
EECS 203 Lecture 19

Graphs



Admin stuffs

Last homework due tomorrow

Office hour changes starting Friday (also in Piazza)
Friday 6/17: 2-5 Mark in his office.

Sunday 6/19: 2-5 will be Jasmine in the UGLI

Monday 6/20: 10-12: Mark in his office.

Monday 6/20: 5-7 Emily in the UGLI.

Tuesday 6/21: 10-12: Emily in the Beyster Learning Center.

Tuesday 6/21: 1-3 Mark in his office.

Wednesday 6/22: 10-12 Emily in the Beyster Learning Center.

Wednesday 6/22: 1:30-3:00 Mark in his office.

Thursday: 6/23: 10-12 Emily in the Beyster Learning Center.

Thursday 6/23: 1:30-3:00 Jasmine in the Beyster Learning Center.

Discussion is still on for Thursday and Friday.



Today

Dijkstra’s algorithm

Using slides from 

http://math.ucsd.edu/~fan/teach/202/

https://en.wikipedia.org/wiki/Fan_Chung

http://math.ucsd.edu/~fan/teach/202/
https://en.wikipedia.org/wiki/Fan_Chung














































Dijkstra’s Algorithm animated



Let’s try an induction proof on a graph

First we’ll define what it means for a graph to 

be connected.

Then we’ll show that in any connected graph 

there are at least two vertices you can remove 

from the graph (along with its incident edges) that 

leave the graph still connected.

We’ll use strong induction.

First let’s (re)define some terms



Graphs

A graph G = (V,E) consists of 

a non-empty set V of vertices (or nodes),

and a set E of edges.

Each edge is associated with two vertices (possibly equal), 

which are its endpoints.

A path from u to v of length n is:

a sequence of edges e1, e2, . . . en in E, such that

there is a sequence of vertices u=v0, v1, . . . vn=v

such that each ei has endpoints vi-1 and vi.

A path is a circuit when u=v.

A graph is connected when there exists a path from 

every vertex to every other vertex.



From: http://www.sfu.ca/~mdevos/notes/graph/induction.pdf

There are a few nice observations about the proof there as

well as a few nice induction examples. 

http://www.sfu.ca/~mdevos/notes/graph/induction.pdf
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Paths and Circuits

Given a graph G = (V,E):

Is there a path/circuit that crosses each edge in E 

exactly once?

If so, G is an Eulerian graph,

and you have an Eulerian path, or an Eulerian circuit.

Is there a path/circuit that visits each vertex in V 

exactly once?

If so, G is a Hamiltonian graph,

and you have a Hamiltonian path or circuit.



Leonhard Euler lived in Königsberg

He liked to take walks.  A famous local puzzle 

was whether you could take a walk that would 

cross each bridge exactly once.

Euler solved this problem (in 1736) and thus 

founded graph theory.



The Graph Abstraction

In the physical world:

Each bridge connects exactly two land-masses.

Each land-mass may have any number of bridges.

Suggests a graph abstraction:

Represent a bridge by an edge in the graph.

Represent a land-mass by a vertex.



Is there an Euler circuit/path?

Circuit

Path

Not Traversable

C

A

E

C

B

A

E

C

B

A A A

BBB
CCC

D DD

E EE



Does G have an Euler Path/Circuit?

Theorem: A connected multigraph has an Euler 

path iff it has exactly zero or two vertices of 

odd degree.

Why?

What if it has only one?

When does it have an Euler circuit?



Examples

Do these graphs have Euler paths/circuits?

(A)Yes, it has a circuit.

(B)Yes, it has a path (but no circuit).

(C)No, it has neither path nor circuit.



Does this have an Euler path?
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Applications of Euler Paths

Planning routes through graphs that provide 

efficient coverage of the edges in the graph, 

without multiple traversals.

Postal delivery routes

Snowplowing routes

Testing network connections

Utility transmission network

Communication network



Hamiltonian Paths and Circuits

Given a graph, is there a path that passes through 

each vertex in the graph exactly once? (aka a

Hamiltonian path)

dodecahedron Isomorphic graph solution



Hamilton circuit

Do these graphs have Hamilton circuits?

G                                     H

(A) Yes, both.                     (C ) G doesn’t, H does.

(B) G does, H doesn’t.        (D)  No, neither.
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Computational Complexity

Deciding whether a graph is Eulerian is a 

simple examination of the degrees of the 

vertices.

Simple linear-time algorithms exist for finding the 

path or circuit.

Deciding whether a graph is Hamiltonian is, in 

general, much more difficult (“NP complete”).

Finding a Hamiltonian path or circuit is equally hard.



Weighted graphs

A weighted graph has numbers (weights) 

assigned to each edge.

The length of a path is the sum of the weights 

in the path.
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Traveling Salesperson’s Problem

What is the shortest route in a given map

for a salesperson to visit every city exactly once

and return home at the end?

Mathematically:

Given an graph with weighted edges, what is the 

Hamiltonian circuit of least weight?

Applies to both directed and undirected graphs.



The Traveling Salesman Problem

Problem: Given a graph G, find the shortest 

possible length for a Hamilton circuit.

What is the solution to TSP for the following graph?

(A) 16          (B) 17        (C ) 18       (D) 19         (E) 20
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Traveling Salesperson’s Problem

The TSP is NP Complete:  intractable in general.

Very large instances have been solved with heuristics.

An instance with 13,509 cities, solved in 2003.



Applications

The Traveling Salesperson’s Problem and the 

Hamilton Path/Circuit Problem have many 

applications.

Planning and logistics  (of course!)

Manufacture of microchips

DNA sequencing


