implement this reduction (one to
determine which half of the list to use and the other to determine whether any terms of the list
remain). (page 528)

If f(n) is the run time to find an element in a sorted list of n elements (assume n is a power of 2), how
many comparisons do we need? Write this as a recurrence relation.

Consider a merge sort where we split the list in half, sort each half, and then merge the two sorted lists.

What is the recurrence relation that describes the runtime of this algorithm? Assume it takes “n” steps
to merge two lists each of size (n/2)'

"Why is “n” a reasonable number of steps to merge two sorted lists of size n/2 into a sorted list of “n” items?

EECS 203 Spring 2016 Lecture 18

The Master Theorem

As we often don’t care about specific values, just the “order” of the complexity of the algorithm, we can
generally get away without solving these recurrence relations—we are instead happy if we know the
order of the solution. And it turns out, there is a “plug-and-chug” way to do this: The Master Theorem.

MASTERTHEOREM Let f be anincreasing function that satisfies the recurrence relation

fin)y=afin/b) + cn

whenever n = b*, where k is a positive integer, a > 1, b is an integer greater than 1, and ¢
and d are real numbers with ¢ positive and 4 nonnegative. Then

0(n?) ifa < b4,
f(n)is { O(m?logn) ifa = b°,
O(n'2%) ifg = be.

Examples
1. Using the above, what are the values of a, b, c and d for the binary search algorithm? What is

that algorithm’s complexity?

2. Using the above, what are the values of a, b, c and d for the merge sort algorithm? What is that

algorithm’s complexity?

3. Consider the relation F(N)=3F(N/3)+N (which is a merge sort split into 3 parts).

EECS 203 Spring 2016 Lecture 18 Page 7 of 10

A graph G=(V,E) consists of:
e anon-empty set V of vertices (or nodes)

a set E of edges
e Each edge is associated with two vertices
(possibly equal).

e Inadirected graph: all edges are directed.
e Undirected graph: all edges are undirected.
o Mixed graph: some of each.

4 VIIA
oI T

™
0w

Some graphs:

¢ Undirected Graph ® Directed graph

V={a,b,c}
E = {{ab}, {b.c}} g id- b
Cc c E= {(a!b)v (C,b)}
TABLE 1 Graph Terminology. “loops allowed”
Type Edges Multiple Edges Allowed? | Loops Allowed? means that an edge
Simple graph Undirected No No can connect a node
Multigraph Undirected Yes No to itself.
Pseudograph Undirected Yes Yes
Simple directed graph Directed No No
Directed multigraph Directed Yes Yes
Mixed graph Directed and undirected Yes Yes
Detroit

. Detroit
Chicago New York

San Francisco

Denvi =
i Washington

Los Angeles

Los Angeles

Detroit

New York

San Francisco
Washington

Los Angeles Los Angeles

A directed graph (or digraph) (V, E) consists of a nonempty set of vertices V and a set of
directed edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices.
The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

EECS 203 Spring 2016 Lecture 18

Basic Terminology

Vertices u and v are adjacent if they are connected by an edge e
o Inanundirected graph: e = {u,v}
o Inadirected graph: e = (u,v)
The degree of a vertex deg(v) is the number of “edge-ends” incident to it.
o Aself-loop edge is counted twice.
o Inadirected graph, distinguish:
= in-degree deg—-(v): number of incoming edges
= out-degree deg+(v): number of outgoing edges
A subgraph of a graph G = (V,E) is a graph H = (W,F) where W — V and F C E.
o Asubgraph H is a proper subgraph if H # G.
The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with vertex set
V1 U V2 and edge set E1 U E2.
o The union of G1 and G2 is denoted by G1 U G2.
Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u and v are
endpoints of an edge e of G. Such an edge e is called incident with the vertices u and v and e is said
to connect u and v.
The set of all neighbors of a vertex v of G = (V ,E), denoted by N(v), is called the neighborhood of V.
If Ais a subset of V, we denote by N(A) the set of all vertices in G that are adjacent to at least one
vertex in A.

Examples and Questions:

b C d a b c
° °
°
a f € g e d
G H
1. What is the degree of each node?
2. Draw the graph A=(V,E) where V={a, b, c, d}, E={{a,b}, {b,d}}
3. Draw the graph B=(V,E) where V={a, b, c, d}, E={{a,b}, {d,b}, {c,a}}
4. We now have 4 graphs total (A, B, G, H). Are any of them subgraphs of the other?
5. Draw the graph X=(V,E) where V={a, b, c, d}, E={(a,b), (b,d)}

EECS 203 Spring 2016 Lecture 18

Graph problems: paths and shortest paths

Page 9 of 10

Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from
vertex to vertex along edges of the graph. As the path travels along its edges, it visits the

vertices along this path, that is, the endpoints of these edges. (p 678)

One interesting thing to do with paths is MILEAGE
to find the shortest path between two

vertices. Sometimes we put weights on San Francisco
the edges (so associate a number with 349
each edge) and “charge” that amount for Los Angeles
using the edge. We also want to be ahle
to find the shortest path there.

What do you suppose is the order of
complexity for finding shortest path?

We'll develop an algorithm for doing that next time.

Using graphs for something useful

Graphs are an extremely handy structure in practice.

Six Degrees of Kevin Bacon
This is a parlor game wherein movie buffs ENE0d & Highlend (&
challenge each other to find the shortest path

between an arbitrary actor and prolific Hollywood

. E
character actor Kevin Bacon. TCL Chi Theatre
Getting to Kevin Bacon's star on the | O walk of fame
Walk of Fame B :
Another thing you might want to do is get to El Capitan Theatre

Kevin Bacon’s star on the Walk of Fame.

Figure 2; Mop of the Walk of Fame in Hollywood

To people without some discrete mathematics background,
the only two things these two problems would seem to have in common is,
well, Kevin Bacon. But a sclid CS person would also note that these are e
hoth graph theory problems. When solving the Six Degrees of Kevin Bacon e o
or having Google Maps get you to Kevin Bacon's star, the problem is .‘o
generally described as a graph and the goal is to find the shortest e e
(weighted) path between two vertices in that graph.

Figure 3: A graph (from pdx.edu)
What's really cool is that we can use the same algorithms to solve either of
these two problems! And that's what this class should bring you. A waorldview that lets you quickly see

ways to address and solve problems you'll encounter as a CS or CE student.

Holly

HEDhI

Q)
;

You may recall that on

the first day of class, |
used graphs to illustrate
how two problems that
look to be quite different
can he represented in

the same way.

In this case, we are
looking at two graphs. In
both cases we are
looking for the shortest
path.

In the graph above, what
is the shortest path from

atoz?

How about from LA to
Miami?

EECS 203 Spring 2016 Lecture 18 Page 10 of 10

While it’s pretty easy to find the shortest path from a to z by inspection, it’s worth trying to formalize
this into something we can make into an algorithm. Let’s identify the “closest” note to a and then once

we find it, use that to help find the second closest node etc.

Vertex | Distance

a
d

Let’s be a bit more formal:

ALGORITHM 1 Dijkstra’s Algorithm.

procedure Dijkstra(G: weighted connected simple graph, with
all weights positive)

{G has vertices a = vp, V1, ..., Vs = Z and lengths w(v;, v;)
where w(v;, vj) = oo if [v;, v;} is not an edge in G}

fori:=1ton
L(v;) :=o00

L(a) =0

S:=0

{the labels are now initialized so that the label of @ is O and all
other labels are oo, and § is the empty set}

whilez € §
u := avertex not in § with L(«) minimal
S:=SuU [ll}

for all vertices vnotin §
if L(u) +wiu.v) < L(v) then L(v) := L(u) +w(u.v)
{this adds a vertex to § with minimal label and updates the
labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}

