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Lab Note:  The  ∆∆∆∆2/12  formula.

Fact:  When a uniform quantizer with level spacing  ∆  and range  [xmin,xmax]  is used to quantize a data
sequence  x1, x2, ..., xN  whose values lie mostly within the quantizer's range and whose standard
deviation is much larger than  ∆,  the mean-squared error can be approximated as

MSE  ≅   
1
12 ∆2

 

and so the RMS error can be approximated as

RMSE  ≅   √1
12 ∆2

 

Derivation:  The basic idea is to derive the formula for the MSE in a certain special case.  We then argue
that the formula is approximately the same in other cases.

The special case we consider is that of a "straight-line" continuous-time signal, namely,

x(t) = a t + b

where  a  and  b  are known constants.  Later we'll address discrete-time signals, i.e. data sequences.
The diagram below shows this signal along with the result  y(t)  of quantizing it with a uniform
quantizer with level spacing  ∆.
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The point marked  c  in the above will be useful later.  The quantization error  e(t) = x(t) - y(t)  is
shown below:
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The mean-squared error (MSE) is the mean-squared value of  e(t).  Equivalently, it is the mean value
of  e2(t),  which is illustrated below.
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Notice that  e2(t)  is periodic with period  To = ∆/a.    Because of this, we can compute its mean value
by considering only one period.  It doesn't matter which one.  Specifically, the quantizer's mean-
squared error is

MSE  =  
1

To
 ∫
c-To/2

c+To/2

  e2(t) dt
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Now,   e(t) = a(t-c)  in the time interval  c-To/2 ≤ t ≤ c+To/2.  Therefore,

MSE  =   
1

To
 ∫
c-To/2

c+To/2

  a2 (t-c)2  dt  =    
1

To
 ∫
-To/2

To/2

  a2 s2  ds ,      using change of variables:  s=t-c

 =   
1

To
  a2 

s3

3  |To/2
-To/2  =   

1
12 a2 T

2
o  =   

1
12 ∆2

   ,     because  To = ∆/a

Thus, we have derived the MSE formula in the special case.

It is important to notice that the MSE formula for a "straightline signal"  x(t) = at+b  depends neither
on the slope of the signal  a,  nor its offset  b.

Now consider some arbitrary continuous-time signal  x(t), such as that illustrated below.

t

x(t)

When  ∆  is small relative to the standard deviation of the signal, most small time segments of the
signal are, approximately, straight lines that cross a number of  ∆  steps.  By the previous analysis the
MSE on each of these straightline segments is approximately  ∆2/12.   It follows that the overall MSE
is approximately   ∆2/12.

Finally, we claim that the same formula applies to the discrete-time case.  This is because the discrete-
time signal can be thought of as samples of some hypothetical continuous time signal;  the MSE in the
discrete-time case is just the average of samples of the error function  e(t);  and the discrete-time
average of samples will be approximately the same as the continuous-time average, provided that
samples are taken frequently enough.  Since we are free to hypothesize a continuous-time signal that is
smooth, the continuous and discrete-time averages are approximately the same.  Thus, the  ∆2/12
formula holds for discrete-time signals as well.

Alternate derivation:  One can also derive this formula by noticing that for continuous-time
straightline signal  x(t) = a t + b,  the signal value distribution of the error signal  e(t) = x(t) - y(t)  is
approximately constant over the range  -∆/2  to  ∆/2,  as illustrated below:

∆/2-∆/2

e

In other words, errors of all sizes between  -∆/2  and  ∆/2  occur equally often.  One can then use this
to argue that the averge MSE is just the average of  e2  values,  when  e  ranges from  -∆/2  to  ∆/2:

MSE  ≅   
1
∆  ∫

-∆/2

∆/2

 e2 de  =  
1
∆  

e3

3  |∆/2

-∆/2    =  
∆2

12

Then as before one argues that the signal value distribution when quantizing any signal (continuous or
discrete-time) with standard deviation much larger than ∆ is approximately as shown above.
Therefore, the MSE is approximately given by the formula  ∆2/12.


