
October 7, 2001 EECS 206, Lab 4, Final 2 1

Laboratory # 4

Images, Compression, and
Coding

4.1 Introduction

A common application of signals and systems is in the production, manipulation, storage
and distribution of images. For example, image transmission is an important aspect of
communication (especially on the internet), and we would like to be able to distribute high
quality images quickly over low-bandwidth connections. To do so, images must be encoded
into a sequence or file of bits, which can be digitally transmitted or stored. When display of
the image is required, the sequence/file of bits must be decoded into a reproduction of the
image.

Systems or algorithms that do the encoding and decoding are called source coders, coders,
data compressors, or compressors. They are called source coders because they encode the
data from a source, e.g. a camera. They are also called data compressors, because their
encoders usually produce fewer bits than were produced by the original data collector. For
example, JPEG is a commonly used, standardized image compressor. You’ve probably
downloaded many JPEG encoded images over the internet — any image with filename
extension .jpg. FAX machines use a different image compression algorithm.

In this lab, we will experiment with some basic data compression techniques as applied
to images. Typically, there is a tradeoff between the number of bits an encoder produces
and the quality of the decoded reproduction. With more bits we can usually obtain better
quality at the expense of greater storage or bandwidth requirements. When we assess how
well these techniques work, we will count the number of bits their encoders produce(fewer
is better), and as a measure of quality, and we will compute the root-mean squared (RMS)
error as a measure of the quality of the decoded reproduction (low RMS error means high
quality, or equivalently, low distortion).

The next section provides an introduction to images and data compression. It is followed
in Section 4.3 by a brief listing of things that will be demonstrated in the lab session. Section
4.4 describes the actual assignments for this lab.

October 7, 2001 EECS 206, Lab 4, Final 2 2

4.2 Background

4.2.1 Images

We will restrict attention to black-white images, i.e. images with various gray levels, but no
color. Such images are ordinarily represented as a two-dimensional signal x(t, s), 0 ≤ t ≤ H,
0 ≤ s ≤ W , where x(t, s) denotes the intensity or brightness or value of the image at the
position with vertical coordinate t and horizontal coordinate s, and where H and W are
the height and width of the image, respectively. The values of x(t, s) are nonnegative. A
small value of x(t, s) close to zero corresponds to black while larger values correspond to
progressively lighter shades of gray.

In digital image processing, the image is assumed to be sampled at regularly spaced
intervals creating a discrete-space image x[m,n]:

x[m,n] = x(mS,nS) ,

where S is the sampling interval. For simplicity we consider only square images. Thus for
our purposes an image is simply an array or matrix of numbers x[m,n], where m and n
are integers ranging from 1 to some integer N . Each x[m,n] is called a pixel. We adopt
the usual convention that x[1, 1] is upper left pixel, x[1, N] is the upper right, x[N, 1] is the
lower left, and x[N,N] is the lower right.

We shall also adopt the common, but not universal, convention of digital image processing
that pixel values, often called levels are integers ranging from 0 to 255. The reason the pixel
values are integers is that computers cannot store real-valued quantities. Instead the raw
pixel values must be quantized to values from a finite set. The usual practice is to scale the
raw image pixel values by some constant so the maximum value is close to 255 and then to
round each pixel value to the nearest integer, thereby obtaining an image whose values are
integers between 0 and 255. Why 0 to 255? There are two reasons. One is that these values
can be conveniently represented with one byte, i.e. 8 bits.1 Another reason is that it has
the effects of rounding to 256 possible levels is not ordinarily observable, whereas rounding
to a significantly smaller number, say 128, is sometimes noticeable.

We next describe some important numerical characteristics of an image. The mean or
average value of an N × N image is

MV =
1

N2

N∑
m=1

N∑
n=1

x[m,n] .

The variance (VAR) and standard deviation (STD) of the image are defined, respectively,
as

VAR =
1

N2

N∑
m=1

n∑
n=1

(x[m,n] − MV)2

STD =
√

MSV .

Notice that STD is like an RMS value, except that the mean value has been subtracted from
the data. VAR and STD are measures of how widely varying are the values of the image.
If they are small, it means that the signal values (and signal value distribution) is tightly
clustered around the mean value, while if they are large, the signal values range widely.

1To store an integer in a computer, it must be represented with a binary sequence. If binary sequences
of length b are used, then 2b levels can be represented, because there are 2b distinct binary sequences of
length b. Thus, it takes 8 bits to store the 256 levels from 0 to 255.

October 7, 2001 EECS 206, Lab 4, Final 2 3

If y[m,n] is a reproduction or other approximate version of x[m,n], then it is customary
to measure the distortion in y[m,n] with the mean-squared error (MSE) and root mean-
squared error (RMSE), which are defined, respectively, as

MSE =
1

N2

N∑
n=1

n∑
m=1

(x[m,n] − y[m,n])2

RMSE =
√

MSE .

4.2.2 Data compression

There are two primary types of data compressors: lossless and lossy. A lossless compressor
will encode and decode in such a way that the decoded reproduction is exactly the same as
the original (8 bits per pixel) image. A lossy compressor will encode and decode in such a way
that the decoder produces only an approximation to the original image. On the one hand,
lossless is better because it is, well, lossless. This is essential when compressing computer
files. UNIX compress, gzip, and the PKZip compression formats are all lossless. On the other
hand, if a small amount of distortion is permitted, lossy compressors can attain much larger
amounts of compression, i.e. their encoders can produce many fewer bits. For multimedia,
lossy compression is usually acceptable. Examples of lossy compression schemes that you
may have used include MP3 (for audio), JPEG (for photos), and MPEG (for movies). In
this lab you will experiment only with lossy coders.

We also mention that some data compressors are fixed-length meaning that the number of
bits per pixel they produce is a constant that is known in advance e.g. 2 bits/pixel, whereas
others are variable-length meaning that the number of bits per pixel they produce is not
known in advance. For simplicity, in this lab you will experiment only with fixed-length data
compressors. On the other hand, JPEG and all lossless compressors are variable-length.

Lossy compressors typically consist of three parts: a preprocessor such as a transform,
one more quantizers, and a binary coder. These are described in the following subsection.

4.2.3 Quantization

Quantization is the most elementary form of lossy data compression. When a number x is
quantized to M levels, we mean that its value is replaced by (or quantized to) the nearest
member of a set of M quantization levels. Here, we consider uniform scalar quantization2.
For the uniform scalar quantization used here:

• We define a quantizer range defined by values xmin and xmax

• We divide this range into M equally sized segments, each with size ∆ = xmax−xmin

M .

• We place the quantization level for a given segment in the middle of that segment.

The quantizer is illustrated with the figure shown below, which shows M = 8 segments of
width ∆ = (xmax −xmin)/8 as thick lines and the corresponding levels within each segment
as circles.

If it should happen that x is larger than xmax, then x is quantized to the largest level,
namely, xmax − ∆/2. Similarly, when x is smaller than xmin, then x is quantized to the
smallest level, namely, xmin + ∆/2.

2There are sometimes advantages to using quantizers with unequal level spacings, but we will not deal
with such quantizers in this lab.

October 7, 2001 EECS 206, Lab 4, Final 2 4

min ∆

level 1 level 2 level 3 level 4 level 5 level 6 level 7

max

level 8

One can see that if x is within the quantizer range, then its quantized value will differ
from x by at most ∆/2, so that the quantizer introduces only a small error. On the other
hand, when x is outside the range, the quantizer can introduce a large error. Thus when
designing a quantizer it is important to choose the quantizer range so that it includes most
values of x. Making the range large will do this. However, we don’t want to make it too
large, because the larger range, then the larger is ∆, which in turn controls the sizes of the
errors introduced when x lies within the range of the quantizer.

When a quantizer is applied to some data such as an image x[m,n] and produces a
reproduction y[m,n], as indicated earlier we compute the RMS error (RMSE) between
x[m,n] and y[m,n] as a measure of the distortion introduced by the quantizer. Alternatively,
it will sometimes be more convenient to measure the mean-squared error (MSE).

Elementary theory predicts that when the quantizer range includes most values of the
image x[m,n] and when ∆ is much smaller than the RMS value of the image, then the MSE
induced by quantizing with level spacing ∆ can be approximated as follows.

MSE ≈ 1
12

∆2

=
1
12

(
xmax − xmin

M

)2

(4.3)

This shows that if we were to shrink ∆ by a factor of 2, as would happen if M were doubled
and the range were held constant, then the MSE would decrease by a factor of four.

When a quantizer is applied to data whose signal value distribution is fairly constant over
a given range, then it is usually good practice to choose the quantizer range to match the
data range. This is the case when directly quantizing images. That is, we choose xmin = 0
and xmax = 255.

On the other hand, when quantizing data whose signal value distribution is quite uneven,
then it may be best to choose the quantizer range to be a subset of the data range. For
example, in the transform coding described later, it often happens most of the data to be
quantized is near zero but there are a few very, very large values. In such cases, experience
has shown that to design a quantizer with small MSE, one should normally choose the width
of the range to be proportional to the standard deviation (STD) of the data being quantized,
i.e. (xmax − xmin) = c× STD = c

√
VAR, where the constant of proportionality c is usually

between 2 and 6. Smaller values of c work well for smaller values of M , and larger values of
c work well for large values of M . Using this relation in (4.3), we find

MSE ≈ 1
12

∆2 =
1
12

(
xmax − xmin

M

)2

≈ 1
12

c2 VAR
M2

. (4.4)

This shows that quantizer MSE is proportional to the variance of the data and inversely
proportional to M2.

4.2.4 Binary coding

The output of an encoder should be a sequence or file of bits. We have so far described
how a quantizer replaces a data value such as x[m,n] by the closest quantization level. The

October 7, 2001 EECS 206, Lab 4, Final 2 5

next step is to represent this quantization level with a binary codeword, which is simply a
sequence of bits. It is the binary codeword that is the actual output of the encoder when
quantizing the data. The decoder will, eventually, receive this binary codeword and output
the corresponding quantization level as the reproduction of the original piece of data.

If the number of levels is a power of two, i.e. M = 2b where b is an integer. Then the
simplest approach is to make each codeword have b bits. It does not matter which b-bit
sequence is assigned to which level, but the usual scheme, as illustrated below, is to assign
the binary sequence representing 0 to be the smallest level, the binary sequence representing
1 to the next largest level, and so on. With this type of binary coding, the encoder is fixed-
rate in the sense described earlier. Often, a better scheme is to use shorter codewords for the
quantization levels that occur more frequently, and longer ones for those that are used less
frequently. Such variable-length codes are used in JPEG and other high efficiency schemes,
but we will not try them in this lab assignment.

In summary, a lossy data compressor that consists of a quantizer and a binary coder has
an encoder and a decoder that operate as follows on an image: the encoder quantizes suc-
cessive pixels (usually taken in raster order) into quantization levels, and the binary coder
outputs the corresponding binary codewords. Successive binary codewords are concatenated
to form the encoded/compressed data stream or file. The decoder receives the compressed
data stream or file, decodes each codeword into a quantization level, and outputs succes-
sive quantization levels as reproductions of the original image pixels. In this lab we will
experiment with the quantizer, but not the binary coder. That is, we will create quantized
images, but not compressed data files. (Matlabdoes not work easily with bits.) We will,
however, count the number of bits that would be in such compressed data files.

In the next subsection, we add an additional element to the encoder and decoder.

000 001 010 011 100 101 110

min ∆

level 1 level 2 level 3 level 4 level 5 level 6 level 7

max

level 8

11

4.2.5 Transform coding3

Efficient lossy data compressors typically apply quantization only after the data has been
preprocessed in some way. One very common preprocessing step is to apply a transform,
and such compressors are called transform coders. For example, JPEG is a transform coder
based on the discrete cosine transform (DCT). Here we’ll apply quantization after first
preprocessing by applying the discrete Fourier transform (DFT) on small groups of image
pixels, usually called blocks. A block diagram of our transform coder is shown below.

DFT
transform

quantizer 1
c[0]

quantizer 1
c[1]

quantizer 1
c[7]

inverse DFT
transform

1 x 8
image block

1 x 8
image block

In this lab, the DFT will be applied to 1×8 blocks of pixels, for example to x[1, 0], ..., x[1, 7].

3Transform coding is used only in Part 4 of the lab assignment. This section, which discusses transform
coding, is not needed for Parts 1, 2 and 3. It can be skimmed or skipped until you are ready to start Part 4.

October 7, 2001 EECS 206, Lab 4, Final 2 6

Recall that for a signal of length 8, the DFT is defined as

X[k] =
1
8

7∑
n=0

x[n]e−j2π k
8 n (4.5)

It produces eight DFT coefficients, X[0], ...,X[7]. In general, these coefficients are complex:
X[k] = u[k] + jv[k]. Recall, however, that X[0] is the DC coefficient, i.e. the average
of the eight pixels. As a result, v[0] = 0 and X[0] = u[0]. For k ≥ 1, coefficient X[k]
indicates the complex amplitude of the component of the block at frequency k/8. Recall
also that the DFT has the property that X[8 − k] = X∗[k], so that u[8 − k] = u[k], and
v[8 − k] = −v[k]. Finally, note that for k = 4, X[4] = X∗[4], i.e. X[4] = u[4] is real-valued.
It follows from these relationships that the DFT actually produces only eight independent
coefficients, which we take to be

c[0] = u[0],
√

2c[1] = u[1],
√

2c[2] = u[2], c[3] =
√

2u[3], c[4] = u[4]

c[5] =
√

2v[1], c[6] =
√

2v[2], c[7] =
√

2v[3].

It is these eight coefficients, c[0], . . . , c[7], that must actually be quantized and binary en-
coded for each block. The

√
2 factors have been included to take into account that one

coefficient is, in effect, standing in for two. It can be shown that with these factors

7∑
n=0

x2(1, n) = 8
7∑

k=0

c2(k) , (4.6)

which is an often useful fact.

To make this transform coder work well, the quantizers must be individually designed for
each of the eight types of (independent) coefficients. Indeed, it turns out that if one quantizes
all eight types of coefficients with the same number of levels, then the transform coder
will not work substantially better than direct scalar quantization (quantization without
preprocessing). In short, for each of the eight types of coefficients, one must carefully
choose the number of quantization levels M and the quantizer range limits xmin and xmax.
We let M [k], xmin[k], and xmax[k] denote the parameters of the quantizer for the c[k]’s.
We will take M [k] to be a power of two, i.e. M [k] = 2b[k], where b[k] is the number of bits
allocated to quantizing c[k].

Clearly, choosing large M [k]’s will permit the transform coder to do better. However,
the total number of bits produced by the encoder is the number of blocks, N2/8 times the
number of bits to encode one block,

∑8
k=0 b[k]. We will frequently be interested in the

number of encoded bits divided by the number of pixels, which is

1
8

8∑
k=0

b[k] . (4.7)

Thus, if the total number of encoded bits per pixel is specified in advance, the real issue is
how to divide these bits among the eight types of coefficients, i.e. how to choose the b[k]’s.

Using (4.6), it can be shown that.

MSE =
7∑

k=0

MSE[k] , (4.8)

where MSE[k] is the MSE of the quantizer for c[k]. In other words, the MSE of the trans-
form coder is approximately the average of the MSE’s of the quantizers for the different
coefficients.

October 7, 2001 EECS 206, Lab 4, Final 2 7

Let us now consider a transform coder where each type of coefficient is quantized with
the same number of bits/pixel, i.e. b[0] = b[1] = . . . = b[7]. We assert without proof that
such a transform coder has roughly the same MSE as that of direct scalar quantization with
the sum number of bits/pixel. We will now argue that changing the b[k]’s so that some are
larger than others will make the transform coder work better than direct scalar quantization.

From (4.4) we have that

MSE[k] ≈ 1
12

c2 VAR[k]
M2

=
1
12

c2 VAR[k]2−2b[k] , (4.9)

where VAR[k] denotes the variance of the c[k] values. One can see from the above that
the coefficients with larger variance will be quantized with larger mean-squared error. In
particular the DC coefficients usually have the largest variance; so they will have the largest
MSE. On the other hand, the c[5]’s and c[7]’s usually have the smallest variance and dis-
tortion. Now suppose we increase b[0] by one and decrease b[7] by one. From (4.7) we see
that this will have no net effect on the number of bits produced by the coder. However,
from (4.9) we see that this decreases the (large) MSE of the DC coefficients by a factor of
4, and increases the (small) MSE of the c[7] coefficients by a factor of 4. Is it beneficial to
decrease one MSE by 4 when another one increases by 4 beneficial? We can see from (4.8)
that indeed it is beneficial, because decreasing a larger MSE by the factor 4 decreases the
average in (4.8) more than increasing a small MSE by the factor of 4 increases the average.4

Thus, what we want to do is shift bits towards the coefficients with larger variances. This
will make MSE smaller than if all coefficients were quantized with the same number of bits
and, therefore, smaller than the distortion of direct scalar quantization. More generally, in
a well designed transform code, all of the MSE[k]’s will be approximately the same. (If they
were quite different one could take a bit from a coefficient with small MSE to one with large
MSE and make a net decrease in overall MSE.) In this light, one can see that the role of the
transform is to make the variances of the coefficients as different as possible. Some should
be large, and others should be small.

4.3 Demonstrations in the lab session

1. Displaying images and measuring their signal properties.

2. Noise images.

3. Lossless image compression using a Lempel-Ziv (LZ) compressor.

4. Lossy image compression using JPEG.

5. Lossy compression by downsampling.

6. Lossy compression by quantization.

7. Lossy transform coding based on the DFT and quantization.

Note that the specific lab assignments given below relate to Items 1, 2, 6 and 7.
4For example, 24 + 8 is larger than 24/4 + 8× 4.

October 7, 2001 EECS 206, Lab 4, Final 2 8

4.4 Laboratory assignment

1. Image display and properties.

Each problem in this lab deals with the same image, “cameraman.” This image is
built into Matlab.

(a) Load and display the image “cameraman”. (If your computer does not have the
Image Processing Toolbox, you’ll need to download the file “cameraman.tif” from
the web page). To load the image, use the command

img = double(imread('cameraman.tif')) ;
To display an image, for instance one called your_image, use the following se-
quence of commands:

imagesc(your_img); colormap(gray); colorbar; axis image

Every image that you display in this lab must have a colorbar. This means that
every individual subplot must have a colorbar as well. Points will be deducted
for each image that lacks a colorbar.

• [6]5 Include the plot of the image in your report.6

• [2] Calculate the size of the image (the number of rows and columns) and
the total number of pixels and include these values in your report.

(b) Familiarize yourself with values of the image by plotting the signal value distri-
bution of the image using the command:

hist(img(:),256)

• [5] Include this plot in your report.
• [3] From this histogram, what signal values occur the most often in this

image?

(c) Download the M-file display_rect.m, and use it to display the pixel values in
several rectangular segments of the image. Find, approximately, the smallest
rectangle of pixels that includes the black tip of the camera lens.

• [2] From this display, what are the row and column indices of this rectangle?
• [2] From this display, what are minimum and maximum values within this

rectangle?
• [3] Include in your report a plot from display_rect.m showing the pixel

values of the rectangle you found.
• [1] By hand, circle the region that you selected on the image displayed in

Problem 1a.

(d) Assuming 8 bits are used to represent the value of each pixel:

• [2] How many bits are required to describe the entire image?

(e) Matlab ordinarily uses 64-bit double-precision to represent numbers, such as
pixel values. Assuming this to be the case:

• [2] How many bits are needed for the entire image?
• [2] How many possible pixel values can a 64-bit number represent?

2. Additive noise.

Throughout this lab we will consider the original “cameraman” image to be noise-free,
and any modifications or distortions that are introduced will be considered as noise.
In general, our model is

v = s + n

5The numbers in brackets indicate how many points an item is worth.
6’Bullets’ show items to be included in your report.

October 7, 2001 EECS 206, Lab 4, Final 2 9

where s is a signal, v is a corrupted or distorted (“noisy”) version of s, and n is a
noise signal. In later parts of the lab, the “noise” will actually be the errors caused
by data compression. Here, however, we will simply add random noise.

(a) Create a noisy image with the command
img2 = img + 20*randn(size(img));.

• [6] Using subplot, display and include a plot of the original image, the noisy
image, and the noise image (which can be found by subtracting the original
image from the noisy image). Be sure to label which image is which.

(b) Calculate and include in your report:

• [3] the RMS value7 of the original image.
• [3] the RMS value of the noisy image.
• [3] the RMS value of the noise image.

(c) Look at noisy images with smaller RMS noise values by adjusting the multi-
plicative factor in front of the randn command. Find a multiplier that produces
noise that is “just noticeable” when compared to the original image (that is, a
smaller value yields noise that you cannot see)? (Hint: Plot the original and
noisy images next to one another using subplot. The answer to this question is
somewhat subjective, but try to be as objective as possible.)

• [5] What is the multiplicative factor that you found?

3. Quantization.

(a) Download the function quantize.m. This function, which implements uniform
scalar quantization, takes a signal, a number of quantization levels (M), a min-
imum value quantizer range value, and a maximum quantizer range value. For
instance, to quantize the image (i.e. all pixels of the image) to 64 levels, use the
command

q_img = quantize(img,64,0,255)

Quantize the image using 64 levels, 16 levels, and 4 levels.

• [8] Display and include in your report the three resulting quantized images
along with the original using subplot.

• [6] Use hist to plot the signal value distribution for each of the three images.
Use 256 bins (the second parameter of hist). Display these jointly using
subplot and include them in your report.

• [1] Can you see the effects of quantization in these plots?

(b) Use Matlab to make a plot of the function being implemented by quantize.m .
For example, for the 64 level quantizer, run quantize(x,64,0,255) for x ranging
from 0 to 255, and plot the resulting values versus x.

• [6] Display and include in your report the quantization functions for the 4,
16 and 64 level quantizers together using subplot.

(c) For the 4, 16, and 64 level quantizers,

• [3] How many bits are needed to represent each of these quantized images?
• [3] How many bits are needed to represent each pixel in one of these images?

(d) Using our signal-plus-noise model from above, find the error (“noise”) image
corresponding to each of these quantized images.

• [6] Using subplot, display and include in your report the three error images
in the same plot.

7The RMS value of a set of numbers z1, z2, . . . , zN is
√

1
N

∑N
i=1(zi)2.

October 7, 2001 EECS 206, Lab 4, Final 2 10

• [1] Can you see aspects of the original images in these plots?
• [3] Calculate and include the RMS error values for each image.

(e) Elementary theory predicts that the RMS error induced by quantizing with level
spacing ∆ is ∆/

√
12. (Recall that the formula for ∆ is given in Section 4.2.3.)

Calculate RMS error predicted using this formula for each of the three sets of
quantization levels.

• [3] What are the predicted RMS errors for 4, 16, and 64 level quantizers?
• [6] Plot both the measured and predicted RMS error values versus the re-

quired number of bits per pixel. (Each line on this plot will only have three
points).

• [2] For what number of bits per pixel is this prediction most accurate?

4. Transform Coding (This part is to be turned in with Lab 5. It will also be graded
as a part of Lab 5.)

In this part of the assignment, you will experiment with DFT based transform coding.

(a) Download the M-file dft_block.m . Run the function using the command
A = dft_block(img)

This applies the DFT to successive 1 × 8 blocks of the image. If the image
is N × N , this function produces a series of eight N × N/8 band images. For
k = 1, . . . , 8, the kth band image contains the c[k − 1] coefficients for each block.
The eight band images are stored in A as a three-dimensional array. To access
the third band image, for instance, we would call

band3 = A(:,:,3);

Each of these eight matrices can itself be viewed as an image, although all but
the first one (containing DC values) have negative as well as positive values.

• [4]8 Use subplot to simultaneously display all eight band images. Use
axis square rather than axis image when you display these band images.9

• [2] Discuss the appearances of the various band images. For example, can
you see any features of the original cameraman image in any or all of them?

(b) Download and run the M-file inverse_dft_block.m using the command
recon = inverse_dft_block(A)

This collects the coefficients in A and applies the inverse DFT to reconstruct an
image.

• [2] Compute the RMS error between the original and the transformed/inverse
transformed image. (It should be negligibly small.)

(c) Download the M-file dft_coder.m, which implements the transform coder and
decoder shown in the figure of Section 4.2.5 . It uses dft_block(img) to cre-
ate the band images previously described. It then quantizes each band image
using quantize.m. Finally, it makes a reconstruction of the image by applying
inverse_dft_block.m to the quantized band images. It also prints to the com-
mand window a table showing the performance of the coder and some data about
the 8 types of coefficients and their quantizers.the
Our goal in using dft_coder is to find appropriate parameters for the eight
quantizers. Through intelligent design, we hope to achieve lower RMS error than
with direct scalar quantization of the image using the same number of bits. We

8These points will count towards your grade for Lab 5
9Remember to include in your report the things specified in bullets.

October 7, 2001 EECS 206, Lab 4, Final 2 11

do this by allocating bits to each of our eight quantizers independently. For
instance, if we call dft_coder like this10

coded = dft_coder(img,[8 6 6 6 6 4 4 4]);,
we quantize our c[0]’s (DC) coefficients using 8 bits, the next four coefficients with
6 bits each, and the three imaginary coefficients using 4 bits each. Note that the
number of bits per pixel required to represent the coded image is one-eighth of
the sum of the number of bits allocated to each coefficient. Thus, this particular
coder design uses 5.5 bits per pixel. Note also that when quantize.m is called
to quantize the kth band image, the quantizer range is chosen to be symmetric
about the mean of the coefficients in that band and to have width equal to 5
times the standard deviation of the band.11

Find a 4 bits per pixel design with as small an RMS error as you can. You should
be able to get an RMS error less than 4.2. (Hint: As a general rule of thumb
from Section 4.2.5, bigger coefficients should get more bits.)

• [4] What bit allocation did you use, and what was the resulting RMS error?
• [3] Display the reconstructed image and the error image on the same figure

using subplot.
• [2] Compare your RMS error to the RMS error of 4 bits per pixel uniform

scalar quantization like those that you performed in problem 3.
• [1] Compare the qualitative appearance of the reconstruction produced by

the transform coder to that produced by the scalar quantizer.

(d) Find a 3 bits per pixel design with as small an RMS error as you can. You should
be able to get an RMS error less than 7.

• [4] What bit allocation did you use, and what was the resulting RMS error?
• [3] Display the reconstructed image and the error image on the same figure

using subplot.
• [2] Compare your RMS error to the RMS error of a 3 bits per pixel uniform

scalar quantization like those that you performed in problem 3.
• [1] Compare the qualitative appearance of the reconstruction produced by

the transform coder to that produced by the scalar quantizer.

(e) Find a 2 bits per pixel design with as small an RMS error as you can. You should
be able to get an RMS error less than 13.

• [4] What bit allocation did you use, and what was the resulting RMS error?
• [3] Display the reconstructed image and the error image on the same figure

using subplot.
• [2] Compare your RMS error to the RMS error of a 2 bits per pixel uniform

scalar quantization like those that you performed in problem 3.
• [1] Compare the qualitative appearance of the reconstruction produced by

the transform coder to that produced by the scalar quantizer.

(f) Given your experimentation with this transform coder,

• [4] Comment on the relative performances of direct scalar quantization and
transform coding as the number of bits/pixel changes.

10Though more advanced coders may allow the allocation of fractions of bits, note that for this coder you
must allocate a whole number of bits to each coefficient. You can, however, assign no bits to a coefficient.
In this case, that coefficient is simply set to a constant value.

11Note that you can change this factor to something else if you wish. Note also that in an actual coder,
the means and standard deviations of the bands would have to encoded and sent to the decoder. However,
we can ignore this detail because it requires very few bits relative to those produced by the quantizers.

