Lecture on Continuous-Time Signals and Systems

Why study continuous-time given that discrete-time signal processing is taking over?

Though the solutions are increasing digital, the problems addressed by signals and systems
are, essentially, are most about continuous-time signals and systems. To solve a problem
well, it isimportatn to understand it in its original domain.

The sampling theorem is derived in the continuous-time domain. Moreover, when
sampling we know we must sample at rate at least equal to twice the highest frequency.
How do we determine the highest frequency? We need to understand continuous-time
spectra. Additionally, most signals do not have alargest frequency. We need to choose
an approximate highest frequency, and we need to apply a continuous-time filter to block
all signal components with frequency higher than half the sampling rate (in the continuous
time domain) because these will alias into the frequency range O to f¢/2.

What to study?

Fourier series:
Spectra analysis of periodic continuous-time signals

Continuous-time systems, e.g. filters:

Properties:
Linearity, time-invariance, causality, stability

Described by (corresponding discrete-time property)
A. differential equation  (difference eguation)
B. block diagram (block diagram)
C. impulse response (impul se response)
D. freguency response (frequency response)
E. transfer function (system function)
F. polesand zero's (poles and zeros)

Continuous-time Signals: more spectral analysis techniques
Fourier Transforms
Laplace Transforms

Other topics

Sampling Theorem

Filter Design

Random signals

Applications:
Communication signals
Feedback control systems
Model actual physical systems
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Fourier Series (See aso the Quick Primer by Prof. Wakefield)

Let x(t) beaperiodic continuous-time signal. Let To beits fundamental period or a
multiple thereof. Let fo = 1/To be called the fundamental frequency.

Exponential Fourier Series

. ® j21kf ot
Synthesis formula:  x(t) = 5 ak g To
k==o0
. To 21kf ot
Anadysisformula  ak = ToJ x(t) e Jankdat

Sinusoidal Fourier Series (the Fourier series of the book)
Synthesis formula:  x(t) = Ap + ZlAk cos(21tf okt + k)
K=

Analysis formulas. Ao = 0o, Ak = 2|0k|, ¢k = angle(Ak)

We will discuss the derivation of the exponential Fourier series, the relationships between
the exponential and sinusoidal Fourier series, some properties and examples.
Derivation of Exponential Fourier Series

Assume x(t) is periodic continuous-time signal. Let To beits fundamental period or a
multiple thereof. Let fo = 1/To be called the fundamental frequency.

j2Tkfot .
The component of  x(t) that islike € ° is
j2TKf ot
ke
where
ej2nkf0t)
ak = ,'2T|kft
Er (€7 °)

Why? Because as shown earlier, this mi nimizes difference energy

21k ot 2
- ol dt

ETO@(t) “ak€ @ J|x(t) ake

Let us now find aformulafor ak. By the definitions of correlation and energy

) To -
CTO(X,ézT[kfot) - JX('[) e—] 2T[kf0t d‘[

. To .
ETO(GIZTkaOt) - JleJZT[katlzdt — TO
Therefore,
To
21k ot
Gk—TOJX(t) Jamidot 4

Arewe done? No, we need to see that these ak's make sense in the Fourier sum.
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j 21K ot .
Note: The eJ ®s are mutually orthogonal, i.e.

j2Tif ot j2TImf ot
0(eJ N =0, when k#m

We will now show that for any N, the above choicesof aj,...,aNn minimize the

difference energy
j2Tkf ot
O

0 N
Er x(t) - ok e
Tof] k:Z_N
j2mkfot - .
As shorthand, let pk(t) = e . Then, omitting some of the messy detail:

N : To N
B0~ 5 and™ 9= (50 3 akpv]

N N
Er, ) -2 cTo(x,k:z_Nak p(t) + Ero(, 3 ak pe(t)

N N N
k=Z-NETO(X) - ZK:Z.NG k CTO(X,pk) + k:ZNO( 2k ETO(pk) - (N-DE(x)

N
k_ZNHETO(X) - 20k ery(x.pi) + ok Er (pk)d - (N-1)E7 ()

N
k_zN E(x-akpk) - (N-1)Ep (%)

From this we see that the choice of the ak's that minimizes the energy in the difference
between x and the sum of the ak pk's isprecisely the ak's suchthat akpk isclosest to
X, i.e. suchthat akpk isthe component of x like pk. Thisjustifies the formulafor the
ak's.

Question: What happensas N — «?

Definition:
°° 21k f ot . N i 2Tkf ot
Z(J(keJ o = lim Zake] <
k=0 N o0 k==N
Fact:
N .
0 j2mkfotD
E- ox(t) - ag e O0->0a N o
TOI]() k:Z_N 0

Derivation: It's beyond the scope of all coursesin EECS except EECS 600.

j2rkfot

The above fact shows the senseinwhich x(t) equals 3 ok . We don't know for
k==00

j2rkfot

certain that x(t) = > ok for every t. However, the energy in the difference is
k=00

zero, so they can only differ at isolated points.
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The following theorem gives conditions for equality and tells us what happens when
equality does not hold.

Dirichlet theorem
j2Tkf ot at all timest suchthat x(t) iscontinuous

@ x( :kzz—ooak e att,i.e. x(t+&) — x(t)ase - 0

00 onkdat 1 if x hasajump attime t,
by 3 age et = 5 (X(t+)+x(t) x(t+) = limitof x fromtheright
k=0 and x(t.) = limitof x fromtheleft

if one of the following three conditions holds:

1. Absolute integrability:
To

JIX(I)I dt < oo

2. bounded variation: In any finite interval time x(t) has at most afinite numbe
of maxima and minima.

3. Finite number of discontinuities: In any finite interval of time, x(t) is
continuous or has finite number of discontinuities, and these discontinuities are

finite in magnitude.
Gibbs Phenomenon

See p. 65 of DSP First

Terminology
00 .
j2Tkfot . " . — Lo NPT .
. Zak is called a"Fourier series’, becauseit itisan infinite sum, i.e. a
k==00

series, discovered/invented by Fourier.
* The ak's arecalled the coefficients. Computing them is often called "taking the
Fourier series".
Relationship Between Exponential and Sinusoidal Fourier Series
» Follows from Euler's formula.

* The ak's arewhat the book has been asking usto plot al along.

» Seethe discussion in the Quick Primer by Prof. Wakefield.
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Properties of Fourier Series

1. 0p = average vaue of signal

2. When x(t) isred,

k= ar( (see derivation in the Quick Primer)
3. Parseval's theorem (see derivation in Quick Primer)
The power in x(t) equals the energy of the coefficients, i.e.
. t,ﬁxf(t) o = 3 ol
koo

4. Linearity: the FS coeff's of x+y are the sum of the FS coef's of each

Linearity of inverse: ditto

5. Consider a periodic signal x(t) with period To and Fourier coefficients {ak}.
When x(t) isthe input to a continuous time linear time-invariant system with
frequency response H(w), then the output y(t) is periodic with period To and with

Fourier series coefficients {Bk} where

_ 1
Bk = ak H(2rer k)

Continuous-time systems

Properties:
Linearity, time-invariance, causality, stability

Described by (corresponding discrete-time property)
A. differential equation  (difference equation)
B. block diagram (block diagram)
C. impulse response (impulse response)
D. freguency response (frequency response)
E. transfer function (system function)
F. polesand zero's (poles and zeros)

Properties

Linearity: ag xa(t) + a2 x2(t) - a1 yi(t) +b1ya(t), forany xa(t), x2(t), &, &
Time-invariance: X(t-tg) — y(t-tg), forany x(t) and to

Causality: The output at time t depends only on the inputs up through time t
Stability: If the input is bounded, the output is bounded

EECS 206, D. Neuhoff 5 December 13, 2001



Descriptions of linear time-invariant systems

A. Input-output relationship described by differential equations

let x(t) denotetheinput, y(t) the output, most filters are described by
coefficients ag,...,an, bo,...,om and the differential equations

N M
dky(t) _ dkx(t)
Zoak dik = kzobk dtk

Make filters out of multipliers, adders, differentiators
Differentiators are implemented with
capacitors. i =C %}/
inductors: v =1L di
dt
these plus operational amplifiers
Integrators can be used in addition to or instead of differentiators:
v:%Ii dt, i :% J’v dt, these plus op amps
Model actual physical systems as discrete-time filters
B. Describe with block diagrams
C. Impulse response
o(t)
h(t)

y(®)

idealized impulse ( very narrow, very tall, area 1)

impulse response = y(t) when x(t) = &(t)

&) 00

X(t) = h(t) = ] (L X(T) h(t-t) dt = l X(t-1) h(t) dt

thisis called "convolution”
D. Frequency response

When  x(0=€é“% then y(t) = Hw) ¢,
where

* -joot
H(w) l h(t) ejw dt = frequency response

t
correlation of h with JO Fourier transform of h(t)

Inverse relationship

h(t) = %T &[ H(w) ejoJ dw =inverse Fourier transform of H(w)

Input-output relationship
Y(w) = H(w) X(w)
where

00

- t
X(oo)=_&[ X(t) er dt = Fourier transform of x(t)
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Y(w) = 5]; y(t) e_Jwt dt = Fourier transform of y(t)

Inverse Fourier transform

X(t) = %T_lxm) 4! oo

E. Transfer function

When  x(t) = eSt, for some s o0 +jw,

then y(t) = Hy () &

where

[oe]

Hi(s) = d[ h(t) e_St dt where s ranges over all complex numbers

YL(s) = Hi(s) XL(9)

where

[0e]

XL = [ XO &St

Laplace transform of x(t)

[oe]

CEN T &St

Laplace transform of y(t)

Hi(s) = N = Laplace transform of impulse response

Freguency response = transfer function on the imaginary axis
H(w) = HL(jw)

F. Poles and zeros

Poles and zeros give an indication of the frequency response.
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