
An Introduction to Matlab

1 Matlab Introduction and Basics

Matlab is an interpreted programming language that includes a command-line interpreter
(like the various UNIX shells and many implementations of LISP). This has many advan-
tages in terms of ease of use, speed of algorithm prototyping, and so on. On the downside,
this means that a piece of code inMatlab is usually slower than an equivalent in a compiled
programming language like C++. To start with, we’ll just be using the command-line inter-
preter so that we can become familiar with some of Matlab’s commands and conventions.
The exact same commands, though, will be used later to write functions and scripts.

The first step to using Matlab is to bring up the program on your computer system.
At a UNIX system, simply typing “matlab” should be sufficient. Starting Matlab on a
Windows machine or a Macintosh generally involves finding the appropriate icon either
on the desktop or in the Start menu. Note that you can run Matlab remotely on UNIX
servers through telnet or ssh, but you generally won’t be able to use its graphical capabilities.
When Matlab is finished loading, you’ll find yourself with a command prompt that looks
something like this:

>>

So now what do you do? Well, the first step is to make use of Matlab’s single most useful
command:

>> help

See that list of categories? You can call help on any of these categories to get an organized
list of commands with brief discussions. Then, you can call help on any of the commands
for a complete description of that command. Select a category that looks interesting and
call help on it. Do the same for whichever command strikes your fancy. For instance:

>> help elmat
>> help why

Most often you’ll use help in this last capacity. Unfortunately it isn’t so helpful if you
don’t know the name of the command you’re looking for. One way around this is to use the
lookfor command. For instance, if you know you’re looking for a function that deals with
time, you can try:

>> lookfor time

This searches the first line of the every help description for the word “time.” This can take a
while, though (depending upon your system’s configuration). You should get into the habit
of reading the help on every new command that you run across. So call help on both help
and lookfor. There’s some useful information there.

Not surprisingly, you can use Matlab to do arithmetic. It operates very much like you
might expect, employing infix arithmetic like that used on standard calculators. Matlab
can evaluate simple expressions or arbitrarily complicated ones with parentheses used to
enforce a particular order of operations.

1



>> 6 * 7
>> (((12 + 5) * 62/22.83) - 5)^2.4

(The ^ operator performs exponentiation). Notice that when you execute these commands,
Matlab indicates that ans = 7.4977e+003 (or whatever). This indicates that the result
has been stored in a variable called ans. We can then refer to this quantity like this:

>> 0 * ans
>> ans + 1

It is important to note that the each of these commands overwrites ans. If we want to
save an answer, we can simply perform assignment like this:

>> my_variable = 42

This is the only declaration of my_variable that is needed, and we can use this variable
later just as we could with ans. Further, my_variable will retain its value until we explicitly
assign something else to it. We can clear variables, and typing who or whos will list what
variables we have in our workspace.

We also have access to a wealth of standard mathematical functions. Thus, we can if we
want to calculate the sine of the square-root of two and store it in a variable called var, we
simply type:

>> var = sin(sqrt(2))

Type help elmat to see how to call most of the elementary mathematical functions like
these. There are also a number of constants built into Matlab that are very useful. The
number π is referred to as pi (note that Matlab is case sensitive!). Both i and j default
to

√−1, but you can still use either (or both) as variable names if you like. You should
glance at help i so that you can see the various options for building complex numbers.

2 Vectors, Matrices, and Arrays

So far, we’ve been using Matlab to deal with scalar numbers. The real power of Matlab,
though, comes from its ability to handle vectors and matrices. In Matlab, vectors and
matrices are simply one-dimensional and two-dimensional arrays, respectively. An array is
simply a collection of numbers, each of which is indexed by an n-tuple. For an array, the
dimension is equal to the length of the n-tuple. For instance, consider the following vector
and matrix:

v =



1
2
3
4


 M =



1 2 3
4 5 6
7 8 9


 (1)

To access the 3 from vector v, we simply need to know that it is in the third row. Thus
the vector is one-dimensional. To access the 6 in the matrix M , though, we need to know
that it is in the second row and the third column. We index the 6 using the pair (2,3),
and so matrix is two-dimensional. Matlab arrays can have any number of dimensions. In
practice, though, we will only need vectors and matrices.

There are many different ways to build up and manipulate arrays in Matlab. For
instance, consider (and execute) the following commands:

>> a = [1 2 3 4 5 6 7]
>> b = [1, 2, 3, 4, 5, 6, 7]
>> c = [1; 2; 3; 4; 5; 6; 7]
>> d = [1 2 3 4; 5 6 7 8; 9 10 11 12]

2



The first two commands both build up the same vector, a 1x7 row-vector. The third com-
mand builds up a 7x1 column-vector with the same elements. The fourth command builds a
3x4 matrix. Notice that the comma (or the space) within the square brackets concatenates
horizontally and the semicolon concatenates vertically. The elements being concatenated do
not need to be scalars, either:

>> e = [a b]
>> f = [a; b]
>> g = [c d]

Oops! That last command produced an error. When concatenating arrays, the concatenated
arrays must have sizes such that the resulting array is rectangular.

The single apostrophe, ', is Matlab’s transposition operator. It will turn a row-vector
into a column-vector and vice versa. Similarly, it will make an nxm matrix into an mxn
matrix. To see how this works, type d' and look at the results. (Warning: ' is actually a
complex conjugate transpose, so complex numbers will have the sign of their imaginary parts
changed. To perform a straight transposition, use the .' operator. For real arrays, both
operators are identical.) Other useful commands for matrix manipulation include flipud
and fliplr, which mirror matrices top-to-bottom and left-to-right, respectively. Look at
help elmat for more useful functions.

Building small arrays by hand is fine, but it can become very tedious for larger arrays.
There are a number of commands to facilitate this. The ones and zeros commands build
matrices that are populated entirely with ones or zeros. The eye command builds identity
matrices. repmat is especially useful for making matrices out of vectors. diag builds
diagonal matrices from vectors, or returns the diagonal (vector) of a matrix. Check the
help for all of these commands.

Note that sometimes you don’t need or want to see what Matlab returns in response
to a particular command (especially if you’re dealing with very large arrays). To suppress
the output, simply add a semicolon, ;, after the command.

The colon operator is one way of creating long vectors that are useful for indexing (see
the next section). Execute the following commands:

>> 1:7
>> 1:2:13
>> 0.1:0.01:2.4

Each of these commands defines a row-vector. With only two arguments, as in the first
command, the colon operator produces a row vector starting with the first argument and
incrementing by one until the second argument has been reached. The optional middle
argument (seen in the second two commands) provides a different increment amount. The
colon operator is extremely useful, so it is recommended that you check out help colon for
more details. Play with some other combinations of parameters to familiarize yourself with
the behavior of this operator.

3 Array Arithmetic

Matlab allows you to perform mixed arithmetic between scalars and arrays as well as two
different types of arithmetic on vectors and arrays. Mixed scalar/array arithmetic is the
most straightforward. Adding, subtracting, multiplying or dividing a scalar from an array
(or an array from a scalar) is equivalent to performing the operation on every element of
the array. It is also useful to note that most of the provided mathematical functions (like
sqrt and sin) operate in a similar element-by-element fashion. Thus, the command

>> sin(d)

3



returns an array with the same size as d containing the sine of each element of d.
If we have two arrays, addition and subtraction is also straightforward. Provided that the

arrays are the same size, adding and subtract them performs the operation on an element-
by-element basis. Thus, the (3,4) element in the output (for instance) is the result of the
operation being performed on the (3,4) elements in the input arrays. If the arrays are not
the same size, Matlab will generate an error message.

For multiplication, division, exponentiation, and a few other operations, there are two
different ways of performing the operation in question. The first involves matrix arithmetic,
which you may have studied previously. You may recall that the product of two matrices
is only defined if the “inner dimensions” are the same; that is, we can multiply an mxn
matrix with an nxp matrix to yield an mxp matrix, but we cannot reverse the order of the
matrices. Then, the (p,q) element of the result is equal to the sum of the element-by-element
product of the pth row of the first matrix and the qth column of the second. Division and
exponentiation are defined with respect to this matrix product. It is not imperative that you
recall matrix multiplication here (most likely you will see it in a linear algebra course in the
future); however, it is important that you note that in Matlab the standard mathematical
operators (*, /, and ^) default to these forms of the operations.

A form of multiplication, division, and exponentiation for arrays that is more useful for
our purposes is the element-by-element variety. To use this form, we must use the “dot”
forms of the respective operators, .*, ./, and .^). Once again, the arrays must have the
same dimensions or Matlab will return an error. Thus, the commands

>> [1 2 3 4].*[9 8 7 6]
>> [7; 1; 4]./(1:3)'
>> 2.^[1 2 3 4 5 6]

perform element-by-element multiplication, division, and exponentiation. Note that the .^
form is necessary even for scalar-to-array exponentiation operations.

The array arithmetic capabilities of Matlab contribute greatly to its power as a pro-
gramming language. Using these operators, we can perform mathematical operations on
hundreds or thousands of numbers with a single command. This also has the side effect of
simplifying Matlab code, making it shorter and easier to read (usually).

4 Indexing

To make arrays truly useful, we need to be able to access the elements in those arrays.
Consider the following commands:

>> a(6)
>> a(3) = 12
>> d(2,3)

The first command retrieves the sixth element from a vector. The second assigns a number
to the third element of the same vector. For the third command, the order of the dimensions
is important. In Matlab, the first dimension is rows and the second dimension is columns.
Note particularly that this is the opposite of (x, y) indexing. Thus, the third command
retrieves the element from row two, column three. We can also index into matrices using
single numbers. In this case, the numbers count down the columns. This is called “column-
major” and is the opposite of array indexing in C or C++.

It is not necessary to index arrays only with scalars. One of the most powerful features
of Matlab is the ability to use one array to index into another one. For instance, consider
the following commands:

>> a([1 4 6])
>> b(3:7)
>> c(2:2:end)

4



These commands return a subset of the appropriate vector, as determined by the indexing
vector. For instance, the first command returns the first, fourth, and sixth elements from the
vector a. Notice the use of the end keyword in the third command. In an indexing context,
end is interpreted as the length of the currently indexed dimension. This is particularly
useful because Matlab will return an error if you try to access the eighth element of a
seven-element vector, for instance. In general, indices must be strictly positive integers less
than the length of the dimension being indexed. Thus, unlike C or C++, the indices begin
at one rather than at zero.

Using multiple indices into multi-dimensional array is slightly more complicated than
doing so with vectors. Consider the following commands:

>> d([1 3],2)
>> d([2 3],[1 4])
>> d(2,:)

The first command, as you might expect, returns the first and third elements of the second
column. The second command returns the second and third rows from the first and fourth
columns. Note particularly that this command does not return the individual elements at
(2,1) and (1,4). (To index individual elements in this manner, we need to use single-index
method along with the sub2ind command). The colon operator in the second command is
a shortcut for 1:end; thus, the third command returns all of the second row.

Two very useful commands that can be used to facilitate indexing are size and length.
size returns a vector containing the length of each dimension of an array. Alternately,
size can be used to request the length of a single dimension. length is primarily useful
for vectors when you’re not sure about their orientation. length returns the length of the
longest dimension. Thus, length(v) is the same whether v is a row-vector or a column-
vector, but size(v,1) will only properly return the length of a column-vector.

It is important to note that all of these indexing techniques are used not only to retrieve
many elements from an array but also to set them. When performing array assignment,
you must be careful to make sure the array being assigned has the same size as the array
to which it is being assigned. For instance, consider the following command:

>> d([1 3],[2 4]) = [9 8; 7 6]

Note that both of the matrixes on the left and right of the equal sign are 2x2, so the
assignment is valid. Look at the results of this command and make sure you understand
why it does what it does.

One last command that is extremely useful in context of indexing in Matlab is find.
find will return a vector containing the indices of any nonzero elements in an array. Note
that find uses the single-index indexing scheme that was mentioned earlier. At first glance,
this has relatively few uses; however, it is in fact extremely useful because of the behavior
of conditional statements in Matlab (i.e., >, <, and ==). The command a > 5 will return
an array with the same size as a, but with each element either 1 or 0 depending on whether
or not it is greater than 5. Using find on this array will provide the indices of elements
greater than 5. One particularly good use of the find command is the following contexts.
Suppose you wish to set all negative elements in a matrix to zero. You can do this with a
single command like so:

>> m = [-1 5 10; 3 -8 2; -4 -9 -1];
>> m(find(m < 0)) = 0;

Alternately, if you wish to square every element that is greater or equal to 4, you can use
the find command twice in a single line, like this:

>> m(find(m >= 4)) = m(find(m >= 4)).^2;

5



5 Data Visualization

So now we know how to build arbitrarily large arrays, populate them with interesting things,
and get individual elements or sections of them. However, pouring over pages and pages of
numbers is generally not much fun. Instead, we would really like to be able to visualize our
data somehow. Of course, Matlab provides many options for this. Let’s start by building
a vector we can use throughout this section, and then looking at it. Execute the following
commands:

>> x = sin(2*pi*(1:200)/25);
>> plot(x);
>> zoom on;

The first command builds up a sine wave, and the second command plots it. A window
should have popped up with a sine wave in it. Notice the y-axis extents from -1 to 1 as we
would expect. Using this form of plot, the x-axis is labeled with the index number; that is,
our vector has 200 elements, and so the data is plotted from 1 to 200. The third command
turned on Matlab’s zooming capabilities. If you left-click on the figure, it will zoom in;
right-clicking will zoom out. You can also left-click and drag to produce a zoom box that
lets you control what where the figure zooms. Experiment with this zoom tool until you’re
comfortable with it. Depending on the version of Matlab that you are using, there may
also be an icon of a magnifying glass with a + in it above the figure; clicking this icon will
also enable and disable zoom mode.

If you zoomed in closely enough on the plot, you probably noticed that the signal isn’t
perfectly smooth. Instead, it is made up of line segments. This is because our vector, x, is
made up of a finite collection of numbers. Matlab defaults to interpolating between these
points on the plot. You can tell Matlab to show you where the data points are, or to not
interpolate, by changing the line and point styles. Try each of these commands and look at
the results before executing the next one:

>> plot(x,'x-')
>> plot(x,'o')
>> plot(x,'rd:')

help plot lists the various combinations of characters that you can use to define line style
and color. There are a few similar commands for plotting vectors as well. Try these com-
mands, and make sure you zoom in on each one so you can see the results:

>> stem(x)
>> stairs(x)
>> bar(x)

When you checked the help for plot (you did look at the help, didn’t you?), most
likely you noticed that there are some more explicit ways to use the function. There is an
optional first parameter that gives the x-position of each data point. Thus, we use plot for
x-y scatter plots and other things. Calling plot without the first parameter is equivalent to
the following command:

>> plot(1:length(x),x,'x-');

We can do other interesting things by adjusting this first parameter. Try this:

>> plot(log2(1:length(x)),x);

A signal that looks like this is called a “chirp.” We’ll see why later on when we listen to
some signals.

It is also possible to plot multiple vectors simultaneously. One way requires two param-
eters for each vector. A second makes use of the fact that plot will plot the columns of a
matrix as separate lines. Execute the following commands. The first builds a second vector,
while the second and third show alternative ways of plotting them.

6



>> y = .8*sin(2*pi*(1:200)/14 + 0.5);
>> plot(1:length(x),x,1:length(y),y);
>> plot([x; y]');

You’re probably not surprised by now thatMatlab also has facilities for visualizing two
dimensional arrays. Let’s look at some of them. First, we need an interesting matrix to
look at. Execute the following command:

>> z = membrane(1,50);

We now have a 101x101 matrix of numbers. The most straightforward way to look at this
data is using the imagesc command, which displays the matrix as though it were an image.
Execute the following commands:

>> imagesc(z); axis xy; colorbar;

Our surface has been displayed in color. Notice the colorbar along the right side of the image,
which tells what values the various colors map to. This type of display, where different colors
are used to represent differing values, is known as a pseudocolor display. If we look at the
image we’ve got a “high” spot in the lower right that tapers off to “low” regions around
the outside. The surface also has an overall L-shape. Another way to visualize this uses the
contour command. Try this:

>> contour(z,20); colorbar;

This display, the contour plot, shows us lines of constant height. This is the way that
meteorologists usually display atmospheric pressure on weather maps.

We also have some more interesting options. Try the following commands:

>> mesh(z); rotate3d on
>> surf(z); rotate3d on

Now we have some “3-D” visualizations of our surface. If you click-and-drag the plot,
you should be able to rotate the surface so that you can see it from various directions.
Experiment with this until you’re comfortable with how it works. Notice what happens if
you look at the surface from directly above.

Matlab has some very powerful tools for data visualization; here, you’ve seen only a
small sampling. There many more. If you’re interested in exploring this topic further, check
help graph2d, help graph3d, and help specgraph.

6 Programming in Matlab

As has been mentioned, programming in Matlab is really just like using the environment
at the command line. The only difference is that commands are placed in a file (called an
M-file) so that they can be executed by simply calling the file’s name. We’ll also see that
Matlab has many of the same control flow structures, like loops and conditionals, as many
other programming languages.

Before we jump into programming in Matlab I need to make a few comments about
files in Matlab. Matlab has access to machine’s file system in roughly the same way a
command line based operating system like DOS or UNIX. It has a “present working direc-
tory” (which you can see with the command pwd); any files in the present working directory
can be seen by Matlab. You can change the present working directory in in roughly the
same way that you do in DOS or UNIX, using the cd command (for “change directory”).
Matlab also has a “path,” like the path in DOS or UNIX, which lists other directories
that contain files that Matlab can see. The path command will list the directories in the
path. We’ll be making a few files in this tutorial, and you’ll need to store commands in
files when doing the laboratories. You’ll probably want to make a directory somewhere in

7



your personal workspace, cd to that directory, and store your files there. Unless you’re
working on your own system, do not store them in the main Matlab directory; if you do,
the system’s administrator will probably become very irritated with you.

There are two types of files containing commands that Matlab can call. Both use the
“.m” file extension. The first type is a script, which contains nothing but a list of commands.
When you call the script (by simply typing in the script’s filename), Matlab will execute
all of the commands in the file and return to the command line exactly as if you had typed
the commands in by hand. Let’s write a short script.

First, we need an editor. If you’re using a Windows or Macintosh system, or MATLAB
6.0 on a UNIX, just type in edit at the Matlab prompt and text editor will pop up.
Older versions of Matlab under UNIX do not have a built-in editor, so you’ll need to use
some other editor, like emacs or vi. Use the system to open a new terminal and open your
favorite text editor (pico is a UNIX text editor that is easy to use if you don’t already have
a favorite). Place the following lines in the text file and save it as “hello.m”.

% hello.m -- Introductory 'Hello World' script
% These lines are comments, because they start with '%'
hw = 'Hello World!';
disp(hw);

Now execute it by typing hello at the Matlab prompt. (Remember that the file needs to
be in your present working directory or on the path for Matlab to see it – cd to the correct
directory if necessary). As a result of executing the script, you should now have a variable
’hw’ in your workspace (remember, who lists variables in your workspace).

The second type of file that we can put commands in is called a function. A function
communicates with the current workspace by passing parameters. It also creates a separate
workspace so that it’s variables don’t get mixed up with whatever variables you have in
your current workspace. Using your text editor, make a new file that contains the following
lines and save it as “hello2.m.”

% hello2.m -- Introductory 'Hello World' function
% Try typing 'help hello2' when you're done, and see what happens
%
% function output = hello2(input)

function output = hello2(input)
% The line above tells MATLAB that this is a function
% with one input and one output parameter

hw2 = ['Hello World! x' num2str(input)];
disp(hw2);
output = hw2;

To call this function, type hello2(2). Note that once you’ve done this, the variable hw2
does not show up in your workspace. However, the data that was stored in output (the
output parameter) has been placed in ans. This is exactly what happens if you called a
Matlab built-in function without supplying an output parameter. Similarly, the ‘2’ is an
input parameter which is passed into the function. When a function is executed, it will
not have any variables defined except those defined inside the function itself and the input
parameters. For further help on these two types of M-file, type help function or help
script at the Matlab prompt.

In Matlab we also have a number of programming constructs at our disposal. While
primarily used in M-files, these constructs can also be used at the command line. However,
anything complicated enough to need a loop or an if-statement is usually worth putting into
an M-file. Let’s look at the most typical types of programming constructs.

8



The for loop is used to execute a set of commands a certain number of times, while also
providing an index variable. Consider the simple loop here:

for index = 1:10
disp(index);

end

This loop executes the disp command ten times. The first time it is executed, index is set
to 1. Thereafter, it is incremented by one each time the commands in the loop are executed.
Note that the colon form of the for loop is not mandatory; any row-vector can be used in
its place, and the index (which, of course, can be renamed) will be sequentially set to each
of the elements in the vector from left to right. We can use while loops in a similar manner.
Consider this:

ct = 10;
while ct > 0.5

ct = ct/2;
disp(ct);

end

As long as the conditional after while is true, the loop will be executed.
A more traditional method of conditional execution comes from the if-else statement.

Consider this:

if pi > 4
disp('Pi is too big!');

elseif pi < 3
disp('Pi is too small!');

else
disp('Pi is just about right.');

end

Here, Matlab will first check the conditional, pi > 4. If this is true, the first display
command will be executed and then the remainder of the if-else statement will be skipped
(that is, none of the other conditionals will be tested). If the first conditional is false,
Matlab will begin to check the remaining conditionals. There can be any number of
elseif statements in this construct (including none), and the else statement is entirely
optional. If you have a large number of chained conditionals, you might consider using the
switch-case construct (type help switch or help case).

7 Debugging your Matlab code

Inevitably, when you put Matlab commands into a file as a script or a function, you will
make mistakes and need to locate them. Because of its interpreted environment, Matlab
is actually one of the most pleasant languages to debug. And, as is always the case when
debugging code, there are many ways to accomplish this.

If you are executing a script or function and Matlab encounters an error, it will im-
mediately print the line number of the function on which the error occurred. If the error
occurs in a file other than the calling file, a call stack will be printed. This listing shows
which file called which other files and on what line number. This allows us to pinpoint the
source of the error quickly.

One of the simplest ways to debug is a method you are probably familiar with from
other programming languages. We can force Matlab to print strings or variables using the
disp command. This way, we can display for loop counters or other relevant variables to
determine what they contain and exactly when in the program flow the code “breaks.”

9



The real power of Matlab debugging comes from our ability to ”break” at any point in
the code and then proceed to execute any Matlab commands. There are a number of ways
to do this. For instance, you can tell Matlab to stop and enter “debug mode” whenever
an error is encountered. When you’re in debug mode, the command line changes to K>>.
You will then have access to all of the variables that are in scope at the time. Turn on this
option with the command

>> dbstop if error

To turn it off again, use the command

>> dbclear if error

We can also set and clear breakpoints elsewhere in the code using the same commands. To
set (and then clear) a breakpoint in hello2.m at line 11, call

>> dbstop in hello2 at 11
>> dbclear in hello2 at 11

dbstatus will show all breakpoints that are currently active. Note that if you try to set a
breakpoint at a non-command line (like a comment), the breakpoint will be set at the next
valid command.

Another useful command is dbstep, which advances one command in the m-file. If you
call dbstep in or dbstep out, you can step into and out of called functions (that is, you
traverse up and down the call stack, which contains a list of which functions have been
called to reach the current point in the code). dbstack lists the current call stack including
your current file and the line number in this file. dbtype types all or parts of an m-file.
Eventually, you’ll want to get out of debug mode, so you can call dbquit to halt execution
of the file or dbcont to continue execution until the end of the file or the next breakpoint. In
general, help debug is the starting point in the help system for learning about theMatlab
command line debugger.

If you are running Matlab on a Windows system (or possibly a Macintosh), the de-
bugger is also available through the built in editor. The exact implementation depends on
your system and the version of Matlab, but usually breakpoints will show up as red circles
next to commands. In debug mode, the current command will be pointed to with an arrow,
so you can follow where you are in the code. There are typically shortcut keys and menu
items to insert and remove breakpoints, step through the code, and toggle flags such as
stop-if-error.

If you save a file that has breakpoints, you may find that your breakpoints disappear.
This can be very annoying, so there is an alternative method of entering debug mode.
Placing the command keyboard into your code is effectively the same as placing a breakpoint
in the code, such that you can execute commands before returning to program execution
(with the command return).

There are a number of error types that you are likely to encounter. One very good rule of
thumb says that if an error occurs inside a Matlab function, the error is almost assuredly
in the calling function. Usually this means that the function is being passed improper
parameters; check the call stack or dbstep out until you find the line in your program which
is causing problems. Other common errors include indexing errors (indexing with 0 or a
number greater than the length of the indexed dimension of a variables) and assignment
size mismatches. Matlab is usually pretty descriptive with its error messages once you
figure out how to interpret what it is saying. As is usually the case when debugging, an
error message at a particular line may in fact indicate an error that has occurred several
lines before.

10



List of Commonly Used Matlab Commands

Elementary Math Functions
abs atan exp log rem sqrt
acos ceil fix log10 round tan
angle conj floor mod sign
asin cos imag real sin

Graphing and Plotting Functions
axis figure line print stem xlabel
bar grid loglog semilogx subplot ylabel
clf hold plot semilogx text zoom
close legend polar shg title

Relational and Logical Functions
all eq (==) ge (>=) isempty isnan not (~)
and (&) exist gt (>) isfinite le (<=) or (|)
any find ischar isinf lt (<) strcmp

Programming and Control Flow
break disp end if pause try
case else error input return warning
catch elseif for otherwise switch while

General Purpose Functions
who length exit which exist
whos clear quit lookfor
size why help helpdesk

File and Directory Functions
cd fclose load path save what
dir fopen mkdir rmdir type

Debugging Commands
dbclear dbquit dbstatus dbstop dbup
dbcont dbstack dbstep dbtype keyboard

11


