
November 12, 2001 EECS 206, Lab 8, Final 1 1

Laboratory # 8

Vowel Lab II: Vowel Features

8.1 Introduction

In Lab #7, we looked at designing low-order digital filters to model human vowel production.
Why is this a useful technique? We argued that such models were useful for studying speech
production and the like. However, there are more practical, applied reasons for doing this.
Suppose that we want to perform speech recognition and determine which vowel is being
said. A system would be hard pressed to make this determination from the time-domain
waveform. Instead, we need some other description of the signal, some set of features that
describe important aspects of the signal. Digital filter modeling, such as what we did in
Lab #7, is one way of extracting features. In this lab, we will investigate a number of types
of vowel features and explore what makes a set of “good” features for classification. In the
next lab (Lab #9), we will design and test a classifier for vowels.

8.2 Background

8.2.1 An Introduction to Classification

You may recall Lab #6, in which we developed a system for decoding DTMF signals into the
sequence of key-presses that produced the original signal. Our DTMF decoder was actually
performing classification on each slice of the DTMF signal. Classification is a process in
which we examine instances or some thing (like an object, a number, or a signal) and try
to determine which of a number of groups, or classes, that instance belongs to. We can
think of this as a labeling process. In our DTMF decoder, for example, we looked at a given
segment of the signal and labeled it with a number corresponding to an appropriate key
press.

Classification is a two-step process. First, we need some information about the instance
that we are considering. This information is traditionally referred to as a set of features. So
that we can deal with our features easily, we generally like to have a set of features to which
we can assign numerical feature values. When we have more than one number, we typically
place all of the feature values into a feature vector. We give a distinct feature vector to
each instance we wish to classify by measuring the appropriate aspects of the instance. For
our DTMF decoder, our features were the strengths of each DTMF frequency in a given
segment of the signal. At each time sample, we calculated a seven-element feature vector,
one for each DTMF frequencies.

The second step in classification is to use the feature vectors to make our decision. How
we make this decision depends on a number of factors, including the number of classes, the
number of features, and the amount of prior knowledge we have about each class. There
are some standard decision rules that we can use. For instance, if we have a single feature,
we can just use a simple threshold. This is actually the same as a more general rule for

November 12, 2001 EECS 206, Lab 8, Final 1 2

N -dimensional1 feature vectors. This more general rule indicates that we should find the
distances2 between an instance’s feature vector and the mean feature vector3 for each class.
Then, we classify based on the smallest of these distances. Sometimes, it is better to come
up with an application-specific decision rule. For instance, in the DTMF decoder we had
a simple decision rule that simply identified the two maximum features and computed the
appropriate key press from these. We will discuss the decision-making step of classification
in more detail in Lab #9.

8.2.2 A Classification Example

Let’s consider an example of classification. Suppose that we have a large number of flowers
of two different types, A and B. We know which flowers belong to each type, but they all
look very similar. They require different types of care, though, so we would like to be able
to give our gardener a simple means of classifying each flower.

36 38 40 42 44 46 48 50 52 54 56
0

2

4

6

8

10

12

14

Flower height (cm)

N
um

be
r

of
 fl

ow
er

s

Type A
Type B

Figure 8.1: A simple example where one feature (flower height) is sufficient to perform
classification. This histogram shows how many flowers have a given height.

If we happen to know that type A flowers tend to be taller than type B flowers, we
can suggest that our gardener use the flower’s height as a feature for classification. We
can measure the heights of all of the flowers and then plot a histogram of this data, and
we might see something like Figure 8.1. This is an unusually good case. Notice the two
clusters, one centered around 16 inches and the other around 20 inches. These values are
the mean feature values. In this case, we determined the mean feature value for one class by
simply taking the mean of all of the flower heights that class. Now, our gardener can easily
classify the flowers by simply comparing a flower’s height to a threshold (18, in this case).
Flowers taller than 18 inches belong to type A and flowers shorter than 18 inches belong to
type B.

Figure 8.2 (left) shows a histogram of flower heights in a more troublesome scenario. In
this case, type A flowers still tend to be taller than type B flowers, but there are a significant
number of flowers that our gardener will confuse (that is, misclassify) if we decide exclusively
using this one feature. Though we will typically need to deal with some classification error,
we can often reduce it by adding more features. Suppose we measure not only the height of

1An N-dimensional vector is simply a vector that is N elements long.
3Though there are a number of useful distance metrics, we will simply use Euclidean distance, which is

defined in equation (8.3).
3Given a collection of N -dimensional feature vectors from a single class, each feature of the mean feature

vector is simply equal to the mean value of that feature across the collection. We will examine this in more
detail in Section 8.2.5.

November 12, 2001 EECS 206, Lab 8, Final 1 3

35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

Flower height (cm)

N
u

m
b

e
r

o
f

fl
o

w
e

rs

Type A
Type B

35 40 45 50 55 60

30

35

40

45

50

Flower height (cm)

L
e

a
f

le
n

g
th

 (
m

m
)

Type A
Type B

Figure 8.2: An example where a histogram of one feature is not sufficient to perform perfect
classification (left), but a scatter plot of two features shows a clear separation between the
two classes (right).

the flower but also the length of it’s leaves. Now we can produce a scatter plot of the two
features for each flower, as seen in Figure 8.2 (right). Again there are two distinct clusters,
but neither feature is individually sufficient to separate the two clusters4.

How do we classify in this case? We cannot simply use a threshold on one of the features.
Instead, we will use the generalized decision rule discussed above, which is based on mean
feature vectors and distances. First, let us consider the two features as a two-dimensional
vector. Thus, if a flower is 50 cm tall and has leaves that are 45 mm long, our feature vector
is [50, 45]. Now, given the feature vectors from each flower of one type, we want to calculate
a mean feature vector for for flowers of that type. The mean feature vector indicates the
central tendency of each feature in a class; that is, it is in some sense the best representative
of the entire class. To calculate a mean feature vector in this case, we first take the mean,
m1, of all of the flower heights for flowers of one type. Then we take the mean, m2, of all
of the leaf lengths for flowers of the same type. The mean feature vector is then [m1,m2].
Note that this is the general procedure for calculating the mean of a set of feature vectors,
regardless of the number of features. On the scatter plot in Figure 8.2, we’ve plotted the
location of mean feature vector for each class with large symbols.

Before we can classify, we still need to know how to calculate distances between two fea-
ture vectors. As we’ve mentioned we’ll just be using the Euclidean distance. The Euclidean
distance between two vectors is simply the straight-line distance between their corresponding
points on a scatter plot like that in Figure 8.2. To calculate this distance in two dimensions,
we simply use the Pythagorean theorem. The straight-line distance is equal to the square
root of the sum of the squared differences in feature values. Note that Euclidean distance
generalizes to any number of dimensions; the formula can be found later in equation (8.3).

Now we can finally consider the classification of an instance. To perform the classifi-
cation, we first calculate the distances between the instance’s feature vector and the mean
feature vectors from each class. Then, we simply classify the instance as a member of the
class that has the closest mean feature vector. Consider what this means in terms of the
scatter plot. Given a new instance, we can plot it’s feature vector on the scatter plot. Then,
we classify based on the nearest mean feature vector. For a two-class case such as that
shown in Figure 8.2, there exists some set of points that are equally far from both mean
feature vectors. These points form a decision line that separates the plane into two halves.

4That is, if we project the scatter plot on to only one of the axes, we can’t separate the classes very well.
This week’s lab section should includes a demonstration of this idea.

November 12, 2001 EECS 206, Lab 8, Final 1 4

We can then classify based on the half of the plane on which a feature vector falls. For
example, in Figure 8.2, any flower with a feature vector that falls above the line will be
classified as type B. Similarly, any flower with a feature vector that falls below the line will
be classified as type A.

With this classification rule, we can correctly classify almost all of the instances. How-
ever, note that we’re not classifying perfectly. There is one rogue type B close to the rest
of the type A’s.

38 40 42 44 46 48 50 52 54 56 58
36

38

40

42

44

46

48

50

52

Flower height (inches)

L
e
a
f
le

n
g
th

 (
in

ch
e
s)

Type A
Type B

Figure 8.3: An example where two features do not show clear separation.

Of course, two features may not be enough either. If our scatter plot looked like the
one in Figure 8.3, then we can still see the two clusters, but we can’t perfectly distinguish
them based only on these two features. The line we draw for our distance rule will properly
classify most of the instances, but many are still classified incorrectly. Once again, we can
either accept the errors that will be made or we can try to find another feature to help us
better distinguish between the two classes. Unfortunately, visualizing feature spaces with
more than two dimensions is rather difficult. However, the intuition we’ve built for two-
dimensional feature spaces extends to higher dimensions. We can calculate mean feature
vectors and distances in the roughly the same way regardless of the number of dimensions.
In Section 8.2.5, we’ll look at some techniques for evaluating higher-dimensional feature
spaces.

8.2.3 A few more classification examples

We’ve looked at a simple classification task with only two classes, but there are some more
examples that are instructive. Consider Figure 8.4(A). In this example, the two clusters
fall right on top of one another, so we will have very poor classification performance. This
is an example where neither of the features assist classification performance very much. In
this case, we need to find better features before we can have much luck with classification.
Figure 8.4(B) shows a similar example. Here, feature 2 helps us to improve our classification
performance but feature 1 does not. Note that it may be worse to have a second feature which
is bad than to only have one (good) feature. Unfortunately, determining which features are
good and which are bad is difficult when we have more than two (or three) features and can
no longer visualize the data.

It is also important to realize that we may have more than just two classes in a classi-
fication problem. Figure 8.4(C) shows an example in which we have four classes that have
distinct clusters in our feature space. Again, we can use the same distance-based decision
metric to classify these clusters. Note the (approximate) decision lines on this plot which

November 12, 2001 EECS 206, Lab 8, Final 1 5

7 7.5 8 8.5 9

9.5

10

10.5

Feature 1

F
e
a
tu

re
 2

7 8 9

9.5

10

10.5

11

11.5

Feature 1

F
e
a
tu

re
 2

10 15 20 25
12

14

16

18

20

22

24

Feature 1

F
e
a
tu

re
 2

10 15 20 25 30
5

10

15

20

25

30

Feature 1

F
e
a
tu

re
 2

A B

C D

Figure 8.4: (A) Classes overlap, so the features do not allow much discrimination; these
are bad features. (B) Feature 2 aids discrimination, but Feature 1 does not. (C) An
example with four distinct classes; decision lines are approximate. (D) An example with
three indistinct classes.

partition the feature space (i.e., the plane) into four pieces. These indicate which class a
given feature vector will be classified as. Of course, multiple classes can be indistinct, too.
Figure 8.4(D) shows an example for three indistinct classes. Here, the blue (∗) and green
(o) classes are reasonably distinguishable, but we cannot easily separate the red (+) class
from the other two.

8.2.4 Features for Vowels

The classification problem that we are interested in involves the classification of certain
types of signals. If you think back to the background section of Lab 7, you may recall that
vowels are distinguished by the shape of the vocal tract while the vowel is sounding. We
also argued that the vocal tract acted as a filter that shaped the frequency content of some
glottal source signal, which was independent of the particular vowel being produced. So,
what kinds of features should we use to classify vowels? The obvious answer seems to be
“spectral features.” It turns out that there are many possible kinds of spectral features,
and we’ve already looked at some of them. A related question asks how we determine which
features are good and which ones are not so good. We want features that cause different

November 12, 2001 EECS 206, Lab 8, Final 1 6

vowels to be well separated in the feature space and similar vowels to be close to one another.
That is, the distance between any two different vowels (say, an “ah” and an “ee”) should be
large, but the distance between two instances of a single vowel (two different “ah’s”) should
be small.

All-pole modeling and auto-regressive analysis

In the last lab, we explored modeling of the vocal tract filter using simple FIR (all-zero) and
IIR (poles and zeros) filters. It turns out that vowel sounds are commonly modeled using
all-pole IIR filters that have no zeros. Doing this manually with pole-zero placement is not
substantially more difficult than modeling with both poles and zeros, primarily because the
acoustics of speech production involve signal reflections that are very well modeled using
IIR feedback coefficients.

Another advantage to using all-pole modeling is the fact that we have nice mathematical
tools for deriving all-pole models automatically. These tools, which are collectively called
auto-regressive analysis, fit the spectrum of a time-domain signal with poles in a least-squares
sense. Note that these tools work directly with the time-domain waveform rather than its
spectrum; typically, they return the resulting IIR feedback coefficients (or AR coefficients)
for a filter with those poles, rather than the locations of the poles themselves. Figure 8.5
shows a plot of a set of AR coefficients extracted from a speech waveform. We will explore
all-pole modeling and auto-regressive analysis in the laboratory assignment.

All of this suggests that we might want to use the poles of our system as our spectral
features. While this is a good idea in principle, it has some significant problems in practice.
First, we need to establish a meaningful ordering of the poles, which is not trivial on the

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

Sample number

A
R

 c
oe

ffi
ci

en
t

0 500 1000 1500 2000 2500 3000 3500 4000
−20

−10

0

10

20

30

Frequency (Hz)

A
R

 c
oe

ffi
ci

en
ts

Second
Formant

 First
Formant

Figure 8.5: Some features for vowel classification. (Top) A set of AR coefficients extracted
from a speech waveform. (Bottom) The (sampled) spectrum of the AR model, with formant
locations specified.

November 12, 2001 EECS 206, Lab 8, Final 1 7

complex plane. Also, we need to find a useful way of comparing two arrangements of poles
so that similar arrangements have a small “distance” and very different arrangements have
a large “distance.” These problems are difficult to deal with. So what can we use instead?
Well, we indicated that auto-regressive analysis produces a set of IIR feedback coefficients.
These coefficients are real, already have a meaningful ordering, and we can meaningfully
compare arrays of them as feature vectors. How well do these IIR feedback coefficients work
as features? You will explore this in the lab assignment.

Other spectral features

There are wide variety of other possible features that we can consider using for classifica-
tion, but here will consider only two more. One possible alternative is to simply use the
frequency response of the vocal tract as a set of features. However, the frequency response
is continuous, so we need to sample it. Each sample will be one feature, so the dimen-
sionality of our feature space is related to the number of samples that we take. Finding
an appropriate number of samples is not immediately straightforward. If we take too few
samples, we may not capture relevant properties of the frequency response. On the other
hand, having too many samples may result in “important” frequencies (i.e., good features)
being overshadowed by “unimportant” ones (bad features).

One last feature that we will discuss are formant locations. Generally, the frequency
response of the vocal tract is characterized by a number of peaks at various frequencies.
These peaks are called formants. It is generally recognized that the frequency of formants
is important to the identification of vowels. Unfortunately, there is no clear definition of
a formant, and they are surprisingly hard to identify and locate in any sort of consistent,
algorithmic way. There are sometimes as many as five formants identified for a speech signal.
Here, we will only consider the frequencies of the first two formants.

8.2.5 Evaluating high-dimensional feature spaces

We’ve already seen how to evaluate a set of features if we have only one, two, or possibly three
features. In these cases, we can simply plot a histogram or scatter plot of the features to see
how much the classes separate. However, these visualization techniques do not generalize to
higher dimensions. What do we do if we want to evaluate a 15-dimensional feature space?
There are a number of ways that we can do this. In this lab, we will examine the usefulness
of a feature space by looking at the distributions of distances between and within classes.
Since we will be using distances to perform classification, this is a useful way to characterize
the feature spaces.

In Section 8.2.2, we showed how to compute mean feature vectors and distances for
two-dimensional feature vectors. We also argued that the extension to higher dimensions
is straightforward. However, here we will provide formal equations for calculating mean
vectors and distances between vectors.

Mean vectors and Euclidean distance for multi-dimensional vectors

Suppose that we have a set of N -dimensional feature vectors from M instances of a given
class. Let fi be the ith feature vector. We calculate the mean feature vector, f̄ , for this class
as

f̄ =
1
M

M∑
i=1

fi =
1
M

(f1 + f2 + f3 + · · · + fi). (8.1)

Alternatively, if we let fi,j be the jth element of the ith feature vector, we can say that the
jth element of the mean feature vector, f̄j , is equal to

f̄j =
1
M

M∑
i=1

fi,j =
1
M

(f1,j + f2,j + f3,j + · · · + fM,j). (8.2)

November 12, 2001 EECS 206, Lab 8, Final 1 8

We also need to define the distance metric that we will be using. We will be calculating
the Euclidean distance between two vectors. Let u and v be two N -dimensional vectors
(i.e., arrays with length N). Also let, vi be the ith element of v. We calculate the Euclidean
distance, d, as

d =

√√√√ N∑
i=1

(vi − ui)2 =
√

(v1 − u1)2 + (v2 − u2)2 + · · · + (vN − uN)2. (8.3)

Distance histogram plots

The first method of evaluating a feature space that we will look at involves a plot that we
call a distance histogram plot. The distance histogram plot is a graph containing several
histograms, one for each of our classes. When we generate a distance histogram plot, we
have a single class of interest. Each of the histograms on the plot shows the distribution of
distances from instances in the class of interest to the mean feature vectors for one class.
One of these histograms will show the distribution of intra-class distances, that is, distances
between instances in the class of interest and the mean vector for the class of interest.
The remaining histograms show the distribution of inter-class distances, that is, distances
between instances in the class of interest and a mean vector from some other class. Ideally,
we want intra-class distances to be significantly smaller than inter-class distances.

Figure 8.6 shows an example of a distance histogram plot. In this figure, Class 2 is our
class of interest. As we would hope, the intra-class distances (labeled as Class 2, the class
of interest) are fairly small and cluster near zero. If it does not, we may have a bad set of
features. Also as hoped, most of the inter-class distances are larger the intra-class distances.
Note that we aren’t interested in where the various inter-class distance histograms fall with
respect to one another.

The cluster matrix

We can also summarize the distributional information in a form that we call the cluster
matrix. The cluster matrix measures the mean distance between a class mean and the

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Distance of mean feature vectors from Class 2 instances

N
um

be
r o

f i
ns

ta
nc

es

Class 1
Class 2
Class 3

Figure 8.6: An example distance histogram, showing the distribution of distances from the
mean feature vector of Class 2.

November 12, 2001 EECS 206, Lab 8, Final 1 9

feature vectors of that class or another class. The size of the cluster matrix is P ×P , where
P is the number of classes. Let fi,j,k be the kth element of the jth feature vector from the
ith class. Let f̄i,k be the mean across all instances of the kth element of the ith class. Finally,
let the ith class have Mi feature vectors, and let each feature vector have N dimensions. We
calculate the rth row and cth column of the cluster matrix, Cr,c, as

Cr,c =
N∑

k=1

Mc∑
j=1

1
Mc

√
(f̄r,k − fc,j,k)2 (8.4)

The cluster matrix gives us an indication of both the inter-class separation between
the classes (in the off-diagonal elements of the matrix) and the intra-class spread (in the
diagonal elements). Thus, we prefer to have a cluster matrix with small diagonal elements
and large off-diagonal elements. Note that the cluster matrix is effectively a summary of
the information represented in the distance histogram plots for all of classes of interest.
Each element of the cluster matrix indicates the center point of one of the histograms on a
distance histogram plot. Cr,c is the center of the histogram of distances of instances the cth

class (the class of interest) from the rth class mean vector.

8.2.6 Matlab Command Refresher

To compute the AR coefficients for a 10th auto-regressive model for a particular waveform,
signal, use the command

AR = aryule(signal,10);

To compute the magnitude spectrum, H, of a filter defined by feedforward coefficients,
B, and feedback (AR) coefficients, A, use the command

H = freqz(B,A);

To produce a pole-zero plot for a filter specified by feedforward coefficients B and AR
coefficients A, where B and A are row vectors, use the command

zplane(B,A);

To produce a scatter plot given a vector of x-values, X, and vector of y-values, Y, using
green o’s as the symbol, use the command

h = plot(X,Y,'go');

Other markers and colors are available; see help plot for more information. h will contain
a handle to the data that was just plotted. You can use the set command to change the
display properties of this data. For instance, you can increase the marker size from 6 points
to 12 using the command

set(h,'MarkerSize',12);

To find the mean vector of a set of vectors, place your vectors in a matrix, A, with one
vector per row, and use the command

mean_vec = mean(A);

8.3 Demonstrations in the lab session

1. Classification Introduction

2. Features

3. Vowel features

4. Working with features in Matlab

5. Evaluating features

November 12, 2001 EECS 206, Lab 8, Final 1 10

8.4 Laboratory assignment

1. In Lab #7, we worked to extract the frequency response of the vocal tract from a
signal by dividing the magnitude spectrum of the spectrum of the speech signal by the
magnitude spectrum of the glottal source. One common simplification is to assume
that the harmonics of the glottal source signal actually have uniform magnitude. Then,
the spectral characteristic of both the glottal source and the vocal tract are lumped
into a single frequency response. For our purposes, this means we can just attempt to
match the magnitude spectrum of a signal directly using Pole Zero Place.

Download the file lab8_ah.mat. This .mat file contains three variables: ah_8192 is a
recording of someone speaking an “a” vowel, as in the word “father.” gains contains
the magnitude spectrum of the sound at harmonics of the fundamental frequency, and
f0 contains the fundamental frequency itself (105.7 Hz).

Use Pole Zero Place5 to fit a 10-pole (i.e., 5 conjugate pole pairs) digital filter to the
signal ah_8192, as you did in Lab #7. As input to pole_zero_place, use the vector
gains and the fundamental frequency in f0. Make sure that you use the “decibel”
mode when you try to match the vowel’s frequency response.

• [10] Include the resulting GUI window in your report. Make sure that the GUI
is in “decibel” mode when you print or copy the GUI window.

• [2] What are the resulting filter coefficients (i.e., B and A)?

2. As mentioned section 8.2.4, it is possible to automatically fit poles to a signal’s spec-
trum using a technique called auto-regressive analysis. In Matlab, we use the com-
mand aryule to perform auto-regressive analysis. The function accepts a signal in
the time domain and returns a vector of feedback coefficients for a digital filter (i.e.,
the A vector used in freqz or filter).

Use aryule to perform 10th order auto-regressive analysis on the signal ah_8192. Then
use freqz to calculate the frequency response of the resulting filter and the filter you
calculated in Problem 1.

• [2] Include the filter coefficients returned by aryule in your report.

• [4] Plot the frequency responses (in decibels) of your hand-fit all-pole model and
the AR model produced by aryule. Make sure you indicate which curve is which.

• [3] In two subplots of the same figure, plot the poles of your hand-fit model and
the one returned by aryule on the complex plane. (Hint: Use the command
zplane to do this.)

3. Now we would like to begin examining prospective features for vowel classification.
The first one we will consider are formant locations, which are described in Section
8.2.4. Because we are only considering the locations of the first two formants, this
forms a simple two-dimensional feature space that we can easily visualize using scatter
plots.

Download the files lab8_features.mat and extract_formants.m. lab8_features.mat
is a file containing five matrices, one for each of five vowels. Each matrix contains AR
coefficients calculated from fifty recorded instances of the corresponding vowel. The
vowels are “ae” (a as in “bait”), “ee” (as in “beet”), “ah” (as in “father”), “oh” (as
in “boat”), and “oo” (as in “boot”). The matrices are in a form that we will call a
feature matrix. That is, a feature matrix has one feature per column and one feature

5In order for the “Play Sound” feature to work properly for this lab, you need to comment out the
second-to-last line (line 22) in glottal source.m. This is the line containing the command signal =
filter(1,A,signal);

November 12, 2001 EECS 206, Lab 8, Final 1 11

vector (a set of AR coefficients, in this case) per row. We will consider using the AR
coefficients directly as features in another problem.

The function extract_formants.m takes a vector of AR coefficients (i.e., one row of
a matrix from lab8_features) and returns an estimate of the location of the first
and second formants in Hz. These two frequencies form the formant feature vector for
a particular instance. As mentioned in the background section, extracting formants
is not easy, so this function doesn’t always work. Particularly, this function behaves
somewhat unpredictably with the “oh” and “oo” vowels.

(a) Write a function called calc_formants that accepts a feature matrix of AR coeffi-
cients and returns a feature matrix of formant locations. Use extract_formants
to compute the formants. Put the first formant in the first column of the output
matrix, and the second formant in the second column.

• [6] Include the code for this function in your report.

(b) Now, we want to look at the “ee,” “ae,” and “ah” classes. Use calc_formants
to calculate formant feature matrices for these three classes.

• [2] Calculate the mean formant feature vectors for these three classes and
include them in your report.

• [8] Create a scatter plot of the formant locations for all three classes, putting
the first formant frequency on the x-axis and the second formant frequency
on the y-axis. Also, plot the mean feature vector from each class. Make
sure that you use unique markers for each of the three classes, that you label
the three classes (i.e., using legend), and that the mean feature vectors are
easy to identify. (Hint: Use black for the mean feature vectors and set their
marker sizes to 16 or so.)

• [2] From this scatter plot, do you think that these are good features for
classification? Why?

(c) Now, we would like to produce distance histograms for our data like those de-
scribed in section 8.2.5. There are three steps to generating a distance histogram
plot. First, you need to calculate the mean feature vectors for each class. Then,
you need to calculate the distances between the feature vectors in the class of
interest and mean feature vectors. Finally, you need to generate the histograms
themselves.
Write a function called distance_histogram that accepts three feature matrices
and generates a single distance histogram plot. Assume that the first of the three
input classes is your class of interest. Use 10 bins when generating the histograms.
Also, use legend to make sure that it is clear which class is the class of interest.
(Hint: If you put your calculated distances into a 50×3 matrix, A, you can easily
generate the histograms by calling hist(A,10);).

• [10] Include the code for your distance histogram-producing function.

(d) Use distance_histogram to produce three distance histogram plots with “ee,”
“ae,” and “ah” as your three classes.

• [2] Produce a distance histogram plot with “ee” as your class of interest.
Include the plot in your report. (Note: You don’t need to print these figures
in color. To distinguish the bars on a black and white plot, though use the
command colormap(pink).)

• [2] Produce a distance histogram plot with “ae” as your class of interest.
Include the plot in your report.

• [2] Produce a distance histogram plot with “ah” as your class of interest.
Include the plot in your report.

November 12, 2001 EECS 206, Lab 8, Final 1 12

(e) Note that if had taken the mean of the matrices of distances that created to
produce the distance histograms, you would have calculated necessary elements of
the cluster matrix. To save you some time, though, we’ve provided you a function
(called cluster_matrix.m) that computes the complete cluster matrix for you.
The function takes one feature matrix for each class that is being considered.
Calculate cluster matrix for the formant features. Use “ee” as your first class,
“ae” as your second class, and “ah” as your third class.

• [2] Include the cluster matrix in your report.

(f) From the cluster matrix, the scatter plot, and the distance histogram plots that
you’ve produced, you should be able to draw some conclusions.

• [3] For these features, which class is likely to be most misclassified? Which
class is likely to be least misclassified? What led you to these conclusions?

4. Now, we’ll examine two higher-dimensional feature vectors. The first feature vector is
simply the list of 11 AR coefficients from lab8_features.mat (the AR feature vector).

(a) Calculate the mean AR feature vectors for the “ee,” “ae,” and “ah” classes.

• [3] Plot the three mean AR feature vectors on the same plot. Make sure you
indicate which is which.

(b) Download the file dist_hist.m. This function will plot N distance histogram
plots when given N feature matrices as inputs. Use it to produce distance his-
tograms for the AR features.

• [2] Include the distance histogram with “ee” as the class of interest.
• [2] Include the distance histogram with “ae” as the class of interest.
• [2] Include the distance histogram with “ah” as the class of interest.

(c) Use cluster_matrix.m to calculate the cluster matrix for the AR features. Use
“ee” as your first class, “ae” as your second class, and “ah” as your third class.

• [2] Include the cluster matrix in your report.

(d) From the cluster matrix and distance histogram plots that you’ve produced, you
should be able to draw some conclusions.

• [3] For these features, which class is likely to be most misclassified? Which
class is likely to be least misclassified? What led you to these conclusions?

5. The second high-dimensional feature vector we will consider contains samples of the
spectrum of the AR models in decibels (this is the spectral feature vector).

(a) First, we need to calculate the feature matrices for the spectral features. Write a
function called calc_spectral that takes an AR feature matrix and calculates
the spectral feature matrix for the corresponding class. For each instance (i.e.,
each row) in the the AR feature matrix, you should use freqz to calculate a
16-point frequency response vector in decibels. For example, to calculate the
spectral feature matrix for the fifth instance in ae_data, you would call

f = 20*log10(abs(freqz(1,ae_data(5,:),16)));

The function should output a new feature matrix of spectral features.

• [6] Include the code for this function in your report.

(b) Use calc_spectral to compute spectral feature matrices for the “ee,” “ae,” and
“ah” classes. Compute the mean spectral feature vector for each of these three
classes.

• [4] Plot the three mean spectral feature vectors on the same plot. Make sure
to indicate which is which.

November 12, 2001 EECS 206, Lab 8, Final 1 13

(c) Use dist_hist to produce distance histograms for the AR features.

• [2] Include the distance histogram with “ee” as the class of interest.
• [2] Include the distance histogram with “ae” as the class of interest.
• [2] Include the distance histogram with “ah” as the class of interest.

(d) Use cluster_matrix.m to calculate the cluster matrix for the spectral features.
Again, use “ee” as your first class, “ae” as your second class, and “ah” as your
third class.

• [2] Include the cluster matrix in your report.

(e) From the cluster matrix and distance histogram plots that you’ve produced, you
should be able to draw some conclusions.

• [3] For these features, which class is likely to be most misclassified? Which
class is likely to be least misclassified? What led you to these conclusions?

6. Now, we can compare the results of the three sets of features that we’ve examined and
evaluate their performance.

• [5] From the cluster matrices and distance histograms that you’ve produced, draw
some conclusions about which of the three sets of features is best for distinguishing
these three vowel classes. Refer to evidence from both the distance histograms
and cluster matrices that support your conclusions.

