
November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 1

Laboratory # 7

Vowel Lab I: Source/Filter
Vowel Models

7.1 Introduction

So far, we’ve been considering filters as systems that we design and then apply to signals
to achieve a desired affect. However, filtering is something that occurs everywhere, without
the intervention of a human filter designer. At sunset, the light of the sun is filtered by the
atmosphere, often yielding a spectacular array of colors. A concert hall filters the sound of
an orchestra before it reaches your ear, coloring the sound and adding pleasing effects like
reverberation. Even our own head, shoulders, and ears form a pair of filters that allows us
to localize sounds in space.

Quite often, we wish to recreate these filtering effects so that we can study them or apply
them in different situations. One way to do this is to model these “natural” filters using
simple digital filters. That is, if we can measure the response of a particular system, we
would often like to design a filter that has the same (or a similar) response. In this lab, we
will apply such system modeling to the signals produced when speaking vowels.

7.2 Background

7.2.1 The Source-Filter Model for Vowels Sounds

We begin with a physical description of how speech is produced. Traditional models of
human speech production generally separate the speech production mechanism into two
parts — the glottal source and the vocal tract. The glottal source is the stream of the air
that emerges from the larynx (that is, the voice box). During the speaking or singing of a
vowel, this stream of air is pushed through the vocal cords, which are held together. The
resulting pressure causes the vocal cords to open and close rapidly; these oscillations give
the glottal source a nearly periodic variation. For speech, this variation has a fundamental
frequency of around 100 Hz for males and around 200 Hz for females. If the speaker whispers
a vowel, the vocal cords are not held together and thus do not vibrate. Thus, the glottal
source is not periodic for whispering; instead, it has a random, noise-like characteristic. In
this lab, we will only consider the speaking voice, not singing or whispering.

The second part of the speech production mechanism is the vocal tract. The vocal tract
is the airway that leads from the larynx up through the lips. See Figure 7.1 for a diagram
of the vocal tract. The positions of the tongue, lips and jaw serve to shape the vocal tract,
with different positions creating different vowel sounds. Try speaking a vowel for a couple
of seconds and then changing to a different vowel. Notice how your tongue, lips, and jaw

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 2

Figure 7.1: The human vocal tract.

change positions. Also try whispering the same vowels. Notice that the changes you make
are the same whether you are whispering or speaking.

The two-part mechanism just described applies to vowels sounds, not consonants. For
the most part, consonants are produced by using the tongue and lips to make sounds.
For instance, the hiss of an “s” sound is made by forcing air past the tongue. A “p” or “t”
sound, on the other hand, is produced by quickly releasing air from behind the lips or tongue
(respectively). There are a wide variety of consonant sounds, but we will be restricting our
attention in this lab to vowels.

We now discuss how vowel speech production is modeled in terms of signals and systems.
The goal is a model for the signal s(t) as measured by a microphone when someone speaks a
sustained vowel. Following the physical model, the traditional signal/system model is that
a glottal source signal g(t) is the input to a vocal tract filter, whose output is s(t).

As illustrated in the upper left panel Figure 7.2 the glottal source signal is modeled as
a periodic pulse train

g(t) =
∞∑

n=−∞
p(t− nT) , (7.1)

where T0 is the period (f0 = 1/T +0) is the fundamental frequency of g(t)) and p(t) is some
basic pulse shape, called a glottal pulse with duration less than T0.

When speaking a sustained vowel, it has been found that to a good approximation, the
effect of the vocal tract on the glottal signal is well modeled as a linear time-invariant system,
i.e. a filter in the usual sense. The irregular shape of the vocal tract causes it to act as a
filter that enhances certain frequencies and attenuates others. Modifying the shape of the
vocal tract (i.e. the positions of the tongue, lips and jaw) changes the frequency response
of the filter, which in turn changes the spectrum of the output signal s(t). Listeners have
learned, in effect, to associate each vowel sounds with a distinct spectra. This is similar to
the discrimination required to recognize the sounds of different musical instruments.

In this lab we will consider a discrete-time version of the source/filter model just de-
scribed. Specifically, the sampled output speech signal, s[n], is simply the convolution of
the sampled glottal source signal, g[n] with the sampled impulse response of the vocal tract,
v[n]. That is,

s[n] = g[n] ∗ v[n]. (7.2)

For the time being, we will assume that g[n] is periodic with period N , where NTs = T0

with Ts and T0 being the sampling interval and the fundamental period of g(t), respectively.

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 3

Since we assume the vocal tract is linear and time-invariant, it follows that s[n] will also be
periodic with period N .

Let us now consider the frequency domain representations of each of these signals. Let
S[k] be the DFT of the speech signal, let G[k] be the DFT of the source signal, and let V (ω̂)
be the frequency response of the vocal tract filter. Then, as derived in class,

S[k] = G[k]V (2π
N k) , k = 0, . . . , N − 1 . (7.3)

Note that this holds in the ideal case of g[n] and s[n] periodic with period N . It turns out
that the way a vowel sounds is principally determined by the magnitudes of the S[k]’s. Thus
it is sufficient to consider the magnitudes of S[k], G[k], and V (2π

N k), which are related via
∣∣S[k]∣∣ = ∣∣G[k]∣∣ ∣∣V (2π

N k)
∣∣ , k = 0, . . . , N − 1 . (7.4)

Typically, we will know |S[k]| and |G[k]| but we want to estimate |V (ω)|. (There will be a
different |S[k]| and |V (ω̂)| corresponding to each type of vowel, but |G[k]| will be essentially
the same.) From equation (7.4), we can determine magnitude of the frequency response of
the vocal tract filter at the DFT frequencies simply as

∣∣V (2π
N k)

∣∣ = |S[k]|
|G[k]| , k = 0, . . . , N − 1 . (7.5)

Unfortunately, there are some practical problems with this model. First, we need to
realize that real-world signals are never truly periodic. Some signals (like vowel sounds)
are approximately periodic, but the signal actually varies somewhat between each “period.”
Figure 7.2 shows a part of an actual speech signal in the lower left panel. Notice the small
variations between each “period” of the signal. For a signal that is nearly periodic, we

0 0.005 0.01 0.015 0.02

0

0.2

0.4

0.6

0.8

Time (s)

g[
n]

1000 2000 3000 4000

−20

0

20

40

k

G
[k

]

0 0.005 0.01 0.015 0.02

0

0.2

0.4

0.6

0.8

v[
n]

Time (s)

?
−2 0 2

0

0.5

1

V
(ω

)

ω

?

0 0.005 0.01 0.015 0.02

−0.2

0

0.2

0.4

Time (s)

s[
n]

1000 2000 3000 4000
−40

−20

0

20

40

k

S
[k

]

Figure 7.2: The components of the source-filter model system in the time-domain and the
frequency-domain. We need to determine v[n] and V (ω).

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 4

can still say that it has a fundamental period; however, this will never be more than an
approximation. Another problem arises when we realize that the fundamental “period” is
unlikely to be exactly an integral number of samples. The idealized glottal source signal
shown in the upper panel left of Figure 7.2 was truly periodic in continuous time. However,
its period was not an integral number of samples long, so the sampled signal is not truly
periodic either. However, as we will see in the next section, it turns out that we will still be
able to use the DFT to analyze the frequency-domain properties of our signals.

There is one last problem with our model. Equation (7.5) actually only gives samples of
the frequency response V (ω̂). This is generally not sufficient to completely characterize the
filter. After all, the filter has a response at frequencies other than just those we’ve sampled
(0, 2π/N, 4π/N, . . . 2π(N − 1)/N). However, if we assume that the frequency response of
the filter is varying slowly compared to the spacing of the samples of V (ω̂), those samples
should be sufficient to allow us to model V (ω̂).

7.2.2 The Spectrum of Arbitrary Signals via the DFT

We have seen in class and in lab that the frequency domain (the frequency spectra of sig-
nals and the frequency response of filters) provides a powerful framework for analysis and
synthesis of signals and filters. However, the theory developed in class has been exclusively
limited to periodic signals, whereas, as mentioned above, real-world signals are never per-
fectly periodic. Indeed, many are very far from periodic. As we now discuss, frequency
domain methods can be applied to arbitrary discrete-time signals by applying the DFT to
finite segments of signals.

Consider an arbitrary signal x[n]. We can choose some integer N and apply the DFT to
the N samples x[0], . . . , x[N − 1], giving the N DFT coefficients

X[k] =
1
N

N−1∑
n=0

x[n]e−j2π k
N n , k = 0, . . . , N − 1 . (7.6)

Of what value are these coefficients? According to the basic DFT synthesis formula,

x[n] =
N−1∑
k=0

X[k]ej2π k
N n , n = 0, . . . , N − 1 . (7.7)

That is, x[n] is the sum of N complex exponentials with frequencies 0, 2π 1
N , 2π 2

N , 2π
3
N ,

. . ., 2π (N−1)
N and with complex amplitudes X[0], . . . , X[N − 1], respectively. To emphasize

this, let us rewrite the synthesis formula as

x[n] = X[0]+X[1]ej2π 1
N n+X[2]ej2π 2

N n+. . .+X[N−1]ej2π N−1
N n , n = 0, . . . , N−1 . (7.8)

Thus X[0], . . . ,X[N − 1] tell us the spectrum of x[n] in the time interval 0, 1, . . . , N − 1.
Notice, however, that if, as usual, x[n] is not periodic with period N , then equations

(7.7) and (7.8) do not hold when n < 0 or n ≥ N . The righthand side is periodic with
period N and the lefthand side is not. The idea is that we have analyzed the frequency
content of the signal only within the time interval 0, 1, . . . , N −1. One can similarly analyze
the frequency content in any interval of length N , e.g. n = N0, N0 + 1, . . . , N0 +N − 1.

Another important thing to notice is that the resolution of the frequency domain analysis
increases with N . By this we mean that spacing between adjacent frequency components,
namely, 2π

N decreases with N .
In the following we summarize a number of important properties of the DFT applied in

the way just described.

1. If you take the DFT of N samples of a signal, namely x[0], . . . , x[N − 1], the result
is a vector of N samples X[0], . . . ,X[N − 1]. (Note that in Matlab we access x[n]
and X[k] with x(n+1) and X(k+1), respectively, since there are no x(0) and X(0)
elements.)

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 5

2. X[0] is the average value (the DC term) of the input signal.

3. In general, X[k] is complex. Thus, if we want to display the X[k], we need to take it’s
magnitude first (i.e., abs in Matlab).

4. Because e2π N−k
N n = e2π −k

N n for every n, the coefficient X[N − k] can be interpreted as
the spectral component at frequency −2π k

N .

5. If x[n] is real (which it usually is), X[k] will be conjugate symmetric. That is, X[k] =
X[N − k]∗. It also implies that |X[k]| = |X[N − k]| and ∠X[k] = −∠X[N − k].
Generally, these facts mean that we are only interested in the first half of the DFT.

6. To determine the frequency in Hz, fk, represented by sample X[k], use the relation

fk =
kfs

N
. (7.9)

This is easy to remember. Just think that X[N] would correspond to the sampling
frequency, fs; to convert N to fs, we simply divide by N and multiply by fs.

7. The following are the DFT’s of some commonly occuring idealized signals.

(a) x[n] = cos
(

2π
N kn

)

−→ (X[0], . . . , X[N − 1]) = (0, . . . ,
1
2
, 0, . . . , 0,

1
2
, 0, . . . , 0) , (7.10)

where the nonzero coefficients are at positions k and N − k.

(b) x[n] = sin
(

2π
N kn

)

−→ (X[0], . . . ,X[N − 1]) = (0, . . . ,
1
2j

, 0, . . . , 0,− 1
2j

, 0, . . . , 0) , (7.11)

where the nonzero coefficients are at positions k and N − k.

(c) x[n] = cos
(

2π
N kn+ φ

)

−→ (X[0], . . . , X[N − 1]) = (0, . . . ,
1
2
ejφ, 0, . . . , 0,

1
2
ejφ, 0, . . . , 0) , (7.12)

where the nonzero coefficients are at positions k and N − k.

(d) x[n] = cos
((

2π
N k + ε

)
n
) −→ (X[0], . . . ,X[N − 1]), where typically all the

X[k]’s are nonzero, and typically all have small magnitudes except those corre-
sponding to frequencies closest to 2π

N k + ε.

(e) x[n] = δ[n] −→ (X[0], . . . ,X[N − 1]) =
(

1
N , . . . , 1

N

)
.

8. In Matlab, we perform the DFT by using the function fft. FFT stands for the
fast fourier transform; this is a particularly efficient implementation of the DFT that
is O(N logN) rather than O(N2). It is often advantageous to compute DFTs with
lengths equal to powers of 2 (i.e., 256, 512, 1024, 2048, 4096, etc.). This speeds the
calculation of the FFT considerably.

The top subplot of Figure 7.3 shows a portion of a real-world DTMF signal, x. Note
that this signal is not truly periodic, nor do these 1024 samples represent one period of a
larger signal. However, we can still take the signal’s DFT. The magnitude of the signal’s
DFT is shown in the lower subplot of Figure 7.3.

This plot illustrates many of the properties enumerated above. First, you can clearly see
the symmetry in the DFT magnitude plot. The two sinusoids that make up the DTMF tone
can be seen clearly. However, notice that they do not show up as true impulses; instead they

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 6

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

Sample number (n)

x[
n]

100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

DFT Sample Number (k)

|X
[k

]|

Figure 7.3: A “real-world” DTMF tone with 1024 samples (top) and the magnitude of the
DFT of this signal (bottom).

have some width. This is because the DFT was not calculated over an integral number of
periods of these sinusoids. Because of this, we see some “smearing” in the frequency domain.
Also, notice the rough (“noise-like”) characteristic of both the signal and the spectrum,
especially at low frequencies. This is inevitable whenever we deal with real signals. The
main thing that you should take away from this figure is that the DFT is rarely as clean as
we would like it to be, and so we must interpret it to find relevant features.

7.2.3 FIR Filters on the Z-plane

In Chapter 7, you’ve seen that if we have an FIR filter of the form

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + b3x[n− 3] + · · ·+ bMx[n−M], (7.13)

we can take the Z transform of this filter response and write a corresponding system function,
H(z), as

H(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3 + · · ·+ bMz−M . (7.14)

We can further factor this complex-valued polynomial as

H(z) = (1− a1z
−1)(1− a2z

−1)(1− a3z
−1) · · · (1− aMz−1). (7.15)

The the complex values {a1 . . . aM} are zeros of the system function H(z). Much like the
zeros of a real-valued polynomial, these are values of the independent variable z for which the
system function goes to zero. Also like real-valued polynomials, the set of zeros completely
characterizes the system function. This is especially useful because the location of zeros on
the z-plane provides a wide variety of information about the system under consideration,
including an intuitive understanding of the system’s frequency response.

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 7

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

1

2

3

4

Imag(z)

Real(z)

|H(
z)|

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real(z)

Ima
g(z

)

Figure 7.4: A plot of zeros on the z-plane with the unit circle (left); a plot of the magnitude
of the equivalent system function, with the response at around the unit circle outlined in
red (right).

Figure 7.4 shows the plot of the zeros of a four-zero system function. It also shows
the magnitude of the system function on the z-plane. Notice how the zeros “push down”
the system function in the right plot. On the z-plane, the most important area is the unit
circle, because the value of the system response on the unit circle is equal to the system’s
frequency response. That is, the magnitude of H(z) at z = 1∠ω is equal to the magnitude
of the frequency response at a frequency of ω. The magnitude of the system response at the
unit circle has been outlined in red in Figure 7.4. This idea allows us to obtain an intuitive
understanding of the effects of zeros on the frequency response of the system. If a zero is
placed close to the unit circle, there will be a “low point” in the magnitude response near
that frequency.

It is often useful to design a filter by placing zeros on the z-plane. The effect of zero
locations on the system’s frequency response is much clearer than the effect of changes in
the filter’s coefficients, and this allows for rapid filter design. This design method is also
useful if we wish to fit a low-order digital filter to a more complicated frequency response.
We can often find a simple design that sufficiently models the frequency response without
a great deal of complexity. In this lab, we will use the zero placement design methodology
to fit low-order filter models to estimated vocal tract transfer functions.

Before we conclude, we will briefly summarize a number of important points about z-
plane representations of FIR filters.

1. An FIR filter of order M will have M zeros.

2. If the FIR coefficients {b0, . . . , bM} are real (which they usually are), then all zeros
will either be real or will appear in complex conjugate pairs.

3. The value of H(z) at any z = ejω̂ is equivalent to the system’s frequency response
at discrete radian frequency ω̂. That is, the system’s discrete frequency response is
located on the unit circle.

4. Zeros placed near the unit circle will tend to “pull down” the frequency response near
them and will tend to “push up” the frequency response on the opposite side of the
unit circle.

Though we will not discuss them in depth, you will also be experimenting with the use
of poles on the z-plane. Poles are one of the fundamental building blocks of IIR filters. They
have many of the same properties of zeros, but in another sense they are the opposite of
zeros; they “push up” the spectrum where zeros pull it down. In fact, poles are locations on
the z-plane where the system function goes to infinity, so they also present some stability

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 8

issues. When using poles for filter design, make sure that you always keep the poles inside
the unit circle.

7.2.4 Pole-Zero Place – A Filter Design GUI

Pole-Zero Place is a Matlab1 graphical user interface that will help to design discrete-time
filters to match a particular frequency response. It does this by letting you place poles and
zeros on the z-plane and watch the effect they have on the frequency response of the filter
being designed. In the lab assignment, you will use Pole-Zero Place to match filters to an
estimated vocal tract transfer function.

Two files make up Pole-Zero Place – pole_zero_place.m and pole_zero_place.fig.
You must have both files to run the program. To execute Pole-Zero Place, execute the

1Note that Pole-Zero Place requires Matlab version 6.0 or higher. Notably, this means that it cannot
be run on the Macintosh

Figure 7.5: The Pole-Zero Place GUI for discrete-time filter design.

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 9

command

pole_zero_place(gains,fund_frq);

where gains is a vector of gains at harmonically related frequencies for a desired frequency
response and fund_frq is the fundamental frequency in Hz (assuming a sampling frequency
of 8192 Hz). For example, if the magnitude of our desired frequency response is 10 at 300
Hz, 1 at 600 Hz, and 0.1 at 900 Hz, we would use the command

pole_zero_place([10, 1, .1],300);

The function also has optional third and fourth parameters that allow you to specify the
feedforward and feedback filter coefficients (i.e., B and A), so that the GUI will start with
an initial filter configuration. (This is useful if we want to “save” the state of the GUI and
come back to a particular design later).

Once the program starts, the GUI window will appear. This window is shown in Figure
7.5. Hopefully you will find the interface to be intuitive. Important features are labeled
with numbers and described below.

1. The z-plane plot. The locations of current poles (x) and zeros (o) are plotted here.
If a conjugate pair is currently selected, it will be highlighted. On this plot, you can
select poles and zeros and drag them around the z-plane. As you move them, you can
see the effect on the frequency response (2).

2. The filter frequency response is plotted here in blue. The stem plot in red indicates
the positions of the desired transfer function gains that we input to GUI when we
started it. Note that this plot ranges from 0 to fs/2, where our fs = 8192 Hz.

3. Press the “Add zeros” or “Add poles” button and then click on the z-plane plot (1)
to add a conjugate pair of zeros or poles.

4. Press the “Delete poles/zeros” button to delete a selected pair of zeros.

5. The filter gain determines the overall height of the frequency response. Change it by
entering a different number in this box.

6. These radio buttons switch the frequency response plot (2) between linear-scale mag-
nitude and decibels.

7. These edit boxes indicate the location of the currently selected zero. You can edit the
magnitude and angle to change those values for the selected zero.

8. This button lets you hear the result of your filter on a glottal source signal (requires
the glottal_source.m file).

9. This button opens a dialog so that you can print the GUI window.

10. This button copies the GUI into the Windows clipboard (only on Windows machines).

11. This button displays the filter coefficients to the command window so that you can
copy them into a variable and use them or export them to another program. The vector
labeled B contains the feedforward coefficients of the filter function (i.e., the regular
FIR filter coefficients that multiply x[n− n0]). The A vector contains feedback terms
introduced by the inclusion of poles on the z-plane. These terms multiply previous
values of the output, y[n− n0].

12. These indicate how many poles and zeros you have on the plane.

13. These edit boxes show the RMS error between your filter’s frequency response and the
desired response.

14. This button displays the filter coefficients and then closes the GUI window.

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 10

7.2.5 Matlab Command Refresher

There are a number of Matlab commands that you’ll need for this lab. You have probably
used most of them we’ve used before, but they are included here for reference. Note that
this list is not meant to be exhaustive.

• To compute the DFT of a vector x, use the command

X = fft(x);

• To compute the magnitude of the DFT of a vector x, we use the command

X = abs(fft(x));

• To convert a value (or a vector of values) x to decibels, use the command

xdb = 20*log10(x);

• To convert a value (or vector of values) xdb back from decibels, use the command

x = 10.^(xdb/20);

• To listen to a signal in a vector x with a sampling frequency of fs, use the command

soundsc(x,fs);

7.3 Demonstrations in the lab session

1. Interpreting the DFT

2. Source-filter models

3. Filter design on the z-plane

4. Pole Zero Place

5. A quick introduction to IIR Filters

7.4 Laboratory assignment

Download the file lab7_vowels.mat and load it into your workspace. This .MAT file con-
tains two vowel signals, ee_8192 and oh_8192, both sampled at 8192 Hz. These signals are
actual recordings, not synthesized vowels like those we dealt with in Lab #3. Among other
things, this means that the signals are not strictly periodic. These signals will be our s[n]
as described Section 7.2.1. Our ultimate goal is to find low-order filter models for the vocal
tracts that were used to produce these signals. There are a number of steps in this process,
and we will address each one in turn. We will focus on the signal ee_8192 for this lab, but
you might be interested in analyzing oh_8192 as well.

1. In order to estimate the vocal tract transfer function, we first need to determine
the glottal source signal, g[n]. We will assume that most of the parameters of the
source signal are known, but you still need to determine an appropriate fundamental
frequency. Recall that the period of the glottal source will be the same as the period
of the speech signal. A slight difficulty arises because the speech signal does not have
a constant period.

(a) For the ee_8192 signal, take the DFT of the first 4096 samples of the signal.
Take the magnitude of the resulting signal, and convert to decibels.

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 11

• [4] In a single figure, plot the magnitude of the DFT in one subplot and the
magnitude of the DFT in decibels in another subplot below it. (Note: to
prevent confusion later, you should use the vector 0:4095 as your x-axis in
both plots).

(b) This is a lot happening in this signal, but the relevant features of the DFT are
the harmonic peaks, which should be evident in both figures (though perhaps
somewhat more so in the decibel plot). Estimate the frequencies (in Hz) and
amplitudes of the first 24 harmonic peaks. (Hint: Remember that you should
only consider peaks on the first half of the DFT plot. Also, consider using the
ginput to speed up the process.)

• [8] Produce a table that includes the harmonic number of each peak (where
the nth harmonic has a harmonic number of n), its location in the DFT vector
(i.e., its sample number), and its estimated frequency in Hz. Also include
the magnitude of the DFT at each harmonic and this magnitude expressed
in decibels.

• [2] Use stem to plot the harmonic magnitudes (in decibels) versus their esti-
mated frequencies in Hz.

(c) The next step is to estimate the fundamental frequency of the underlying glottal
source signal. If we know the harmonic number and the frequency of a single
harmonic of the speech signal, we can easily come up with an estimate of the
fundamental frequency. Come up with a way to use your estimated frequencies
for all of the harmonics to produce an estimate of the glottal source fundamental
frequency.

• [4] Describe how you did this.
• [2] What is your estimated fundamental frequency?

2. Download the file glottal_source.m. This function generates a simple glottal source
signal. It takes two parameters – a fundamental frequency, and a signal length (in
seconds). Once we have this signal, we can estimate the frequency response of the
vocal tract at the harmonics of our fundamental frequency.

(a) Create a glottal source signal, g_e, at the fundamental frequency that you found
for the signal ee_8192. Your signal should be 0.5 seconds long.

• [4] In a single figure, plot the magnitude of the DFT of the source signal
in one subplot and the magnitude of the DFT of the signal in decibels in a
second subplot. (Note: Again, use the vector 0:4095 as your x-axis in both
plots).

• [2] Verify that the fundamental frequency of this source signal is the same as
the one that you estimated in Problem 1c. Briefly describe how you did this.

(b) Now, you need to determine the magnitudes of the first 24 harmonics of g_e.
Identify the magnitudes of each harmonic of g_e in decibels.

• [2] Use stem to plot the magnitude of the harmonics in decibels versus their
frequency. (Hint: You can assume that the harmonics are strict multiples of
the fundamental frequency. You don’t need to re-estimate their frequencies.)

(c) Finally, we can estimate the magnitude frequency response of the vocal tract
filter at the harmonics of our fundamental frequency. Calculate these values by
dividing the magnitude of the nth harmonic of ee_8192 by the magnitude of the
nth harmonic of g_e. (Hint: You can also perform this calculation in decibels.
Division is the same as subtraction in decibels.)

• [6] Produce a table that includes the harmonic number, the harmonic fre-
quencies in Hz, the magnitude frequency response of the vocal tract, and the
magnitude frequency response in decibels.

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 12

• [2] Use stem to plot the resulting magnitude frequency response of the vocal
tract in decibels versus the harmonic frequencies in Hz.

3. Now, download the files pole_zero_place.m and pole_zero_place.fig. This is the
Pole-Zero Place program described in Section 7.2.4. The function pole_zero_place.m
takes two parameters. The first is a vector of target vocal tract gains (which you
calculated in Problem 2c). These gains should not be represented in decibels. The
second is the fundamental frequency of these harmonics (which you calculated in 1c).

(a) Execute pole_zero_place with the vocal tract gains and fundamental frequency
that you have calculated. Find a design using six zeros (i.e., three conjugate
pairs) that matches the vocal tract gains as closely as possible. Do not use any
poles. You can try to minimize one of the two error metrics, or you can try to
find a filter that “sounds the best.” Your resulting resynthesis (when you hit
“Play Sound”) should roughly like the vowel “ee,”as in the word “street.”

• [10] Include the GUI window containing your filter design in your report.
• [2] What criteria did you use for optimizing your filter?
• [2] What are the FIR coefficients (i.e., the B vector) for your filter?

(b) Repeat for a design using twelve zeros (i.e., six conjugate pairs). Again, do not
use any poles.

• [10] Include the GUI window containing your filter design in your report.
• [2] What criteria did you use for optimizing your filter?
• [2] What are the FIR coefficients (i.e., the B vector) for your filter?

4. Using IIR filters provides us with a new range of flexibility in filter design. Unlike
FIR filter design, where it is difficult to get high gain at a single frequency, IIR filters
excel at providing a great deal of localized gain. Execute pole_zero_place.m again.
This time, we will use poles as well as zeros to design our filters.

(a) Use pole_zero_place to find filter design with six poles or zeros (i.e., three
conjugate pairs). You can use all poles, some poles and some zeros, or all zeros;
just make sure that you have a combined total of six poles and zeros. Optimize
your design with respect to one of the criteria listed in Problem 3a.

• [10] Include the GUI window containing your filter design in your report.
• [2] What criteria did you use for optimizing your filter?
• [2] What are the filter coefficients (both B and A) for your design?

(b) Repeat the design for twelve poles or zeros (i.e., six conjugate pairs). That is,
make sure that the combined total number of poles and zeros is twelve.

• [10] Include the GUI window containing your filter design in your report.
• [2] What criteria did you use for optimizing your filter?
• [2] What are the filter coefficients (both the B and A vectors) for your design?

(c) Consider your experiences with zero-only and pole-zero filter design.

• [4] Compare the zero-only design process to the pole-and-zero design process.
What was difficult about each task? Which was easier? Which produced
better overall results?

• [2] Do you think that zero-only design allows you to find a good approxima-
tion to your desired transfer function with a small number of zeros?

• [2] Do you think that pole-zero design allows you to find a good approxi-
mation to your desired transfer function with a small number of poles and
zeros?

November 5, 2001 Lab 7, Final 1, EECS 206, University of Michigan 13

• [2] Do you think you need more poles or zeros to achieve a “good” approxi-
mation? How many do you need? (Hint: try some designs with more poles
and zeros to determine this.)

