
Laboratory # 1

An Introduction to Matlab

This first laboratory is primarily based around a piece of sample code, sample_function.m.
This code can be found as an appendix to this lab, and can also be downloaded from the
course webpage at http:\www.eecs.umich.edu\courses\eecs206. In this lab, you will
explore sample_function.m and start to become comfortable with some very important
Matlab tasks. All line numbers in this laboratory refer to lines in sample_function.m.

Before you begin this laboratory, you should read the Matlab tutorial that can be found
on the course webpage then Appendix B of the text. The first is a basic introduction to
Matlab, while the second introduces some advanced topics in Matlab programming. Also,
you are responsible for understanding the code that is contained in sample_function.m.
Make sure that you execute the function and follow along with what it does. If necessary,
step through the code line-by-line using the debugger. Use Matlab’s help when you
encounter a command you are not familiar with. When you are finished, you should be able
to explain the behavior of every line in this function.

The first tasks in this lab will exercise your debugging skills in Matlab. You should
use the command pause off before beginning to debug to prevent the file from stopping
at the pause commands while you are debugging it. pause on will re-enable pausing.

1. [8] Immediately after the execution of line #195,

(a) What are the dimensions of envelope (i.e., how many rows and columns does it
have)?

(b) What are the dimensions of y?

(c) What are the dimensions of y_fade?

(d) What number is stored in the 50th element of y_fade?

2. [2] What is stored in b after line #309?

3. [2] What is stored in b after line #310?

4. [6] In the vicinity of lines #233 through 239 (the first clip routine),

(a) What is the value of counter when the positive threshold is first exceeded?

(b) What is the value of counter when the negative threshold is first exceeded?

Next, you’ll provide some explanations of portions of sample_function.m. If you’re not
sure what a particular section of code does, remember to check the help of commands you
aren’t familiar with and examine intermediate variables until you have determined what it
does.

5. [8] Look at lines #37 and #43. Each of these lines has two separate conditions.

1

(a) Explain in detail what these lines of code are doing. When will the code inside
the if statements be executed?

(b) What would happen if isempty came before ~exist? (Hint: try it) Why do you
think this might happen?

6. [8] Explain the operation of lines #252 and #253.

7. [8] Explain what happens if you take line #326 and modify it so that you call all on
a matrix only once. You might want to try this command on a larger matrix. (Note:
most Matlab operators that operate on matrices work in the same way. This includes
commands like min and max, mean and sum, and a host of others.)

8. [8] Suppose that c is a 5x7 matrix. What single command will return just the four
corners of the matrix? (Hint: there are several ways to do this. Look at lines #82
through 86).

Now, consider the following code:

1 x = [];
2 for i = 1:40
3 x = [x; i/40];
4 end

9. [8] What happens to x as the for loop executes?

10. [8] Give a single command that produces the same x as these four lines of code.

Finally, you’ll write some simple Matlab code to work with some signals.

11. [14] Create two sinusoidal signals. The first should have an amplitude (i.e., a maximum
excursion from zero) of 2 and a phase of -π

3 . The second should have an amplitude of
3 and a phase of 5π

6 . Let your time axis be 0:0.001:0.1.

(a) Set the frequencies of the two signals so that they each contain three periods.
(The two signals should have the same frequency). What frequency did you use?

(b) Create a third signal by summing your two sinusoids.
(c) Using subplot, plot all three signals on the same figure.
(d) What are the amplitude, frequency, and phase of the sum signal?

12. [12] Load handel.mat, as is done in the sample code. Recall that the signal itself is
stored in the variable y. Suppose that we want to get an estimate of the large-scape
amplitude of this signal. We can do this simply by considering the signal to be made
up of blocks of n samples. For each block of samples, simply find the minimum and
maximum values in that block and store the results in two separate arrays.

(a) Do this for the signal y that you loaded from handel.mat. Use a block size of
100 samples. Call your arrays min_v and max_v.

(b) Plot the signal y.
(c) On the same plot (use hold on), plot your two arrays. Since your arrays are

only 1/100th of the size of y, use (1:length(max_v))*100 as your time axis.
The result should roughly outline the signal y. Make sure that you zoom in on a
portion of the signal so that we can see both the positive and negative envelopes.

13. [8] Use subplot to create a figure with two subplots. In the first, plot the function
y =

√
x. In the second, plot y = lnx. (Matlab uses log for the natural logarithm).

Recall that these functions are only properly defined for positive values of x.

2

Appendix: sample function.m

1 function [result] = sample_function(num_in, string_in)
2

3 %function [result] = sample_function(num_in, string_in)
4 %
5 % SAMPLE_FUNCTION: A MATLAB function that illustrates the use of various
6 % MATLAB commands
7 %
8 % Input Parameters:
9 % num_in: optional numeric parameter (default: 42)

10 % string_in: optional string parameter (default: 'Slime mold')
11 %
12 % Output Parameters:
13 % result: output based on the two inputs
14

15 % Notice the comment block above. When you type 'help funtion_name',
16 % the first comment block in the file will be printed. There are
17 % various styles for header comments, but they should always contain a
18 % description of what the code does and descriptions of the input and
19 % output parameters.
20

21 % We'll close all of the figures, but this can be annoying if you want your
22 % figures to stick around. In general, I wouldn't recommend doing this in
23 % your functions.
24 close all
25

26 % If you want to hear the sound demonstrations in this function, make sure you
27 % have headphones and set 'play_sounds' to 1. On a UNIX system in the CAEN labs, you
28 % need to run /usr/demo/SOUND/gaintool and select headphone output; otherwise, you'll
29 % disturb the other users in the lab.
30 play_sounds = 0;
31

32 % This following piece of code performs input parameter checking. If either
33 % of the parameters is missing or empty ('[]'), these IF statements will
34 % set default values. This is especially useful if you have a long parameter
35 % list, but you only want to set the value of one of them.
36

37 if ~exist('num_in','var') | isempty(num_in)
38 % The '~' and '|' are logical connectors, meaning NOT and OR, respectively.
39 % AND is '&'.
40 num_in = 42;
41 end
42

43 if ~exist('string_in','var') | isempty(string_in)
44 string_in = 'Slime mold';
45 end
46

47 % It is also a good idea to check the size of your input parameters so that
48 % you aren't given a vector or matrix when you expect a scalar.
49

50 if any(size(num_in) > 1)
51 error('num_in must be a scalar!');
52 end

3

53

54 if ~ischar(string_in)
55 error('string_in must be a character array!');
56 end
57

58

59 % First, some basic MATLAB skills. You should be able to explain in detail
60 % what each of these commands is doing.
61

62 row_vector1 = [1 3 5 7 9 11 13 15] % Horizontal concatenation
63 row_vector2 = 1:2:15 % Colon operator makes row vectors
64 row_vector3 = linspace(1,15,8) % --> linspace(start,end,# elements)
65 disp('Hit a key to continue.');
66 pause
67

68 col_vector1 = [6 4 2 0 -2 -4]' % ' performs transposition
69 col_vector2 = [6; 4; 2; 0; -2; -4] % Vertical concatenation
70 col_vector3 = (6:-2:-4)' % Transposing the colon operator
71 disp('Hit a key to continue.');
72 pause
73

74 M = ones(2,3) % Two rows, three columns (i.e., 2x3)
75 N = zeros(3,4) % Three rows, four columns (i.e., 3x4)
76 A = eye(3) % 3x3 square matrix
77 B = [1 2 3; 4 5 6; 7 8 9; 10 11 12] % 3x4 matrix
78 disp('Hit a key to continue.');
79 pause
80

81 % Indexing:
82 B(2,3) % Item at second row, third column
83 B([2 3],[3 1]) % Second and third rows, third and first columns
84 B(3,:) % Third row, all columns
85 B(3) % 3rd element in the order (1,1), (2,1), (3,1), (1,2), ...
86 B(6:end) % All elements from #6 to the end
87 disp('Hit a key to continue');
88 pause
89

90 B(4,2) = 100 % Assigning to a single element
91 B(6) = -num_in
92 B(2:end,3) = [21; 24; 27] % Left and right hand sides must be the same size!
93 B([1 3],:) = zeros(2,3)
94 disp('Hit a key to continue');
95 pause
96

97 %%
98

99 % To use an output parameter, we just assign a value to it. Our output
100 % will be a string containing the two input parameters. Notice that
101 % a string is simply an array of characters. We can concatenate two strings
102 % the same way we concatenate arrays. 'num2str' converts a number into its
103 % string representation.
104

105 result = ['"' string_in '" was your string. ' num2str(num_in) ' was your number.'];
106 disp(result);

4

107

108 %%
109

110 % Suppose we want to make a sinusoid with amplitude equal to 'num_in'.
111 % In order to represent a signal (like a sinusoid) on a computer, we need
112 % to "sample" it. That is, we store a number of equally-spaced values of
113 % the signal every second. Thus, we first need to define a time axis:
114

115 fs = 8192;
116 t = 0:1/fs:2;
117

118 % This gives us two seconds worth of a time axis at a sampling rate of 8192
119 % samples per second. Then:
120

121 frq = 300; % In hertz
122 phase = pi/4; % In radians
123 cos_wave = cos(2*pi*t*frq + phase);
124

125 % And now, we plot. Make sure you zoom in to see the sinusoid.
126

127 figure(1); % Creates or activates figure #1
128 plot(t,cos_wave);
129 title('A simple cosine');
130 xlabel('Time (s)');
131 ylabel('Amplitude');
132 zoom on
133 disp('Hit a key to continue.');
134 pause
135

136 % We can listen to the sound as well:
137 if play_sounds
138 soundsc(cos_wave,fs);
139 end
140

141 % Suppose we only want to plot the first one hundred samples so that we can clearly
142 % see the sinusoid and its phase. We can do this:
143

144 plot(t(1:100),cos_wave(1:100),'k:o');
145 title('Fewer samples of a simple cosine');
146 disp('Hit a key to continue.');
147 pause
148

149 % The third parameter to 'plot' is a line-style specifier. It is optional, but
150 % it can be very useful. There are other styles of plots that we can use, too:
151

152 subplot(3,1,1); % In a matrix of figures (3 rows, 1 column), select the 1st one
153 stem(t(1:100),cos_wave(1:100));
154 axis tight
155 subplot(3,1,2);
156 bar(t(1:100),cos_wave(1:100));
157 axis tight
158 subplot(3,1,3);
159 stairs(t(1:100),cos_wave(1:100));
160 axis tight

5

161 disp('Hit a key to continue.');
162 pause
163 subplot(1,1,1);
164

165 %%
166

167 % Now, let's load a built-in signal from MATLAB. The variables stored in
168 % this file are 'y' (the signal) and 'Fs' (the sampling frequency). Note that
169 % variable names are case sensitive!
170 load handel;
171

172 % Now, we plot and play. The first parameter of 'plot' shows another way to
173 % build up a time axis. Zoom in on this one, too.
174

175 plot(linspace(0,length(y)/Fs,length(y)),y);
176 title('Handel''s Halleluia Chorus');
177 xlabel('Amplitude');
178 ylabel('Time (s)');
179 zoom on;
180 if play_sounds
181 soundsc(y,Fs);
182 end
183 disp('Hit a key to continue.');
184 pause
185

186 % Suppose we want this sound to fade in and fade out rather than starting
187 % and ending suddenly. We can accomplish this by multiplying the signal by an
188 % envelope. Notice that we need to use the .* operator to accomplish this.
189 % We build our envelope by horizontally concatenating three row vectors.
190 % Notice that our envelope has to be the same size as the signal. Since 'y' is
191 % a column vector and 'envelope' is a row vector (as are anything generated by the
192 % colon operator or 'linspace'), we need to transpose 'envelope'.
193

194 envelope = [linspace(0,1,Fs) ones(1,length(y)-2*Fs) linspace(1,0,Fs)];
195 y_fade = y.*envelope';
196

197 % Now we plot. Notice what happens when we plot with only one parameter.
198

199 subplot(3,1,1); % In a matrix of figures (3 rows, 1 column), select the 1st one
200 plot(y);
201 axis tight;
202 title('Faded Sound Sample');
203 subplot(3,1,2); % Now select the second of the matrix of figures
204 plot(envelope);
205 axis([0 length(y) 0 1.2]); % So we can see the envelope clearly
206 subplot(3,1,3); % Third subplot...
207 plot(y_fade);
208 axis tight;
209 if play_sounds
210 soundsc(y_fade,Fs);
211 end
212 disp('Hit a key to continue');
213 pause
214

6

215 %%
216

217 % Let's clean up our workspace. 'clear' removes variables, 'close' closes figures.
218

219 close(1); % Close figure 1. We could close all figures with 'close all'
220 clear frq phase A B N M row_vector1 row_vector2 row_vector3;
221 clear col_vector1 col_vector2 col_vector3;
222 who % These are the variables we have left in our workspace.
223 disp('Hit a key to continue');
224 pause
225

226 % In Appendix B, the text describes a "clip" command. Let's implement this
227 % in a number of different ways. The most straightforward (but slowest) is
228 % to use a FOR loop. This is how you'd do it in most programming languages.
229

230 cos_wave = cos_wave(1:300);
231 thresh = 0.78;
232 clip1 = cos_wave;
233 for counter = 1:length(clip1)
234 if clip1(counter) > thresh
235 clip1(counter) = .78;
236 elseif clip1(counter) < -thresh
237 clip1(counter) = -.78;
238 end
239 end
240

241 % There are a number of better ways to do this in MATLAB, because relational
242 % operators (<, >, ==) work on vectors. The text gives the following
243 % (somewhat confusing) example:
244

245 clip2 = thresh*(cos_wave > thresh) - thresh*(cos_wave < -thresh) + ...
246 cos_wave.*(abs(cos_wave) <= thresh);
247

248 % The text also shows one way to use the 'find' command. Here's another way to
249 % use the find command:
250

251 clip3 = cos_wave;
252 too_big = find(abs(clip3) > thresh);
253 clip3(too_big) = thresh.*sign(clip3(too_big));
254

255 % Finally, the easiest way to implement this is to use MATLAB's built-in functions
256 % 'min' and 'max'
257

258 clip4 = min(max(cos_wave,-thresh),thresh);
259

260 subplot(2,2,1);
261 plot(clip1); title('Clip1');
262 subplot(2,2,2);
263 plot(clip2); title('Clip2');
264 subplot(2,2,3);
265 plot(clip3); title('Clip3');
266 subplot(2,2,4);
267 plot(clip4); title('Clip4');
268 disp('Hit a key to continue');

7

269 pause;
270

271 % As is usually the case, there are a LOT of different ways to perform this task.
272

273 %%
274

275 % 'max' and 'min' also let you locate the maximum or minimum value in a vector.
276

277 [max_value,max_index] = max(y);
278 subplot(1,1,1);
279 plot(y);
280 hold on;
281 plot(max_index, max_value,'rx'); % Why does this work?
282 hold off;
283 title('Maximum value of handel waveform.');
284 disp('Hit a key to continue');
285 pause;
286

287 % But there are actually multiple maximum values...
288

289 hold on;
290 plot(find(y == max_value),max_value,'ro');
291 hold off;
292 title('Maximum values of handel waveform.');
293 disp('Hit a key to continue');
294 pause;
295

296 %%
297

298 % Here are some other useful things we may need to do:
299

300 sum(cos_wave > thresh) % Count the number of elements greater than 'thresh'
301 sum(cos_wave(find(cos_wave > thresh))) % Sum of elements greater than 'thresh'
302 prod([1 2 3 4 5 6]) % Product of elements in vector. This equals 1*2*3*4*5*6.
303 mean(cos_wave) % Mean value of a vector
304 median(cos_wave) % Median value of a vector
305 std(cos_wave) % Standard deviation of a vector
306 disp('Hit a key to continue');
307 pause;
308

309 b = reshape(1:8,[2 4]) % Change the size of a matrix
310 repmat(b,[3,2]) % Replicate a matrix
311 fliplr(b) % "Mirror" a matrix left-to-right
312 flipud(b) % "Mirror" a matrix top-to-bottom
313 disp('Hit a key to continue');
314 pause;
315

316 size(b) % Returns a vector: [# rows, # columns]
317 size(b,1) % Number of rows
318 size(b,2) % Number of columns
319 length(b) % Maximum of (# rows, # columns). Good for vectors.
320 prod(size(b)) % Total number of elements in b
321 disp('Hit a key to continue');
322 pause;

8

323

324 all([1 1 0 1]) % Are all elements in a vector nonzero?
325 any([1 1 0 1]) % Are any elements in a vector nonzero?
326 all(all([1 1; 0 1])) % Are all elements in a matrix nonzero?
327 any(any([1 1; 0 1])) % Are any elements in a matrix nonzero?
328 disp('Hit a key to continue');
329 pause;
330

331 % Sorting: Let x and y be sets of ordered pairs (i.e., for a scatter plot).
332 x = [1 4 6 7 2 3];
333 y = [6 2 1 2 5 7];
334 disp([x; y]);
335 shg % Bring current graph to the foreground
336 plot(x,y,'mx');
337 axis([0 8 0 8]);
338 [x_srt,ind] = sort(x); % We can sort x, but we need to reorder y as well...
339 y_srt = y(ind); % That is what 'ind' is for
340 disp([x_srt; y_srt]);
341 hold on;
342 plot(x_srt,y_srt,'go'); % We've preserved the x-y pairs
343 hold off;
344

345 xy = [x' y']; % Alternately...
346 xy_srt = sortrows(xy,1) % We can use the 'sortrows' command
347 disp('Hit a key to continue');
348 pause;
349

350 %%
351

352 % We can represent and graph mathematical functions easily in MATLAB
353

354 x = -2:.01:2;
355 x2 = x.^2;
356 x3 = x.^3;
357 exp_x = exp(-x);
358

359 plot(x,[x' x2' x3' exp_x']); % Plot will also plot columns of a matrix
360 % If we want to specify different line styles, we can plot like this:
361 % plot(x,x,'k-',x,x2,'g:',x,x3,'r--',x,exp_x,'c-.');
362 grid on
363 title('Mathematical graphing');
364 xlabel('x');
365 ylabel('y');
366 legend('y = x','y = x^2','y = x^3','y = e^{-x}',0);
367 disp('Hit a key to continue');
368 pause;

9

