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Review: Recurrence relations (Chapter 8) 
Last time we started in on recurrence relations.  In computer science, one of the primary reasons we 
look at solving a recurrence relation is because many algorithms, whether “really” recursive or not (in 
the sense of calling themselves over and over again) often are implemented by breaking the problem 
down into smaller parts and solving those.  In order to get a solid sense of their runtime, we need to be 
able to either solve the relation or at least get a sense of its complexity (think big-O).  
 
Recall the Towers of Hanoi problem (moving discs) and it’s solution: 

Define T(n) = number of moves 

when there are n discs. 

 T(1) = 1 

 T(n) = 2T(n-1) + 1 
 
 

In class last time we guessed at the solution and used an inductive proof to show that the guess (that 
T(n)=2n-1) was correct.  Today we are going to look at how to find closed form solutions to these 
problems generally. 
 
Last time we worked through solving “linear, homogeneous, recurrence relations with constant 
coefficients” of degree 2 
 

Solving Linear Recurrence Relations (8.2) 

 

 The recurrence is linear because the all the “an” terms are just the terms (not raised to some 

power nor are they part of some function).  So an=2an-1
 is linear but an=2(an-1)2 is not.    

 It is homogeneous because all terms are multiples of some previous value of an.  So an=2an-1
 is 

homogeneous, but an=2an-1+1 is not.   

 It is of degree k because an is expressed in terms of the last k terms of the sequence. 

 And it has constant coefficients because all the c terms are constants (not a function of n). 

We claimed (without proof) that finding the “characteristic equation” would help.   

 

Now, if we divide both sides of this equation by rn-k and move the things around a bit, we get:  
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Some new examples: 
Indicate if the following are linear, homogeneous and have constant coefficients.  If they are, find the 

characteristic equation associated with the recursion. 

1. an=2an-1+an-2 

2. an=an-1+an-2+4 

3. an=2an-1-4an-2 

4. an=an-2+an-3 

5. an=nan-1+an-2 

Working with LH RR with CC and degree 2 

 

That feels like it jumps out of nowhere.  Let’s focus on what it says, time allowing we will try to show it 

makes sense (or at least a bit of sense).  The proof is on pages 515 and 516 of the text. 

Consider the Fibonacci sequence defined by an=an-1+an-2.  This is saying we need to find the roots of the 

characteristic equation and then the solution for this relation is of the form , where r1 

and r2 are those roots.  Notice that α is just an arbitrary constant (that we’d have to figure out…) 

Last time we worked out examples 3 and 4 from the text.  Let’s try this one: an=3an-1-2an-2; a0=3, a1=4 
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 Repeated roots 

 

Let’s do an=6an-1 -9an-2 where a0=1 and a1=6 

 What is the characteristic equation? 

 

 What are the roots of the characteristic equation? 

 

 What is the solution to the recurrence?  

 

 

 

 

 

 

General form for arbitrary degree 
In this class, we will only be working with relations of this type of degree 2.  But there is a more general 

result. 
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Again, we aren’t going to worry about this general case, but I want you aware it exists. 

Linear Nonhomogeneous Recurrence Relations with Constant Coefficients 
Consider (the fairly common) case of a nonhomogeneous relation.  That is, we add something that isn’t 

a term of an but might be a function of n.  So .  In 

order to solve this, we are going to take three steps: 

 Solve the associated homogeneous recurrent relation (that is the one that doesn’t have that F(n) 

term!) 

 Find a “particular” solution based on F(n). 

 Add those two results. 

We know how to do the first thing.  And finding the particular solution in general can be annoying, but 

for most polynomials we can make progress as follows: 

 

In the general case, we’ll have the situation that s=1.  But that means we need to watch out if the 

homogeneous solution has a root that is 1 (which seems to happen a lot more than you’d expect).   

Worked Example (Towers of Hanoi) 
Let’s compute an=2an-1 +1 with a1=1 (recall this is what we had for Towers of Hanoi). 

The associated HRR is r-2=0, so r=2.  So the homogeneous part is 2n.  Now we need the particular part. 

 

When dealing with the particular solution F(n)=1*1n, so “s” doesn’t share a root with the characteristic 

equation (1≠2).  So our solution is of the form p0 (a constant).  Thus we’ve got an=2n+p0.  Solving for the 
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initial case we get a0=1=20+p0.  So p0=-1. And we’ve now found, rather than guessed, the closed form for 

the recurrence relation for Towers of Hanoi.  

Divide and Conquer and the associated 
recurrence relations (8.3) 
Let’s look at a few fun algorithms that are what we call “divide and conquer”-type algorithms. 
 

We introduced a binary search algorithm in Section 3.1. This binary search algorithm reduces 
the search for an element in a search sequence of size n to the binary search for this element in 
a search sequence of size n/2, when n is even. (Hence, the problem of size n has been reduced 
to one problem of size n/2.) Two comparisons are needed to implement this reduction (one to 
determine which half of the list to use and the other to determine whether any terms of the list 
remain).  (page 528) 

 

If f(n) is the run time to find an element in a sorted list of n elements (assume n is a power of 2), how 

many comparisons do we need?  Write this as a recurrence relation. 

 

 

Consider a merge sort where we split the list in half, sort each half, and then merge the two sorted lists.  

What is the recurrence relation that describes the runtime of this algorithm?  Assume it takes “n” steps 

to merge two lists each of size (n/2)i 

 

 

 

 

 

  

                                                           
i Why is “n” a reasonable number of steps to merge two sorted lists of size n/2 into a sorted list of “n” items? 
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The Master Theorem 
As we often don’t care about specific values, just the “order” of the complexity of the algorithm, we can 

generally get away without solving these recurrence relations—we are instead happy if we know the 

order of the solution.  And it turns out, there is a “plug-and-chug” way to do this: The Master Theorem. 

 

Examples 
1. Using the above, what are the values of a, b, c and d for the binary search algorithm?  What is 

that algorithm’s complexity? 

 

 

 

 

 

2. Using the above, what are the values of a, b, c and d for the merge sort algorithm?  What is that 

algorithm’s complexity? 

 

 

 

 

 

3. Consider the relation F(N)=3F(N/3)+N (which is a merge sort split into 3 parts).   
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A graph G=(V,E) consists of: 

 a non-empty set V of vertices (or nodes) 

 a set E of edges 

 Each edge is associated with two vertices 

(possibly equal). 

 

 In a directed graph: all edges are directed. 

 Undirected graph:  all edges are undirected. 

 Mixed graph:  some of each. 

 

Some graphs: 
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Basic Terminology  
 Vertices u and v are adjacent if they are connected by an edge e  

o In an undirected graph: e = {u,v}  
o In a directed graph: e = (u,v)  

 The degree of a vertex deg(v) is the number of “edge-ends” incident to it.  
o A self-loop edge is counted twice.  
o In a directed graph, distinguish:  

 in-degree deg−(v): number of incoming edges  
 out-degree deg+(v): number of outgoing edges  

 A subgraph of a graph G = (V,E) is a graph H = (W,F) where W  V and F  E.  
o A subgraph H is a proper subgraph if H ≠ G.  

 The union of two simple graphs G1 = (V1 , E1) and G2 = (V2, E2) is the simple graph with vertex set 

V1  V2 and edge set E1  E2.  

o The union of G1 and G2 is denoted by G1  G2.  

 Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u and v are 
endpoints of an edge e of G. Such an edge e is called incident with the vertices u and v and e is said 
to connect u and v.  

 The set of all neighbors of a vertex v of G = (V ,E), denoted by N(v), is called the neighborhood of V. 
If A is a subset of V , we denote by N(A) the set of all vertices in G that are adjacent to at least one 
vertex in A.  

Examples and Questions: 

 

1. What is the degree of each node?  
2. Draw the graph A=(V,E) where V={a, b, c, d}, E={{a,b}, {b,d}}  

 
 
 

3. Draw the graph B=(V,E) where V={a, b, c, d}, E={{a,b}, {d,b}, {c,a}}  
 
 
 
 
 

4. We now have 4 graphs total (A, B, G, H). Are any of them subgraphs of the other?  
5. Draw the graph X=(V,E) where V={a, b, c, d}, E={(a,b), (b,d)}  
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