
October 15, 2001 Final 4b 1

Laboratory # 5

FIR Filtering

5.1 Introduction

Filters are one of the most important tools that signal processors have to modify and im-
prove signals. Part of their importance is their simplicity. In the days when analog signal
processing was the norm, almost all filtering was accomplished with simple RLC circuits.
Now, a great deal of filtering is accomplished digitally with simple (and extremely fast)
routines that can run on special digital signal processing hardware or on general purpose
microprocessors. In this lab, we will investigate a class of filters called FIR filters.

5.1.1 Implementing FIR Filters

When we apply a filter to a signal, we are performing an operation called convolution
between the input signal and the filter’s impulse response. We can think of the impulse
response as a signal that characterizes the behavior of the filter. Convolution between the
signal, x, and the impulse response, h, can be defined as

y[n] =
M∑

k=0

h[k]x[n − k],

where M is order of the filter with impulse response h and y is the result of the convolution
operation.
In this lab, we will examine and implement a “real-time” algorithm for performing con-

volution. This is the same algorithm used to perform filtering in general purpose DSP
hardware. The algorithm has several benefits; the primary benefit is that is easy to under-
stand. In this algorithm, we imagine the filter as a box into which we drop one sample of
an input signal and a corresponding sample of the output signal comes out. This allows the
algorithm to be used in real-time: as samples of our signal arrive (from a microphone or
some other source), we can immediately output filtered samples to be played over a speaker
(for instance) with almost no delay.
The algorithm goes like this:

1. Initialize an input buffer, an array with length equal to the length of h, to all zeros.

2. For each sample that comes in:

(a) Update the buffer by doing the following:

i. Discard the sample at the end of the buffer.
ii. Shift the rest of the samples one place towards the end of the buffer.
iii. Insert the incoming sample into the front of the buffer.



October 15, 2001 Final 4b 2

(b) Initialize a running sum variable to zero.

(c) For each position, n, in the buffer:

i. Multiply the nth position in the input buffer by the nth position in h.
ii. Add the result to the running sum.

(d) Output the running sum as the next sample of the output signal.

In problem #1, you’ll be asked to complete an implementation of this algorithm. Note
that significant portions of this algorithm can be implemented very simply in Matlab.
For instance, all of (a) can be accomplished using a single line of code. Similarly, parts (b)
through (d) can all be accomplished in a single line using one ofMatlab’s built-in functions
and its vector arithmetic capabilities.

5.1.2 Filtering in Matlab

Convolution is a fairly computation-intensive operation. (For the CE’s in the group, it’s time
complexity is O(NM), where N and M are the lengths of the two signals being convolved).
Thankfully, Matlab has some efficient implementations of convolution. The one we’ll use
throughout the course is filter. If we have an FIR filter with impulse response h and a
signal x, we filter x using the command

y = filter(h,1,x);

(We’ll use the second parameter of filter later, when we study IIR filters). Sometimes we
may also refer to the impulse response as a set of coefficients, B. You will see this notation
in help filter.
We will also be filtering images in this lab. Though we can define two dimensional

versions of convolution and impulse responses to do this, we will limit ourselves to applying
a one-dimensional filter once in each dimension. Given an image img, we can apply a filter
h in both dimensions using the command

out_img = filter(h,1,filter(h,1,img)')';

Note that filter operates over columns by default. Here, we filter along the columns first,
transpose the result, filter along columns of the transposed image, and transpose a second
time to restore the original orientation. This has the effect of filtering the image in both
dimensions.
One potential problem with the filter command is the introduction of delay between

the original and filtered signals. This results in edge effects at the beginning of the signal.
For images, this delay produces a dark band along two edges of the image. The delay can
introduce additional error if we attempt to calculate the RMS error between the original
and filtered signals. When filtering images with impulse response h, we can correct for this
delay by using the conv2 command, which reindexes the output signal appropriately:

out_img = conv2(h,h,img,'same');

This filters the image in both dimensions using the impulse response h, but it takes the
central part of the resulting convolution. This distributes the edge effects equally around all
edges of the image, and prevents the introduction of an unwanted shift in the image. Note
that by doing this, we are actually implementing a non-causal filter offline.



October 15, 2001 Final 4b 3

5.1.3 Image processing with FIR filters

If you’ve ever used photo editing software like Adobe Photoshop, you may have seen oper-
ations called “smoothing” and “sharpening”. These operations can be implemented using
simple FIR filters. We will examine FIR filters that perform both of these operations,
examining their operation on one-dimensional signals and on images.
By now it should come as no surprise that we can implement something called “smooth-

ing” using a simple moving average filter. You probably already have some intuition about
this filter’s operation. Along with making images look “fuzzier,” smoothing filters are also
good at reducing certain types of noise. We’ll examine this property in this lab.
How do we implement “sharpening”? We can use simple FIR filters to do this, too.

Sharpening filters exploit the way that we perceive images. We typically judge the “sharp-
ness” of an image by the prominence of edges and contours. A sharpening filter works by
making edges appear more abrupt (or sharp). In this lab you’ll see just how these filters do
that.
Another application of filtering is noise reduction, both in images and on one-dimensional

signals. It turns out that smoothing filters will often do a decent job of noise reduction.
However, there is a tradeoff between the noise reduction and the loss of signal quality. We
can quantify this tradeoff using RMS error, as we did in Lab #4. In addition to using
RMS error, it is also useful to qualitatively judge the resulting image quality. For instance,
noise is most easily seen in uniform regions of a signal or image, so we judge the amount of
noise reduction based on the uniformity of these regions. Smoothing filters typically distort
a signal the most near edges in an image. When examining the perceptual effect of noise
reduction, we must take both of these factors into account. In this lab, we will examine
some noise reduction techniques using a simple gaussian filter with adjustable width.

5.2 Demonstrations in the Lab Section

1. The real-time convolution algorithm.

2. Filtering in Matlab.

3. FIR filters for noise reduction

4. FIR filters for upsampling

5. Image processing with FIR filters

6. Noise reduction on images

7. Review: Transform Coding

5.3 Laboratory Assignment

NOTE: Remember to include Problem 4 from Lab 4 with your Lab 5 submission!

1. Implementing Convolution. Download the function my_filt from the course web
page. This function is a nearly complete implementation of the real-time convolution
algorithm described in the introduction. Your task is to complete the function by
replacing the two question marks with code that completes the algorithm. There are
simple, one-line additions that will complete the function correctly. These would be
preferred, but if you must use multiple lines, you may.

• [10] Make sure you include the source code for your modified version of my_filt.m
in your report.



October 15, 2001 Final 4b 4

• [1] To test the operation of your code, execute the following command:
y = my_filt([3, 6, 10, 6, 3],[1, -2, 2, -4, 0, 0, -1, 3, 0, 0]);

You should get the following result:
[3, 0, 4, -14, -13, -34, -21, -9, 8, 24]

• [2] Now, execute the following command:
y = my_filt([2, -1, 3],[2, -2, 1, -1, 4, -4, 0 -1]);

What result do you get?

2. Smoothing Filters. In this problem, we will make use of the simple 5-point smooth-
ing filter with impulse response given by:

h1 = [.2, .2, .2, .2, .2];

Note that in this and all subsequent problems, you should use filter or conv2 (as
illustrated in the background section) rather than my_filt.

(a) First, let’s look at the operation of h1 on an artificial edge. Define the following
signal:

signal = [zeros(20,1); ones(20,1)];

Use filter to filter signal with the filter defined by h1. Plot signal and the
filtered signal on the same set of axes. Make sure you use appropriate line styles
so that the two signals can be distinguished (i.e., use solid and dotted lines). To
see signal clearly, you may need to adjust the axis extents using the command
axis.

• [3] Include this plot in your report.
• [2] Describe the effects of the filter on this simple signal.

(b) Load the “cameraman” image that we used in Lab #4 and extract a single row
of the image using the following commands:

cm = double(imread('cameraman.tif'));
one_row = cm(125,:);

Use filter to filter one_row with the filter defined by h1. In a new figure, plot
one_row and the filtered version on the same axes, again making sure that the
signals are distinguishable.

• [3] Include this plot in your report.
• [2] Consider the original signal to be “noiseless” and the filtered signal to
be “noisy.” Calculate the RMS error introduced by this filter. (Hint: do
this the same way as in Lab 4. Note the delay introduced by the filtering
operation.)

(c) Now we want to see the effects of this filter on the entire two-dimensional im-
age. Using the method for two-dimensional filtering with conv2 described in the
introduction, filter cm with h1. Use subplot to display the original image and
the filtered image side by side in a single figure. (Use the same image display
conventions we used in Lab #4).

• [4] Include this figure in your report.
• [2] Calculate the RMS error introduced by this filtering.
• [2] Describe the effect of the filter on this image. Especially note what hap-
pens in roughly constant regions of the image and around edges in the image.

(d) Create a noisy version of “cameraman” using the following command:



October 15, 2001 Final 4b 5

noisy = cm + 20*randn(size(cm));

Download the M-file g_smooth.m. This function produces filters with gaussian
(i.e., “bell-curve”) impulse responses. The only parameter is a width parameter
that determines the strength of the smoothing effect. The width parameter can
be any positive real number; a width of zero produces a filter that has no effect
(i.e., it is a unit impulse).

Use the conv2 command to filter the noisy image with various filters pro-
duced by g_smooth.m. Calculate the RMS error of each filtered image. (Hint:
write a function that uses g_smooth to generate a filter with variable width, per-
forms the filtering, displays the filtered image, and calculates the RMS error so
that you can check a lot of different width values quickly. Make sure you include
your Matlab code).

• [1] Calculate the RMS error for a filter width of 0 (i.e., no filtering). What
is this RMS error?

• [4] Find the width value that gives you the smallest RMS error. What width
value did you find? What is the corresponding RMS error?

• [4] Find the width value that performs the best perceptually. That is, find the
filter produces the “best looking” image based on noise reduction and edge
smoothing. Which width value did you choose? What is the corresponding
RMS error?

3. Sharpening filters. The behavior of the sharpening filter is somewhat less intuitive
than that of the smoothing filter. In this problem, we will examine the behavior of
the following sharpening filter:

h2 = [-0.5, 2, -0.5];

(a) Return to the artificial edge signal, signal, that we defined in Problem #2.
Filter signal with h2. Plot the original and the filtered result on the same plot,
as you did in Problem #2.

• [3] Include this plot in your report.
• [2] Describe the effect of the filter on this signal. What is the filter doing
that might help to make the edge appear “sharper”?

(b) Now, use filter to filter the 125th row of “cameraman” (the one that you ex-
tracted in Problem #2) using h2. Plot the signal one_row and the filtered version
on the same axes.

• [3] Include this plot in your report.
• [2] Calculate the RMS error introduced by the filter in this signal. (Again,
there is a slight delay introduced by the filtering operation.)

(c) Finally, we’ll look at the results of the sharpening filter on the image itself. Filter
the image, cm, in both directions with h2 using conv2. In order to normalize the
display, we also need to clip the image values of the filtered image to the range 0
to 255. Do this with the command

clipped_img = max(0,min(filtered_img,255));

Display the original image and the filtered-and-clipped image side by side in the
same figure.

• [4] Include this figure in your report.
• [2] Calculate the RMS error introduced by the filter in this image.



October 15, 2001 Final 4b 6

• [2] Describe the effects of the filter on this image. Especially note what the
filter does in the vicinity of edges and in relatively constant regions. (You
should zoom in on the image to see the effects close-up.) What features of
the filtered image contribute to it’s “sharper” appearance?


