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Lecture on Continuous-Time Signals and Systems

Why study continuous-time given that discrete-time signal processing is taking over?

Though the solutions are increasing digital, the problems addressed by signals and systems
are, essentially, are most about continuous-time signals and systems.  To solve a problem
well, it is importatn to understand it in its original domain.

The sampling theorem is derived in the continuous-time domain.  Moreover, when
sampling we know we must sample at rate at least equal to twice the highest frequency.
How do we determine the highest frequency?  We need to understand continuous-time
spectra.  Additionally, most signals do not have a largest frequency.  We need to choose
an approximate highest frequency, and we need to apply a continuous-time filter to block
all signal components with frequency higher than half the sampling rate (in the continuous
time domain) because these will alias into the frequency range 0 to fs/2.

What to study?

Fourier series:

Spectral analysis of periodic continuous-time signals

Continuous-time systems, e.g. filters:

Properties:

Linearity, time-invariance, causality, stability

Described by (corresponding discrete-time property)

A.  differential equation (difference equation)

B.  block diagram (block diagram)

C.  impulse response (impulse response)

D.  frequency response (frequency response)

E.  transfer function (system function)

F.  poles and zero's (poles and zeros)

Continuous-time Signals:  more spectral analysis techniques

Fourier Transforms

Laplace Transforms

Other topics

Sampling Theorem

Filter Design

Random signals

Applications:

Communication signals

Feedback control systems

Model actual physical systems
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Fourier Series    (See also the Quick Primer by Prof. Wakefield)

Let  x(t)  be a periodic continuous-time signal.  Let  To  be its fundamental period or a
multiple thereof.  Let  fo = 1/To  be called the fundamental frequency.

Exponential Fourier Series

Synthesis formula:    x(t)  =  ∑
k=–∞

∞
 αk e

j2πkfot

 

Analysis formula:  αk  =  
1
To

 ∫
0

To

 x(t) e
-j2πkfot
  dt

Sinusoidal Fourier Series (the Fourier series of the book)

Synthesis formula:   x(t)  =  Ao  +  ∑
k=1

∞
 Ak cos(2πfokt + φk)

Analysis formulas:  Ao = αo,  Ak = 2|αk|,  φk = angle(Ak)

We will discuss the derivation of the exponential Fourier series, the relationships between
the exponential and sinusoidal Fourier series, some properties and examples.

Derivation of Exponential Fourier Series

Assume  x(t)  is periodic continuous-time signal.  Let  To  be its fundamental period or a
multiple thereof.  Let  fo = 1/To  be called the fundamental frequency.

The component of   x(t)  that is like  e
j2πkfot

 
  is

αk e
j2πkfot

 
where

αk  =  
cTo

(x,e
j2πkfot
 )

ETo
(e

j2πkfot
 )

Why?  Because as shown earlier, this minimizes difference energy

E
 
To 


 


x(t)-αk e
j2πkfot

 
  =  ∫

0

To

 |x(t) - αk e
-j2πkfot
 |2  dt

Let us now find a formula for  αk.  By the definitions of  correlation and energy

cTo
(x,e

j2πkfot
 ) = ∫

0

To

 x(t) e
-j2πkfot
  dt

ETo
(e

j2πkfot
 )  =   ∫

0

To

 |e-j2πkfot
 |2  dt  =  To

Therefore,

αk  =  
1
To

 ∫
0

To

 x(t) e
-j2πkfot
  dt

Are we done?  No, we need to see that these  αk's  make sense in the Fourier sum.
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Note:  The  e
j2πkfot

 
's  are mutually orthogonal, i.e.

cTo
(e

j2πkfot

 
,e

j2πmfot

 
)  = 0,  when  k≠m

We will now show that for any  N,  the above choices of  α1,...,αN  minimize the
difference energy

ETo 



 



x(t) - ∑
k=–N

N
 αk e

j2πkfot

 

As shorthand, let  pk(t) =  e
j2πkfot

 
.  Then, omitting some of the messy detail:

ETo 



 



x(t) - ∑
k=–N

N
 αk e

j2πkfot

 
  =  ∫

0

To

 
 


 
x(t) - ∑

k=–N

N
 αk pk(t)

2
 dt

=  ETo
(x)  - 2 c

 
To(x, ∑

k=-N

N
 αk pk(t))  + ETo

( ∑
k=-N

N
 αk pk(t))

=  ∑
k=-N

N
 ETo

(x)  - 2 ∑
k=-N

N
 α k  c

 
To(x,pk)  + ∑

k=-N

N
 α 2

k ETo
(pk) - (N-1)ETo

(x)

=  ∑
k=-N

N
  


 
E To

(x) - 2α k c
 
To(x,pk) + α2

k ETo
(pk)   - (N-1)ETo

(x)

=  ∑
k=-N

N
  E(x-αkpk)  - (N-1)ETo

(x)

From this we see that the choice of the  αk's  that minimizes the energy in the difference

between  x  and the sum of the  αk pk's  is precisely the  αk's  such that  αkpk  is closest to

x,  i.e.  such that  αkpk  is the component of  x  like  pk.  This justifies the formula for the

αk's.

Question:  What happens as  N → ∞?

Definition:

∑
k=–∞

∞
 αk e

j2πkfot

 
  =  

 
lim

N→∞
 ∑
k=–N

N
 αk e

j2πkfot

 
.

Fact:

ETo 



 



x(t) - ∑
k=–N

N
 αk e

j2πkfot

 
  → 0  as  N → ∞

Derivation:  It's beyond the scope of all courses in EECS except EECS 600.

The above fact shows the sense in which  x(t)  equals ∑
k=–∞

∞
 αk e

j2πkfot

 
.  We don't know for

certain that  x(t) = ∑
k=–∞

∞
 αk e

j2πkfot

 
   for every  t.  However, the energy in the difference is

zero, so they can only differ at isolated points.
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The following theorem gives conditions for equality and tells us what happens when
equality does not hold.

Dirichlet theorem

(a) x(t) = ∑
k=–∞

∞
 αk e

j2πkfot

 
             

at all times t such that x(t) is continuous
at t, i.e. x(t+ε) →  x(t) as ε  →  0

(b) ∑
k=–∞

∞
 αk e

j2πkfot

 
  =  

1
2 (x(t+)+x(t-)    

if x has a jump at time t,
x(t+) = limit of x from the right
and x(t-) = limit of x from the left

if one of the following three conditions holds:

1.  Absolute integrability:

∫
0

To

 |x(t)| dt < ∞

2.  bounded variation:  In any finite interval time  x(t)  has at most a finite numbe
of maxima and minima.

3.  Finite number of discontinuities:  In any finite interval of time,  x(t)  is
continuous or has finite number of discontinuities, and these discontinuities are
finite in magnitude.

Gibbs Phenomenon

See p. 65 of DSP First

Terminology

• ∑
k=–∞

∞
 αk e

j2πkfot

 
   is called a "Fourier series",  because it it is an infinite sum, i.e. a

series, discovered/invented by Fourier.

• The  αk's  are called the coefficients.  Computing them is often called "taking the
Fourier series".

Relationship Between Exponential and Sinusoidal Fourier Series

• Follows from Euler's formula.

• The  αk's  are what the book has been asking us to plot all along.

• See the discussion in the Quick Primer by Prof. Wakefield.
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Properties of Fourier Series

1. α0  =  average value of signal

2. When  x(t)  is real,

α-k = α*
k    (see derivation in the Quick Primer)

3. Parseval's theorem  (see derivation in Quick Primer)

The power in  x(t)  equals the energy of the coefficients, i.e.

  
1
To

 ∫
0

To

 |x|
2
 (t) dt  = ∑

k=-∞

∞
 |α k|

2
 

4. Linearity:  the FS coeff's of  x+y   are the sum of the FS coef's of each

Linearity of inverse:  ditto

5. Consider a periodic signal  x(t)  with period  To  and Fourier coefficients   {αk}.
When  x(t)  is the input to a continuous time linear time-invariant system with
frequency response  H(ω), then the output  y(t)  is periodic with period  To  and with

Fourier series coefficients  {βk}  where

βk = αk H(2π1
To

k)

Continuous-time systems

Properties:

Linearity, time-invariance, causality, stability

Described by (corresponding discrete-time property)

A.  differential equation (difference equation)

B.  block diagram (block diagram)

C.  impulse response (impulse response)

D.  frequency response (frequency response)

E.  transfer function (system function)

F.  poles and zero's (poles and zeros)

Properties

Linearity:   a1 x1(t) + a2 x2(t)  →  a1 y1(t) + b1 y2(t),   for any x1(t), x2(t), a1, a2

Time-invariance:  x(t-to)  → y(t-to),    for any  x(t)  and  to

Causality:  The output at time  t  depends only on the inputs up through time t

Stability:  If the input is bounded, the output is bounded
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Descriptions of linear time-invariant systems

A.  Input-output relationship described by differential equations

let  x(t)  denote the input,  y(t)  the output,  most filters are described by
coefficients  a0,...,aN,  b0,...,bM  and the differential equations

∑
k=0

N
 ak 

dky(t)
dtk   =  ∑

k=0

M
 bk 

dkx(t)
dtk

Make filters out of multipliers, adders, differentiators

Differentiators are implemented with

capacitors:  i = C 
dv
dt

inductors:  v = L 
di
dt

these plus operational amplifiers

 Integrators can be used in addition to or instead of differentiators:

v = 
1
C ∫

 

 
 i dt,  i = 

1
L ∫

 

 
 v dt,  these plus op amps

Model actual physical systems as discrete-time filters

B.  Describe with block diagrams

C.  Impulse response

δ(t)  =  idealized impulse ( very narrow, very tall, area 1)

h(t)  =  impulse response  =  y(t)  when  x(t) = δ(t)

y(t)  =  x(t) * h(t)  =  ∫
-∞

∞
 x(τ) h(t-τ) dτ    =  ∫

-∞

∞
 x(t-τ) h(τ) dτ

this is called "convolution"

D.  Frequency response

When  x(t) = e
jωt
 

,  then  y(t) = H(ω) e
jωt
 

,

where

H(ω) = ∫
-∞

∞
  h(t) e

-jωt
 

 dt  =  frequency response

    =  correlation of  h  with  e
jωt
 

  =  Fourier transform of  h(t)

Inverse relationship

h(t)  =  
1

2π ∫
-∞

∞
 H(ω) e

jωt
 

 dω   = inverse Fourier transform of  H(ω)

Input-output relationship

Y(ω)  =  H(ω) X(ω)

where

X(ω) = ∫
-∞

∞
  x(t) e

-jωt
 

 dt   =  Fourier transform of  x(t)
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Y(ω) = ∫
-∞

∞
  y(t) e

-jωt
 

 dt   =  Fourier transform of  y(t)

Inverse Fourier transform

x(t)  =  
1

2π ∫
-∞

∞
 X(ω) e

jωt
 

 dω

E.   Transfer function

When  x(t) = e
st
 ,     for some  s= σ + jω ,

 then  y(t) = HL(ω) e
st
 

where

HL(s)  =  ∫
-∞

∞
 h(t) e

-st
  dt    where  s  ranges over all complex numbers

YL(s) = HL(s) XL(s)

where

XL(s) = ∫
-∞

∞
  x(t) e

-st
  dt   =  Laplace transform of  x(t)

YL(s) = ∫
-∞

∞
  y(t) e

-st
  dt   =  Laplace transform of  y(t)

HL(s)  =  

∑
k=0

M
 bksk

∑
k=0

N
 aksk

   =   Laplace transform of impulse response

Frequency response = transfer function on the imaginary axis

H(ω) = HL(jω)

F.  Poles and zeros

HL(s)  =  

∏
k=1

M
 (s-zk)

∏
k=1

M
 (s-pk)

Poles and zeros give an indication of the frequency response.


