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Lab #3 Notes

The focus of Laboratory #3 is the concept of spectrum. Supposing we consider a signal that
is made up of a sum of sinusoids (and we’ll see that any signal can be thought of as a sum
of sinusoids!), the spectrum of the signal refers to the frequencies, amplitudes, and phases
of the sinusoids that make it up. If we know those parameters, we can synthesize the signal
by simply adding up the appropriate sinusoids. We’ll also see that there is another possible
step. Given the signal, we can analyze the signal to determine the amplitudes, frequencies,
and phases of its constituent sinusoids. These two processes are complementary, and they
form an analysis-synthesis loop. Thus if we analyze a signal and synthesize the result, we
should get something identical to the original signal. Similarly, if we have parameters for
our sinusoids, we can synthesize a signal and then analyze the result to obtain the original
parameters.
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Synthesis is the easy part. In order to perform signal synthesis, we simply have to add up
sinusoids with the appropriate sinusoids. The mathematical formula for this is

x(t) = A0 +
N∑

k=1

Ak cos(2πfkt + φk) (1)

Notice the inclusion of the constant DC term, A0. In this lab, you’ll be writing a function
to perform synthesis based on this equation.

A useful special case of this synthesis equation occurs when the frequencies fk are har-
monically related. This means that every frequency is an integer multiple of some fundamen-
tal frequency, f0. Sometimes we will call sinusoids that are harmonically related harmonics
of harmonic partials. With harmonically related sinusoids, the resulting synthesis signal will
be periodic. We can write the equation for this special case (known as Fourier synthesis)
as

x(t) = A0 +
N∑

k=1

Ak cos(2πkf0t + φk) (2)

Analysis

If a signal x(t) is periodic with period T , we know that it can be written as a sum of
harmonically related sinusoids with a fundamental frequency f0 = 1

T . Through a process
called Fourier analysis we can extract the complex amplitudes of these constituent sinusoids.
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These complex amplitudes, Xk are often referred to as Fourier coefficients. The formula for
Fourier analysis is

Xk =
2
T

∫ T

0

x(t)e−j2πkt/T0dt (3)

The DC value of the signal (A0 above) is calculated as

X0 = A0 =
1
T

∫ T

0

x(t)dt (4)

The amplitudes and phases of our original sum-of-cosines representation in equation 2 can
be calculated from the Fourier coefficients as

Ak = |Xk| (5)
φk = arg Xk (6)

You won’t need to worry about writing Matlab code to perform Fourier analysis in this
course; instead, a function is provided that will perform Fourier analysis for you.

Notice the form of the Fourier analysis equation. In Lab #2, we explored the concept of
correlation, which compares two signals and returns a number that indicates their similarity.
This is exactly the what the Fourier analysis equation does for us: it correlates our signal
with a complex exponential. The resulting complex number tells us how “similar” a signal is
to a complex exponential of a given frequency. That is, this number (the Fourier coefficient)
indicates how strongly a particular frequency is present in the signal and what it’s phase
shift is.

Visualizing Fourier Coefficients: Using Decibels

If we examine the magnitudes of the Fourier coefficients of a given signal, we often find
that some coefficients have much greater magnitudes than others. For instance, we may
find that the magnitudes of some coefficients are only 1/100th the magnitudes of the largest
coefficients. If we plot these coefficients, we will be hard pressed to see and compare smaller
coefficients despite the fact that they are usually very important to the signal. So that we
can see and compare these coefficients, we often plot them in decibels (or dB).

To convert a number, xla, from linear amplitude (what we usually use) into decibels, we
use the following formula:

xdB = 20 log10 xla (7)

Note that if we multiply xla by a constant c, this is equivalent to adding 20 log c to xdB. Also,
the decibel transformation is only valid for values of xla that are not negative. Often, decibels
are used with ratios; in this case, a ratio of one is equivalent to 0 dB. This becomes useful
because the reciprocal relationship (often necessary when dealing with ratios) is mapped to
simple negation. For instance, the number 1/2 is (roughly) -3 dB while the number 2 is 3
dB.

Sometimes you will see the following form of the decibel transformation:

xdB = 10 log10 xla (8)

We use this formula when we are dealing with “power” measurements, which are the square
of our usual amplitudes. Thus, if we have the magnitude squared of our Fourier coefficients,
|Xk|2 = XkX∗

k (a fairly common form), we would use the equation xdB = 10 log10 xla.


