

Specialize to periodic DT sinusoid • First we assume relation $f_o/f_s = 1/N$ $x[n] = x(nT_s) = A\cos(2\pi f_o T_s n + \phi)$ $= A\cos(2\pi (f_o/f_s)n + \phi)$ • DT sinusoid with period N • Compare to generic periodic sinusoid $x[n] = A\cos(2\pi \hat{f}_o n + \phi)$ • Recognize DT fundamental frequency $\hat{f}_o = f_o/f_s = 1/N$

Alfred Hero University of Michigan

Conclude

• For
$$f_o > 1$$
 (equiv $f_s < f_o$)
– The cts sinusoidal frequency f_o is no longer
recoverable since cannot tell the difference
between

$$f_o = \hat{f}_o f_s$$
 or $f_o = (\hat{f}_o - 1) f_s$

- A higher positive frequency has been aliased into the frequency range $\hat{f} \in [0, 1/2)$
- Complex amplitude of the positive frequency component is preserved

Summarizing

• When $f_s>2f_o~~$ can recover f_o,A,ϕ from DFT

$$f_o = \hat{f}_o / T_s = \hat{f}_o f_s$$

• Otherwise have aliasing and recovery is impossible - if $f_o \leq f_s < 2f_o$

$$f_o = \hat{f}_o f_s$$
 or $f_o = (1 - \hat{f}_o) f_s$ (Case II)

- if
$$f_s < f_o$$

$$f_o = \widehat{f}_o f_s$$
 or $f_o = (\widehat{f}_o - 1) f_s$ (Case I)

Alfred Hero University of Michigan 24

Sampling arbitrary periodic signals

• Let $f_{max} = pf_o$ Hz be the highest frequency component (bandwidth) in FS of a periodic signal x(t) having fundamental frequency $f_o = 1/T_o$

$$x(t) = \sum_{k=-p}^{p} \alpha_k e^{j2\pi k f_0 t}$$

- Such a signal is said to be bandlimited to bandwidth f_{max} Hz
- \mathbf{Q}_{H} What is minimum sampling freq $f_{s?^{25}}$

Shannon Sampling Theorem • If periodic x(t) is bandlimited to bandwidth f_{max} and samples x[n] are obtained from x(t) by sampling at greater than Nyquist rate $f_s > 2f_{max}$ then can exactly reconstruct x(t) from samples using sinc interpolation formula $x(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \operatorname{sinc}(\pi(t - nT_s)/T_s)$ • This is also called the cardinal series for x(t) Alted Hero University of Michigan

