September 26,

2001 Final 3 1

Laboratory # 3

Basic Spectral Analysis: The
Fourier Series

One of the most powerful tools for analyzing signals and systems is the spectrum. In this
lab, we’ll be investigating spectral ideas via the Fourier Series. The basic idea of the
Fourier Series is that we can represent any periodic signal simply by summing sinusoids
with harmonically related frequencies and the right amplitudes and phases. NOTE: In this
lab, if a sampling frequency is left unspecified, use the default value of 8192 Hz.

1. [24] The first thing you’ll need to do is write a utility function that sums sinusoids.
We'll call this function sumcos.m. You should download the template file, sumcos.m,
from the course webpage.

(a) The function, sumcos, takes four input parameters:

ampl: a vector of complex amplitudes, where the length of the vector is the
number of sinusoids to create and sum, and where for each complex number
in the vector, the magnitude provides the amplitude of the cosine and the
phase provides the cosine’s phase. You’ll need to break these amplitudes into
their magnitudes and phases in your code.

frgs: a vector giving the frequencies in Hz of the sinusoids to be summed.
This vector must have the same length as ampl.

t_max: the length of the time axis in seconds. This parameter is optional
and should default to 1 second.

fs: the sampling frequency in Hz. This parameter is optional and should
default to 8192 Hz.

(b) The function returns two output parameters:

out: the signal produced by summing the sinusoids.

t: the time axis used to produce the sinusoids. So that a signal with t_max
= 1 and fs = 8192 Hz will only have 8192 samples, you should use the
command t=0:1/fs: (t_max-1/fs) to produce the time axis.

(¢) This function is set up to simplify the process of creating and summing sinusoids.
Here are some examples of how it works. Execute these examples and include
the plots of the first two (using subplot) to verify the operation of your code.

sumcos (1,1) produces one period of a cosine wave.
sumcos (-8/pi~2./(1:2:50).72,1:2:50,3) produces three periods of a tri-
angle wave (see page 64 in the text).

sumcos (1,300,2,8192) produces two seconds of a cosine at an audible fre-
quency (300 Hz). You can soundsc this signal to hear the sinusoid.

September 26, 2001 Final 3 2

(d) To make sure your function is correct, execute the command sumcos(1:4,1:4,1,8).
Your function should return the following vector:

[10 -5.4142 2 -2.5858 2 -2.5858 2 -5.4142]

Now execute the command sumcos([3 6 9 10],1:4,1,8). What vector does
your function produce?

2. [10] Test your version of sumcos by generating an approximate square wave using the
coefficients listed on page 64 of the text. (Note: there is an error in equation 3.4.5.
Following the conventions in the text , X is only defined for positive k.) Only include
the first 50 harmonics, and use a 1 Hz fundamental frequency with a time scale ranging
over 2 seconds.

(a) Use stem and subplot to plot the magnitude and phase of the coefficients you
used to generate this signal in a single figure.

(b) In another figure, plot your square wave.

3. [24] Download the function fourier_analysis.m and the file lab_3.mat from the
course webpage. (You can type help fourier_analysis to get the function’s syntax).
Load 1ab3.mat and consider the three signals, signall, signal2, and signal3 (the
other signals will be used in a later problem). For each of these three signals,

(a) Use fourier_analysis.m to perform a Fourier series analysis out to the 30th
harmonic.

(b) Using subplot, plot the magnitude and phase of the resulting Fourier coefficients
in a single figure.

(¢) Use these coeflicients with sumcos to resynthesize the signal over one period, and
plot both the original and the resynthesized signal on the same plot using hold.

What is different about the original signals and your resynthesis? Why might this
happen?

4. [12] Examine Figure 3.1. Match the Fourier coefficient magnitudes (on the left) with
the associated signals (on the right).

5. [10] Suppose that we want to add a time-delay to a signal that is composed of sinusoids.
To do this, we need to shift each sinusoid by the same amount in time. This amounts
to a frequency-dependent phase shift. We can rewrite the general form for a sinusoid,
cos(2m ft+¢), as cos(2mw f(t+ 7)), where 7 is the desired time shift. This indicates that
we need to add a phase shift which is linearly proportional to frequency to achieve a
constant time shift. That is, the phase for a harmonic at frequency f must be

¢r =2n7f

Using this formula and sumcos, synthesize a triangular wave with a time delay equal
to one fourth of the signal’s period. Plot both the original triangular wave and time
delayed signal.

6. [20] When several people talk at the same time, most listeners have the remarkable
ability to tune in to one speaker, while ignoring the others. This is sometimes called
the cocktail party effect. In this part of the lab you will create a system that does
something similar. Specifically, it will accept as input a signal that is the sum of two
vowel sounds, and it will output just one of the vowel sounds.

A vowel sound is an approximately periodic signal whose fundamental frequency is
the vibration rate of the vocal chords. In this lab the system input will be the sum
of synthetic vowels that are perfectly periodic. One of the vowel sounds will have

September 26, 2001 Final 3 3

1
1 05f A
505 0
T T _0-5
G NN P00y
20 -10 0 10 20 o 02 04 06 08 1
1
2 ost B
505 0

0 yan\ L L L L
-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1

Figure 3.1: Fourier coefficient magnitudes (left) and signals (right) to be matched for prob-
lem 4.

September 26, 2001 Final 3 4

fundamental frequency 200 Hz and the other 300 Hz. The goal of the system is to
output the vowel sound with fundamental frequency 200 Hz. The system you create
will extract or resynthesize the 200 Hz vowel from the sum.

Your system will perform Fourier series analysis on an input signal. This relies on the
fact that the spectrum of the 200 Hz vowel contains frequencies that are multiples of
200 Hz, while the spectrum of the 300 Hz vowel contains frequencies that are multiples
of 300 Hz. Your system’s output will be the periodic signal reconstructed from only
the Fourier coeflicients corresponding to frequencies that are multiples of 200 Hz. That
is, it only keeps coefficients corresponding to 200 Hz, 400 Hz, 600 Hz, 800 Hz, ...
Notice that the components at 600 Hz, 1200 Hz, ... are affected by both vowels. Thus,
the output of the system will not be a perfect rendition of the 200 Hz vowel — rather,
it will be affected somewhat by the presence of the 300 Hz vowel.

The MATLAB workspace file 1ab_3.mat contains ten vowel signals — five vowels at both
200 Hz and 300 Hz. The vowels are “ah,” “ae,” “ee,” “oh,” and “00” (corresponding
to the vowels in the words “bat,” “bait,” “beet,” “boat,” and “boot,” respectively).
Each of these signals is a two-second waveform with a sampling frequency, fs, of 20000
Hz. We will be working with the signals oh_200 and ee_300.

(a) Calculate a signal called vowel_sum by adding oh_200 and ee_300. Listen to
oh_200, ee_300 and vowel_sum using the soundsc command. (To listen to the
signal oh_200, for instance, use the command soundsc(oh_200,20000)). De-
scribe what you hear. Can you hear the cocktail party effect? (Note: this will
not work properly on a UNIX system; you should make sure you are using a
Windows system or a Mac. On most CAEN systems, you will need to plug head-
phones into the back of the computer to hear the sound output. If you get an
error, the computer you are working at is not properly set up for audio.)

(b) What is the fundamental period of

i. the 200 Hz signal?
ii. the 300 Hz signal?
iii. vowel_sum?
(¢) Write a MATLAB function called extract200 with one input parameter, input,
and one output parameter, output. input is a vector presumed to contain the
sum of two synthetic vowels — one with fundamental frequency 200 Hz and one

with fundamental frequency 300 Hz. output is a reconstruction of the 200 Hz
signal. In this function, you should do the following;:

i. Compute the Fourier coefficients of input using fourier_analysis.m. (Re-
call that fourier_analysis requires you to pass it one period of a signal.)

ii. Use sumcos to resynthesize an approximation to the 200 Hz vowel and store
it in the vector output. (Hint: You’ll need to use an appropriate subset of
the Fourier coefficients you computed from input.)

iii. In one figure, plot roughly one period of both the input signal (input) and
your reconstructed signal (output) in separate subplots.

iv. In another figure, use stem to plot the magnitude of the Fourier coefficients
for both input and output in separate subplots.

v. In a third figure, use stem to plot the magnitude of the Fourier coefficients in
decibels for both input and output, with the two plots in separate subplots.

(d) Execute your function and include the plots that it generates.

(e) Use soundsc to listen to the resynthesized 200 Hz vowel that it outputs. Does it
sound like the original?

(f) What features do you notice in your decibel plots that are not evident in the
linear amplitude plots?

