Strong Induction

EECS 203: Discrete Mathematics

Mathematical vs Strong Induction

- To prove that $P(n)$ is true for all positive n.
- Mathematical induction:
$P(1)$
$\forall k \in \mathbf{Z}^{+}[P(k) \rightarrow P(k+1)] \quad$ Inductive step
$\forall n \in \mathbf{Z}^{+} P(n)$
Conclusion
- Strong induction:
$P(1)$
Basis step
$\forall k \in \mathbf{Z}^{+}[P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)] \quad$ Inductive step
$\forall n \in \mathbf{Z}^{+} P(n)$
Conclusion

Climbing the Ladder (Strongly)

- We want to show that $\forall n \geq 1 P(n)$ is true.
- Think of the positive integers as a ladder.
- $1,2,3,4,5,6, \ldots$
- You can reach the bottom of the ladder:
- $\quad P(1)$
- Given all lower steps, you can reach the next.
$-\quad P(1) \rightarrow P(2), \quad P(1) \wedge P(2) \rightarrow P(3), \ldots$
$-\quad \forall k \geq 1 P(1) \wedge \ldots \wedge P(k) \rightarrow P(k+1)$
- Then, by strong induction:
- $\quad \forall n \geq 1 P(n)$

Is Strong Induction Really Stronger?

- No. Anything you can prove with strong induction can be proved with regular mathematical induction. And vice versa.
- Both are equivalent to the well-ordering property.
- But strong induction can simplify a proof.
- How?
- Sometimes $\mathrm{P}(\mathrm{k})$ is not enough to prove $\mathrm{P}(\mathrm{k}+1)$.
- But $\mathrm{P}(1) \wedge \ldots \wedge \mathrm{P}(\mathrm{k})$ is strong enough.

Show that if n is an integer greater than 1 , then n can be written as the product of primes.
Solution: Let $P(n)$ be the proposition that n can be written as the product of primes.
BASIS STEP: $P(2)$ is true, because 2 can be written as the product of one prime, itself. (Note that $P(2)$ is the first case we need to establish.)
INDUCTIVE STEP: The inductive hypothesis is the assumption that $P(j)$ is true for all integers j with $2 \leq j \leq k$, that is, the assumption that j can be written as the product of primes whenever j is a positive integer at least 2 and not exceeding k. To complete the inductive step, it must be shown that $P(k+1)$ is true under this assumption, that is, that $k+1$ is the product of primes.

There are two cases to consider, namely, when $k+1$ is prime and when $k+1$ is composite. If $k+1$ is prime, we immediately see that $P(k+1)$ is true. Otherwise, $k+1$ is composite and can be written as the product of two positive integers a and b with $2 \leq a \leq b<k+1$. Because both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to write both a and b as the product of primes. Thus, if $k+1$ is composite, it can be written as the product of primes, namely, those primes in the factorization of a and those in the factorization of b.

Coin problem

- What is the largest cent-value that cannot be formed using only 3 -cent and 5 -cent stamps?
-(A) 2
- (B) 4
- (C) 7 <= Correct answer
-(D) 8
- (E) 11

Proof for our Coin problem

- Let $P(\mathrm{k})=$ "k cents can be formed using 3-cent and 5cent stamps."
- Claim: $\forall n \geq 8 P(n)$.
- Proof by strong induction:
- Base cases:
$-P(8): 8=3+5$
$-P(9): 9=3+3+3$
$-P(10): 10=5+5$.

Proof for our Coin problem

- Inductive step:
- Let k be an integer ≥ 11.

Inductive hypothesis: $P(j)$ is true whenever $8 \leq j<k$.
$-P(k-3)$ is true.

- Therefore, $\mathrm{P}(k)$ is true. (Add a 3-cent stamp.)
- This completes the inductive step.

