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Correlation is a linear function

1.  If  α  is a scalar constant  and  x  and  y  are signals

c(ax,y) = a c(x,y)

2.  If  x, y and z  are signals

c(x+y, z)  =  c(x,z) + c(y,z)

3.   Combine  1 and 2:

 c(αx+βy,γz)  =  αγ c(x,z) + βγ c(y,z)
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The performance of Correlating Detector in a Binary Communication System

Consider a discrete-time version of the binary communication system described earlier.  The
transmitter sends the discrete-time signal

s[n] = b[0] p[n] + b[1] p[n-M] + b[2] p[n-2M] +  ....

where the  b[n]'s  are ±1 message bits that we desire to send to the receiver,  and  p[n]  is a pulse
of duration  M  time units,  i.e. p[n]=0,  n < 0  and  n>M .  This system sends one message bit
for every  M  transmitted samples.

During transmission, the transmitted signal is attenuated and noise is added, with the result that
receiver is given the signal

r[n]  =  a s[n] + N[n]

where  a<<1  is the attenuation factor, and  N[n]  is the noise sequence.  We will assume that the
noise sequence has mean value zero and mean squared value, i.e. power, denoted  PN.

To detect the  b[i]'s,  we use a correlating detector.  In particular, to detect  b[i]  we correlate
r[n]  with  p[n-iM]  producing

C[i]  =  c(r[n], p[n-iM]) .

From  C[i]  we make a decision denoted  b̂[i]  about  b[i].  Specifically,

b̂[i]  =  
 

 +1, if C[i]≥0

-1, if C[i]<0
.

This makes sense because if there is no noise, then when detecting  b[i],  the correlator produces
a positive  C[i]  if  b[i]=+1,  and a negative  C[i]  if  b[i]=-1.  Specifically, when there is no noise,
the correlator produces  C[i] = a b[i] E(p), as we will now show.  Notice that in the interval
where  p[n-iM]  is not zero,  r[n]  =  a b[i] s[n]  =  a b[i] p[n-iM].  Therefore

C[i]  =  c(r[n], p[n-iM])   =  c(a b[i] p[n-iM], p[n-iM])

   =  a b[i] c(p[n-iM], p[n-iM])    by the linearity of correlation

   =  a b[i] E(p)    because correlating a signal with itself gives its energy

When there is noise, the correlator produces

C[i]   =  c(r[n], p[n-iM])  =  c(a s[n]+N[n], p[n-iM])

=  a c(s[n], p[n-iM]) + c(N[n],p[n-iM])    by linearity of correlation

=  a b[i] E(p) + Nc[i]

where the first term comes from the previous derivation and the second term,  Nc[i],  is simply
shorthand notation for  c(N[n],p[n-iM]) .

We can now see what would cause the detector to make an error:  If  b[i] = -1,  an error occurs
when and only when  C[i] ≥ 0,  which happens when and only when  Nc[i] ≥ aE(p).  Thus for
those bits that are  -1,  the frequency of detection errors is the frequency with which  Nc[i] ≥
a E(p).  Similarly, for those bits that are  +1,  an error occurs when and only when  C[i] < 0,
which happens when and only when  Nc[i] < aE(p).  Thus for those bits that are  +1,  the rate of
detection errors is the frequency with which  Nc[i] > a E(p).  It follows that the rate of errors is
determined by the signal value distribution of the  Nc[i]'s.
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In many situations, good assumptions about the  Nc[i]'s  are that they have zero mean,  power4

(i.e. mean squared value)  PNE(p),  and signal value distribution that is a classic bell-shaped
"Gaussian" (a.k.a. "normal") curve5 illustrated below.  The thick lines at the bottom and the
short vertical lines are intended to delineate the values of  Nc[i]  that cause errors.

-4 -3 -2 -1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
c

These noise values
cause errors when b[i]=-1

These noise values
cause errors when b[i]=1

aE(p)-aE(p)

Though we won't derive it here, the formula for the Gaussian curve above can be used to
compute the rate of errors (It's the frequency of noise values larger than  aE(p).).  The result is
that the rate of errors depends on  a2E(p)/PN  as shown in the graph below. For example, if
a2E(p)/PN = 10,  then the error rate is a little less than 1 in 10,000.
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We conclude from all of this discussion that our ability to detect bits transmitted in noise
depends on what is commonly called the "signal-to-noise ratio"  a2E(p)/PN .  (The numerator is

4It should be intuitive that since  Nc[i]  is produced by multiplying the noise by  p[n-iM]  and summing,  its mean squared value will be
proportional to the energy of  p.
5The numerical labels are not intended to be accurate.
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the energy of one received pulse  a p[n];  the denominator is the power in the noise  N[n].)  To
get small error frequency we need this ratio to be large.  Note that to make this ratio large, it is
not necessary that the pulses have larger magnitude than the noise, i.e. it is not necessary that  a
p[n]  be large relative to  N[n].  Rather it is only necessary that  a2

 E(p)  be large relative to PN.
And for the latter to happen, it suffices for  p[n]  to be a long pulse.  For example, if  p[n] = ± 1,
then  E(p) = M.  So no matter how much attenuation occurs or how much noise power there is,
simply by making the basic pulse length  M  large enough, reliable detection can be obtained.

The plot on the next page shows a typical example.  The basic pulse shape  p[n]  is shown in the
top panel.  (It is typical of a spread-spectrum type pulse.)  A sequence of 1000 message bits was
transmitted using this pulse.  The first 10 such message bits are shown as  +'s  in the second
panel.  The first 10 transmitted pulse are shown in the third panel.  The portion of the received
signal corresponding to the first 10 bits is shown in the fourth panel.  It is assumed that the
signal attenuation is  a=1 and the added noise has power  PN = 8,  meaning that the noise has  8
times as much power as the signal6.  The correlator output for each pulse (suitably normalized)
is shown with  o's in the second panel.  Notice how they are generally close to the corresponding
message bit.  In this example, the detector made  9  errors, for an error frequency of  0.009.
For this situation,  E(p) = 50  and  a2

 E(p)/PN = 50/8 = 6.25.  The plot shown above predicts that
the error frequency should be  0.006,  which is tolerably close to the actual value.  The
prediction (0.006)  will become more accurate as the number of message bits increases.

Example:  underwater round the world sonar transmission to measure water temperature.

6To keep things simple we used a large noise power rather than a small attenuation factor.
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